第八章 二元一次方程组期末复习题

合集下载

七年级数学下册第八章二元一次方程组知识总结例题(带答案)

七年级数学下册第八章二元一次方程组知识总结例题(带答案)

七年级数学下册第八章二元一次方程组知识总结例题单选题1、如果关于x ,y 的方程组{4x −3y =66x +my =26的解是整数,那么整数m 的值为( )A .4,−4,−5,13B .4,−4,−5,−13C .4,−4,5,13D .−4,5,−5,13 答案:B分析:先将m 看作已知量,解二元一次方程组,用m 表示出y ,再结合x ,y 为整数,得出y 的整数解,然后把y 的整数解代入①,得出x 的解,再把方程组的整数解代入②,即可得出m 的值. 解:{4x −3y =6①6x +my =26②,由②×2−①×3,可得:y =342m+9, ∵x ,y 为整数,∴当(2m +9)为−34,−17,−2,−1,34,17,2,1时,y 为整数,∴把(2m +9)的值代入y =342m+9,可得:y =−1,y =−2,y =−17,y =−34,y =1,y =2,y =17,y =34,∴把y 的整数解代入①,可得:x =34,x =0,x =−454,x =−24,x =94,x =3,x =574,x =27,∴方程组{4x −3y =66x +my =26 的整数解为{x =0y =−2 ,{x =−24y =−34 ,{x =3y =2 ,{x =27y =34,把方程组的整数解代入②,可得:m =−13,m =−5,m =4,m =−4. 故选:B小提示:本题考查了二元一次方程组的解、解二元一次方程组,解本题的关键是用含m 的代数式表示y . 2、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了xmin ,下坡用了ymin ,根据题意可列方程组( )A .{3x +5y =1200x +y =16B .{360x +560y =1.2x +y =16C .{3x +5y =1.2x +y =16D .{360x +560y =1200x +y =16答案:B分析:根据路程=时间乘以速度得到方程360x +560y =1.2,再根据总时间是16分钟即可列出方程组. ∵她去学校共用了16分钟, ∴x+y=16,∵小颖家离学校1200米, ∴360x +560y =1.2,∴{360x +560y =1.2x +y =16 ,故选:B.小提示:此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.3、2x 3y m+1与3x n y 2是同类项,则m 与n 的值为( ) A .{m =1n =3 B .{m =3n =1 C .{m =2n =3 D .{m =3n =2答案:A分析:根据同类项定义,所含字母相同,相同字母的指数也相同,列方程组求解即可. 解:2x 3y m+1与3x n y 2是同类项, 则{3=n m +1=2 , 解得:{m =1n =3.故选A .小提示:本题考查同类项,二元一次方程组,掌握所含字母相同并且相同字母的指数也相同的项叫做同类项是解题关键.4、下列方程组中,有无数组解的是( )A .{2x -y =-2x -2y =-1B .{y =3x +5y =3x -2 C .{x -4y -7=02x -8y -14=0 D .{y =x -3y =2x -3分析:分别求解每一个选项的方程组的解,即可得出答案. 解:A 、{2x -y =-2x -2y =-1解得:{x =-1y =0,方程组有唯一一组解,故此选项不符合题意;B 、{y =3x +5y =3x -2 解得方程组无解,故此选项不符合题意; C 、{x -4y -7=0①2x -8y -14=0②,①×2−②,得0x-0y =0,则x 、y 可取任何值,所以方程组有无数组解,故此选项符合题意; D 、{y =x -3y =2x -3解得:{x =0y =-3 ,方程组有唯一一组解,故此选项不符合题意;故选:C .小提示:本题考查二元一次方程组的解,解二元一次方程组,注意二元一次方程组的解的三种情况:①方程组有唯一一组解,②方程组有无数组解,③方程组无解. 5、若|x −y −1|+3(x +y)2=0,则x 、y 的值为( ) A .x =0.5,y =0.5B .x =−0.5,y =−0.5 C .x =−0.5,y =0.5D .x =0.5,y =−0.5 答案:D分析:本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”,得到方程组,解出x 、y 的值即可.解:依题意得:{x −y −1=0...(1)x +y =0 (2),由(1)得:x =y +1(3),将(3)代入(2)中得:y +1+y =2y +1=0, y =−0.5(4).将(4)代入(3)得:x =0.5. 故选:D .小提示:本题考查解二元一次方程组和绝对值、偶次方的非负性,解题的关键是熟练运用二元一次方程组的6、已知{m +2n =−42m +n =9,则代数式m −n 的值是( )A .-5B .5C .13D .1 答案:C分析:两式相减即可得出答案. 解:{m +2n =−4①2m +n =9②将②-①,得m −n =13 故选C .小提示:本题考查了二元一次方程的特殊解法,找到两式与m −n 的关系是解题的关键.7、已知关于x ,y 的二元一次方程组{2x −y =4,kx +y =2 ,的解为{x =2,y =♥,其中“♥”是不小心被墨水涂的,则k 的值为( )A .1B .−1C .2D .−2 答案:A分析:将x =2,代入2x −y =4,得y =0,将{x =2y =0代入kx +y =2,即可求解.解:将x =2,代入2x −y =4,得y =0, 将{x =2y =0 代入kx +y =2,得2k =2, 解得k =1. 故选A .小提示:本题考查了二元一次方程组的解,理解二元一次方程的解的定义是解题的关键.8、一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是( )A .容易题和中档题共60道B .难题比容易题多20道C .难题比中档题多10道D .中档题比容易题多15道分析:设容易题有a题,中档题有b题,难题有c题,根据“三种题型共100道,每道题至少有一人解对,且每人都解对了其中的60道”,即可得出关于a,b,c的三元一次方程组,用方程①×2-方程②,可求出c-a=20,即难题比容易题多20题,此题得解.解:设容易题有a题,中档题有b题,难题有c题,依题意,得:{a+b+c=100①3a+2b+c=3×60②①×2-②,得:c-a=20,∴难题比容易题多20题.故选:B.小提示:本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.9、如图,三个天平的托盘中形状相同的物体质量相等.图①、图②所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( )A.3个球B.4个球C.5个球D.6个球答案:C分析:题目中的方程实际是说明了两个相等关系:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据第一个天平得到:5x+2y=x+3z;根据第二个天平得到:3x+3y=2y+2z,把这两个式子组成方程组,解这个关于y,z 的方程组即可.解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:{5x+2y=x+3z;3x+3y=2y+2z解得:{y=xz=2x;第三图中左边是:x+2y+z=x+2x+2x=5x,因而需在它的右盘中放置5个球.答:需在它的右盘中放置5个球.所以C选项是正确的.小提示:解决本题的关键是借助方程关系进行等量代换,进而求出球的数量.10、若−2a m b4与5a n+2b2m+n可以合并成一项,则mn的值是()A.2B.0C.-1D.1答案:B分析:根据合并同类项法则和同类项定义得出{m=n+22m+n=4,求出m、n的值,最后求出答案即可.解:∵−2a m b4与5a n+2b2m+n可以合并成一项,∴{m=n+22m+n=4,解得:m=2,n=0,∴mn=2×0=0,故选:B.小提示:本题考查了同类项的含义,合并同类项,二元一次方程组的解法,能根据同类项的含义得出m=n+2和2m+n=4是解此题的关键.填空题11、若{a=1b=−2是关于a,b的二元一次方程ax−ay+b=3的一个解,则代数式2x−2y−1的值是____.答案:9分析:根据二元一次方程的解的概念将{a=1b=−2代入ax−ay+b=3中得到一个关于a,b的式子,然后整体代入求值即可.∵{a=1b=−2是关于a,b的二元一次方程ax−ay+b=3的一个解,∴x−y−2=3,∴x−y=5,2x−2y−1=2(x−y)−1=2×5−1=9,所以答案是:9.小提示:本题主要考查二元一次方程的解的概念和代数式求值,掌握二元一次方程的解的概念和整体代入法是解题的关键.12、二元一次方程组{3x +2y =122x −y =1的解为________.答案:{x =2y =3分析:方程组利用加减消元法求出解即可. 解:{3x +2y =12①2x −y =1②.①+②×2得:7x =14, 解得:x =2,把x =2代入②得:2×2-y =1 解得:y =3,所以,方程组的解为{x =2y =3,所以答案是:{x =2y =3.小提示:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 13、《张丘建算经》里有一道题:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?请你结合你学过的知识,写出一组能够按要求购买的方案:公鸡买______只,母鸡买_______只,小鸡买_______只. 答案: 4(答案不唯一) 18(答案不唯一) 78(答案不唯一)分析:设买了x 只公鸡,y 只母鸡,则买了(100−x −y )只小鸡,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y ,(100−x −y )均为自然数,即可求出结论. 解:设买了x 只公鸡,y 只母鸡,则买了(100−x −y )只小鸡, 依题意得:5x +3y +13(100−x −y )=100,即y =25−74x , 又∵x ,y ,(100−x −y )均为自然数,∴{x=0 y=25100−x−y=75或{x=4y=18100−x−y=78或{x=8y=11100−x−y=81或{x=12y=4100−x−y=84,∴买的公鸡、母鸡、小鸡各0、25、75只或4、18、78只或8、11、81只或12、4、84只,所以答案是:0、25、75只或4、18、78只或8、11、81只或12、4、84.小提示:本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.14、若a,c,d是整数,b是正整数,且满足a+b=c,b+c=d,c+d=a,则a+2b+3c+4d的最大值是_______.答案:-11分析:由a+b=c,c+d=a,可得b+d=0,再由b+c=d可得2b+c=b+d=0,进而得出c=-2b,a=c-b=-3b,代入a+b+c+d=-5b,已知b是正整数,其最小值为1,于是a+2b+3c+4d=-11b的最大值是-11.解:∵a+b=c①,b+c=d②,c+d=a③,由①+③,得(a+b)+(c+d)=a+c,∴b+d=0④,∵b+c=d②;由④+②,得2b+c=b+d=0,∴c=-2b⑤;由①⑤,得a=c-b=-3b,⑥由④⑤⑥,得a+2b+3c+4d=-11b,∵b是正整数,其最小值为1,∴a+2b+3c+4d的最大值是-11.所以答案是:-11.小提示:本题主要考查了三元一次方程组的应用,整式的加减、等式的基本性质,根据已知等式变形成a、c、d全部用同一个字母b来表示是解题的关键.15、若3x2m−3-y2n−1=5是二元一次方程,m+n=______.答案:3分析:含有两个未知数,且含未知数的项的次数是1的整式方程是二元一次方程,根据定义得到2m -3=1,2n -1=1,求出m ,n 即可得到答案. 解:由题意的,2m -3=1,2n -1=1, 解得m =2,n =1, ∴m +n =2+1=3, 所以答案是:3.小提示:此题考查了二元一次方程的定义,熟记定义是解题的关键. 解答题16、阅读下列解方程组的方法,然后回答问题. 解方程组{19x +17y =18①16x +14y =15②解:由①﹣②得3x +3y =3即x +y =1③ ③×14得14x +14y =14④ ②﹣④得x =12,从而可得y =12 ∴方程组的解是{x =12y =12 . (1)请你仿上面的解法解方程组{2022x +2020y =20212023x +2021y =2022.(2)猜测关于x ,y 的方程组{(a +1)x +(a −1)y =a (b +1)x +(b −1)y =b(a ≠b )的解是什么,并利用方程组的解加以验证.答案:(1){x =12y =12(2)猜想:{x =12y =12,见解析 分析:(1)仿照例题,②﹣①,得x +y =1③,③×2021,得2021x +2021y =2021④,②﹣④得x =12,从而得y =12,即可求解.(2)根据方程组中未知数的系数之间的关系,猜想方程组的解为{x =12y =12,代入方程组检验即可求解. (1)解:{2022x +2020y =2021①2023x +2021y =2022②②﹣①,得x +y =1③,③×2021,得2021x +2021y =2021④, ②﹣④得x =12,从而得y =12.∴方程组的解是{x =12y =12. (2)猜想:{x =12y =12.验证把方程组的解代入原方程组, 得{12(a +1)+12(a −1)=a 12(b +1)+12(b −1)=b,即{a =a b =b 方程组成立. ∴方程组的解是{x =12y =12 . 小提示:本题考查了加减消元法解二元一次方程组,二元一次方程组的解,仿照例题求解是解题的关键. 17、数学乐园:解二元一次方程组{a 1x +b 1y =c 1①a 2x +b 2y =c 2②,①×b 2−②×b 1得:(a 1b 2−a 2b 1)x =c 1b 2−c 2b 1,当a 1b 2−a 2b 1≠0时,x =c 1b 2−c 2b 1a 1b 2−a 2b 1,同理:y =a 1c 2−a 2c1a 1b 2−a 2b 1;符号|a b c d |称之为二阶行列式,规定:|a bc d|=ad −bc , 设D =|a1b 1a 2b 2|,D x =|c1b 1c 2b 2|,D y =|a 1c 1a 2c 2|,那么方程组的解就是{x =DxD y =D y D(1)求二阶行列式|3456|的值; (2)解不等式:|x x −22−4|≥−2;(3)用二阶行列式解方程组{3x−2y=62x+3y=17;(4)若关于x、y的二元一次方程组{3x−my=62x+3y=17无解,求m的值.答案:(1)|3456|的值是−2(2)不等式的解集为x≤1(3){x=4y=3 (4)m=−4.5分析:(1)根据|a bc d|=ad−bc,即可求出|3456|;(2)根据|a bc d|=ad−bc,得|x x−22−4|≥−2=x×(−4)−2(x−2)≥−2,解出x,即可;(3)根据D=|a1b1a2b2|,D x=|c1b1c2b2|,D y=|a1c1a2c2|,那么方程组的解就是{x=D xDy=D yD,即可求出{3x−2y=62x+3y=17的解;(4)根据{3x−my=62x+3y=17无解,得D=0,即可求出m的值.(1)∵|a bc d|=ad−bc∴|3456|=3×6−4×5=−2∴|3456|的值是−2.(2)∵|a bc d|=ad−bc∴|x x−22−4|=−4x−2(x−2)∴|x x−22−4|≥−2=−4x−2(x−2)≥−2∴−4x−2x+4≥−2∴−6x≥−6∴x≤1∴|x x−22−4|≥−2的解集为x≤1.(3)∵方程组{a1x+b1y=c1①a2x+b2y=c2②∴方程组{3x−2y=62x+3y=17中,a1=3,a2=2,b1=−2,b2=3,c1=6,c2=17∴D=|a1b1a2b2|=|3−223|=9−(−4)=13D x=|c1b1c2b2|=|6−2173|=18+34=52D y=|a1c1a2c2|=|36217|=3×17−12=39x=D xD =5213=4,y=D yD=3913=3∴方程组的解为:{x=4y=3.(4)∵{a1x+b1y=c1①a2x+b2y=c2②∴方程组{3x−my=62x+3y=17中,a1=3,a2=2,b1=−m,b2=3,c1=6,c2=17∴D=|a1b1a2b2|=|3−m23|=9−2(−m)=9+2m∵{3x−my=62x+3y=17无解∴D=0∴9+2m=0解得m=−92.小提示:本题考查二元一次方程组的解法,解题的关键是理解题意新定义算法,根据二阶行列式计算.18、材料阅读:一个各个数位上数字均不相同且都不为0的四位自然数N,将其千位上数字与十位上数字之和记为x,百位上数字与个位上数字之和记为y,若x﹣y=1.且其千位上数字与个位上数字之和等于百位上数字,则称N为“扬一数”.例如:N=2573,x=2+7=9,y=5+3=8,x﹣y=1,2+3=5则2573是“扬一数”;再如N=2354,x=2+5=7,y=3+4=7,x﹣y=0≠1,所以2354不是“扬一数”.(1)请判断4652和4157,是不是“扬一数”,并说明理由;(2)已知一个四位数S是“扬一数”,且能被7整除,请求出所有满足条件的S.答案:(1)4652是“扬一数”,4157是“扬一数”,见解析(2)S=7952或5873或3794分析:(1)根据新定义进行解答便可;(2)设S=abcd,根据数S是“扬一数”,得(a+c)﹣(b+d)=1且a+d=b,进而得c=2d+1,从而求得c=3,d=1或c=5,d=2或c=7,d=3或c=9,d=4,再根据S能被7整除,得157a+15d+1+a+2d+37为整数,进而得a+2d+37为整数,对应前面c、d的值便可求得a、b的值,于是问题得解.(1)解:4652是“扬一数”,4157不是“扬一数”.理由如下:∵N=4652,x=4+5=9,y=6+2=8,x﹣y=1,4+2=6,∴4652是“扬一数”,∵N=4157,x=4+5=9,y=1+7=8,x﹣y=1,但4+7≠1,∴4157“扬一数”;(2)设S=abcd,∵数S是“扬一数”,∴(a+c)﹣(b+d)=1且a+d=b,∴c﹣2d=1,∴c=2d+1,∴c=3,d=1或c=5,d=2或c=7,d=3或c=9,d=4,∵S能被7整除,∴1000a+100b+10c+d7=1000a+100(a+d)+10(2d+1)+d7=157a+15d+1+a+2d+37为整数,∴a+2d+37为整数,∴a=7,b=9,c=5,d=2或a=5,b=8,c=7,d=3或a=3,b=7,c=9,d=4,∴S=7952划5873或3794.小提示:本题主要考查了新定义,整除的应用,不定方程的应用,关键是正确应用新定义和解不定方程.。

人教版七年级初一数学第二学期第八章 二元一次方程组单元 期末复习测试题试卷

人教版七年级初一数学第二学期第八章 二元一次方程组单元 期末复习测试题试卷

人教版七年级初一数学第二学期第八章 二元一次方程组单元 期末复习测试题试卷一、选择题1.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩2.已知()11n a a n d +-=(n 为自然数),且25a =,514a =,则15a 的值为( ). A .23B .29C .44D .533.为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x 平方千米,林地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )A .1800250xy y x +=⎧⎪⎨-=⎪⎩ B .1800250x y x y +=⎧⎪⎨-=⎪⎩ C .1800250x y x y +=⎧⎪⎨=⋅⎪⎩ D .1800250x y y x +=⎧⎪⎨=⋅⎪⎩4.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内, 它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A .(4,44)B .(5,44)C . (44,4)D . (44,5)5.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③6.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( ) A .40B .41C .45D .467.已知方程组4520430x y z x y z -+=⎧⎨+-=⎩(xyz≠0),则x :y :z 等于( )A .2:1:3B .3:2:1C .1:2:3D .3:1:28.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( ) A .; B .; C .; D .9.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( ) A .3 B .5 C .4或5 D .3或4或5 10.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.12.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.13.方程组251036238x y z x z ⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).14.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下: 购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.15.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.16.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.17.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.18.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 19.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km . 20.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.三、解答题21.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.22.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费. 23.已知12x y =⎧⎨=⎩是二元一次方程2x y a +=的一个解.(1)a=__________;(2)完成下表,并在所给的直角坐标系中描出表示这些解的点(x,y),如果过其中任意两点作直线,你有什么发现?x013y62024.问题:有甲、乙、丙三种商品,①购甲3件、乙5件、丙7件共需490元钱;②购甲4件、乙7件、丙10件共需690元钱;③购甲2件,乙3件,丙1件共需170元钱. 求购甲、乙、丙三种商品各一件共需多少元?小明说:“可以根据3个条件列出三元一次方程组,分别求出购甲、乙、丙一件需多少钱,再相加即可求得答案.”小丽经过一番思考后,说:“本题可以去掉条件③,只用①②两个条件,仍能求出答案.” 针对小丽的发言,同学们进行了热烈地讨论.(1)请你按小明的思路解决问题.(2)小丽的说法正确吗?如果正确,请完成解答过程;如果不正确,请说明理由.(3)请根据上述解决问题中积累的经验,解决下面的问题:学校购买四种教学用具A、B、C、D,第一次购A教具1件、B教具3件、 C教具4件、D教具5件共花2018元;第二次购A教具1件、B教具5件、 C教具7件、D教具9件共花3036元. 求购A教具5件、B教具3件、 C教具2件、D教具1件共需多少元?25.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?26.善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4105x y y ++=,即()2255x y y ③++=把方程①代入③,得2351y y ⨯+=∴=-,把1y =-代入①,得4x =,∴原方程组的解为41x y =⎧⎨=-⎩请你解决以下问题:模仿小军的“整体代换法”解方程组3259419x y x y ;-=⎧⎨-=⎩(2)已知x y 、满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩①,②求224x y +与xy 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题解析:∠A 比∠B 大30°, 则有x=y+30, ∠A ,∠B 互余, 则有x+y=90. 故选D .2.C解析:C 【分析】分别令n=2与n=5表示出a 2,a 5,代入已知等式求出a 1与d 的值,即可确定出a 15的值. 【详解】令n=2,得到a 2=a 1+d=5①; 令n=5,得到a 5=a 1+4d=14②, ②-①得:3d=9,即d=3, 把d=3代入①得:a 1=2, 则a 15=a 1+14d=2+42=44. 故选:C . 【点睛】本题考查了代数式的求值以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.C解析:C【解析】设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18025% x yx y+=⎧⎨=⨯⎩.故选C4.A解析:A【分析】设粒子运动到A1,A2,…A n时所用的时间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,由a n-a n-1=2n,则a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,以上相加得到a n-a1的值,进而求得a n来解,再找到运动方向的规律即可求解.【详解】由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,相加得:a n-a1=2(2+3+4+…+n)=n2+n-2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.【点睛】本题考查了规律型-点的坐标,分析粒子在第一象限的运动规律得到数列a n的递推关系式a n-a n-1=2n是本题的突破口,对运动规律的探索知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动是解题的关键.5.C解析:C【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5, ∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④. 故选C . 【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.6.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.7.C解析:C 【分析】先利用加减消元法将原方程组消去z ,得出x 和y 的关系式;再利用加减消元法将原方程组消去y ,得出x 和z 的关系式;最后将::x y z 中y 与z 均用x 表示并化简即得比值. 【详解】∵4520430x y z x y z -+=⎧⎨+-=⎩①②∴由①×3+②×2,得2x y = 由①×4+②×5,得3x z = ∴:::2:31:2:3x y z x x x == 故选:C . 【点睛】本题考查加减消元法及方程组含参问题,利用加减消元法将多个未知数转化为同一个参数是解题关键.8.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= .故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.9.C解析:C 【解析】∵2x +1·4y =128,27=128, ∴x +1+2y =7,即x +2y =6. ∵x ,y 均为正整数, ∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩∴x +y =4或5.10.C解析:C 【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可. 【详解】解:根据题意,得121m n m n -=⎧⎨+-=⎩,解得21m n =⎧⎨=⎩.故选:C . 二、填空题【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-,∵x、y都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 12.【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)解析:11 xy=-⎧⎨=⎩【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m(x+2y-1)+x-y+2=0,因为无论实数m取何值,此二元一次方程都有一个相同的解,所以21020x yx y+-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.13.是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三解析:是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组.所以251036238x y zx z⎧+-=⎪⎨⎪-=⎩是三元一次方程组;故填:是.【点睛】本题主要考查三元一次方程组的定义.14.15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.15.m >﹣【分析】利用方程组中两个式子加减可得到和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m+2,将两个方程相减解析:m >﹣23【分析】利用方程组中两个式子加减可得到5x y -和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m +2,将两个方程相减可得x ﹣3y =﹣m ﹣4, 由题意得32040m m +>⎧⎨--<⎩,解得:m>23 -,故答案为:m>23 -.【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换16.26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册解析:26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册x本,购买大纪念册y本,则x,y为整数.则有题目可得二元一次方程:5x+7y=142,解得:x,y有4组整数解即:271xy=⎧⎨=⎩,206xy=⎧⎨=⎩,1311xy=⎧⎨=⎩,616xy=⎧⎨=⎩即有四种情况即:两种纪念册共买28、26、24或22本.故答案为28、26、24或22本.【点睛】本题考查了一次方程的实际应用,中等难度,解决此类问题的关键在于,找出题目中所给的等量关系,列出方程,求解方程.17.48【分析】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可. 【详解】设选信息技术的有x人,选解析:48【分析】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可.【详解】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意得:()()()()()1858824a x x ya x y x x⎧++=+⎪⎨++--+=⎪⎩①②,②可变形为:(a-1)(x+8)=24+x-y③,①+③,得2a(x+8)=24+6x+4y,即a=12328x yx+++;①-③,得x+3y=20.∵x、y都是正整数,∴171xy=⎧⎨=⎩或142xy=⎧⎨=⎩或113xy=⎧⎨=⎩或84xy=⎧⎨=⎩或55xy=⎧⎨=⎩或26xy=⎧⎨=⎩当171xy=⎧⎨=⎩、142xy=⎧⎨=⎩、113xy=⎧⎨=⎩、84xy=⎧⎨=⎩、55xy=⎧⎨=⎩,a=12328x yx+++都不是整数,不合题意.当26xy=⎧⎨=⎩时,a=12328x yx+++=3.∴选信息技术的有2人,选演讲与口才的有6人,选手工制作的有10人,选趣味数学的有30人,由于每名学生都填了调査表,且只选了一个项目,所以参加调查问卷的学生有2+6+10+30=48(人).故答案为48【点睛】本题考查了二元一次方程的正整数解、二元一次方程组等知识点,题目难度较大,根据方程组得到二元一次方程,是解决本题的关键.18.【解析】【分析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x解析:3215【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: 82375%23275%x y a x y a ()()-=⎧⎨-=⎩ 解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215(小时). 故答案为3215. 【点睛】 本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键. 19.3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了x km ,交换位置后走了ykm .分别以解析:3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有+=50003000+=50003000kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=21150003000+=3750(千米). 故答案为:3750.点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.20.【分析】根据方程组解的定义,把x =5,y =10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.【详解】解:∵方程组∵解为:x =5,y =10,∴,∴∵,∴,①−②,得3a解析:25x y ⎧⎨⎩== 【分析】根据方程组解的定义,把x =5,y =10代入即可得出a 1,a 2,c 1,c 2的关系,再代入计算即可.【详解】解:∵方程组1122==a x y c a x y c +⎧⎨+⎩ ∵解为:x =5,y =10,∴1122510=510=a c a c +⎧⎨+⎩, ∴()12125a a c c -=-∵11122232=32=a x y a c a x y a c ++⎧⎨++⎩, ∴112232=61032=610a x y a a x y a ++⎧⎨++⎩①②, ①−②,得3a 1x−3a 2x =6a 1−6a 2,∴x =2,把x =2代入①得,y =5,∴方程组11122232=32a x y a c a x y a c ++⎧⎨+=+⎩的解是=2=5x y ⎧⎨⎩,故答案为:=2=5x y ⎧⎨⎩. 【点睛】本题考查了解二元一次方程组,掌握方程组的解法是解题的关键.三、解答题21.(1)0≤x≤1;(2)①x=1;②a=b=c ;③存在 063a b c =⎧⎪=⎨⎪=⎩使等式成立 . 【解析】【分析】(1)根据题意可得关于x 的不等式组,解不等式组即可求得答案;(2)①先求出{}21,21M x x x +=+,,继而根据题意可得{}min 2,1,21x x x +=+,由此可得关于x 的不等式组,求解即可得;②M{a ,b ,c}=3a b c ++,如果min{a ,b ,c}=c ,则a ≥c ,b ≥c ,即3a b c ++=c ,由此可推导得出a=b=c ,其他情况同理可证,故a=b=c ;③由②的结果可得关于a 、b 、c 的方程组,由此进行求解即可得.【详解】 (1)由题意得2224-22x x +≥⎧⎨≥⎩, 解得0≤x≤1; (2)①{}21221,213x x M x x x ++++==+, {}{}21,2min 2,1,2M x x x x ,+=+所以{}min 2,1,21x x x +=+则有1212x x x +≤⎧⎨+≤⎩ 即11x x ≤⎧⎨≥⎩ 所以x=1 ②∵M{a ,b ,c}=3a b c ++, 如果min{a ,b ,c}=c ,则a ≥c ,b ≥c , 则有3a b c ++=c , 即a+b-2c=0,∴(a-c)+(b-c)=0,又a-c ≥0,b-c ≥0,∴a-c=0且b-c=0,∴a=b=c ,其他情况同理可证,故a=b=c ;③存在,理由如下:由题意得:()()273212741a b a b a b c ⎧-+=++⎪⎨-+=+⎪⎩ⅠⅡ, 由(Ⅰ)得 a+3b=6,即23a b =-, 因为a ,b ,c 是非负整数 ,所以a=0,3,6 ,b=2,1,0,即06a b =⎧⎨=⎩,代入(Ⅱ)得c=3, 或31a b =⎧⎨=⎩,代入(Ⅱ)得c=114,不符合题意,舍去, 或60a b =⎧⎨=⎩ ,代入(Ⅱ)得c=92,不符合题意,舍去, 综上所述: 存在063a b c =⎧⎪=⎨⎪=⎩使等式成立.【点睛】本题考查了一元一次不等式组的应用,方程组的应用,读懂题意,正确进行分析得出相应的不等式组或方程组是解题的关键.22.(1) A 型车、B 型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A 型车8辆,B 型车2辆,最少租车费为2080元.【分析】(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,根据题目中的等量关系:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a 、b 为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,依题意列方程组为:32172318x y x y +=⎧⎨+=⎩ 解得34x y =⎧⎨=⎩ 答:1辆A 型车辆装满货物一次可运3吨,1辆B 型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b - ∵a、b 都是整数∴92a b =⎧⎨=⎩或55a b =⎧⎨=⎩或18a b =⎧⎨=⎩ 答:有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆;方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A 型车1辆,B 型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解.23.(1)4;(2)见解析.【解析】【分析】(1)根据代入法,把已知的二元一次方程的解代入方程即可求解a 的值;(2)利用(1)中的a 值,得到二元一次方程组,代入求解完成表格,然后描点即可.【详解】(1)将12x y =⎧⎨=⎩代入2x+y=a ,解得a=4. (2)完成表格如下:由图可知,如果过其中任意两点作直线,其他点也在这条直线上.【点睛】解题关键是把方程的解代入原方程,使原方程转化为以系数k 为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.24.(1) 购甲、乙、丙三种商品各一件共需90元.(2) 小丽的说法正确. (3) 购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.【解析】分析:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列三元一次方程组求解即可;(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列方程组,变形后用整体思想解答即可;(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,根据题意列方程组,变形后用整体思想解答即可.详解:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得: 357490471069023170x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.解得: 203040x y z =⎧⎪=⎨⎪=⎩.∴ 90x y z ++=.答:购甲、乙、丙三种商品各一件共需90元.(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得:3574904710690x y z x y z ++=⎧⎨++=⎩.变形得:()()()()322490432690x y z y z x y z y z ①②⎧++++=⎪⎨++++=⎪⎩解得:①×3-②×2得:∴x +y +z =90答:购甲、乙、丙三种商品各一件共需90元.(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,由题意得: 34520185793036a b c d a b c d +++=⎧⎨+++=⎩①②①×11-②×6得:5a +3b +2c +d =3982答:购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.点睛:本题考查了二元一次方程组的应用以及利用换元法解方程组,解题的关键是:(1)用加减消元法解三元一次方程组;(2)(3)运用了整体思想解决问题.解决该题型题目时,整体替换部分是关键.25.(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙型挖掘机,支付最少为820元【解析】分析:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.等量关系:甲、乙两种型号的挖掘机共8台;每小时挖掘土石方540m 3;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.详解:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.依题意得:86080540x y x y +=⎧⎨+=⎩,解得: 53x y =⎧⎨=⎩. 答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机.依题意得:60m +80n =540,化简得:3m +4n =27,∴m =9﹣43n ,∴方程的解为53m n =⎧⎨=⎩或16m n =⎧⎨=⎩. 当m =5,n =3时,支付租金:100×5+120×3=860元当m =1,n =6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.26.(1)方程组的解为32x y ⎧⎨⎩==;(2)19. 【解析】【分析】(1)仿照小军的方法将方程②变形,把方程①代入求出y的值,即可确定出x的值;(2)方程组两方程变形后,利用加减消元法求出所求即可.【详解】解:(1)由②得:3(3x-2y)+2y=19③,把①代入③得:15+2y=19,解得:y=2,把y=2代入①得:x=3,则方程组的解为32 xy⎧⎨⎩==;(2)由①得:3(x2+4y2)-2xy=47③,由②得:2(x2+4y2)+xy=36④,③+④×2得:7(x2+4y2)=119,解得:x2+4y2=17.③×2得:6(x2+4y2)-4xy=94⑤,④×3得:6(x2+4y2)+3xy=108⑥,⑥-⑤得:7 xy=14xy=2.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

第八章二元一次方程组复习测试题

第八章二元一次方程组复习测试题

第八章二元一次方程组复习测试题一、填空题(每空2分,共34分) 1、如果1032162312=--+--b a b a yx是一个二元一次方程,那么数a .b=______。

2、已知方程()()17112-=+y x ,写出用y表示x 的式子得___________________。

当2=x时,=y_______ 。

3、已知,则x 与y 之间的关系式为__________________。

4、方程93=+y x的正整数解是______________。

5、已知方程组⎩⎨⎧=+=+15231432y x y x ,不解方程组则x+y=__________。

6、若二元一次方程组⎩⎨⎧=+=-11532by ax y x 和⎩⎨⎧=+=-15y x ay cx 同解,则可通过解方程组 _________ 求得这个解。

7、已知点A(3x -6,4y +15),点B (5y ,x )关于x 轴对称,则x +y 的值是________。

8、若2)532(2=-+++-y x y x ,则x = ,y = 。

9、已知二元一次方程组⎪⎪⎩⎪⎪⎨⎧=+=+175194y x yx 的解为by a x==,,则.______=-b a。

10、已知等腰三角形一腰上的中线将它的周长分为6和9两部分,则它的底边长是_________。

11、已知⎩⎨⎧-==12y x 是方程组⎩⎨⎧-=-=+24155by x y ax 的解,则.________32=+b a12、在△ABC 中,∠A -∠C=25°,∠B -∠A=10°,则∠B=________。

13、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为x ,十位数字为y ,则用代数式表示原两位数为 ,根据题意得方程组⎩⎨⎧_________________________________。

2020-2021学年人教版七年级数学下册《第8章二元一次方程组》期末复习知识点分类训练

2020-2021学年人教版七年级数学下册《第8章二元一次方程组》期末复习知识点分类训练

2021人教版七年级数学下册《第8章二元一次方程组》期末复习知识点分类训练(附答案)一.二元一次方程的定义1.下列各式中是二元一次方程的是()A.2x+y=5B.xy+5=4C.+2=3y D.ax+y=22.下列是二元一次方程的是()A.3x﹣6=x B.2x﹣3y=x2C.D.3x=2y3.下列方程中,是二元一次方程的是()A.xy=100B.x=2y+1C.D.x2+y=134.若方程x﹣3my=2x﹣4是关于x、y的二元一次方程,则m为()A.m≠0B.m≠1C.m≠2D.m≠35.已知3x2a+b﹣3﹣5y3a﹣2b+2=﹣1是关于x、y的二元一次方程,则(a+b)b=.二.二元一次方程的解6.已知是关于x、y的二元一次方程x+my=5的一组解,则m的值是()A.1B.﹣1C.﹣2D.27.关于x,y的二元一次方程3x﹣2y=5的解有()A.B.C.D.8.已知二元一次方程2x﹣3y=3的一组解为,则下列说法一定不正确的是()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0 9.若关于x、y的方程ax+y=2的一组解是,则a的值为()A.﹣1B.C.1D.210.方程2x+y=9在正整数范围内的解有()A.1个B.2 个C.3个D.4个11.二元一次方程x+2y=5的所有非负整数解为.三.解二元一次方程12.已知3x﹣=1,用含x的式子表示y下列正确的是()A.y=6x﹣2B.y=2﹣6x C.y=﹣1+3x D.13.下列各组数中,不是二元一次方程2x﹣5y=3的解是()A.B.C.D.14.已知方程3x﹣4y=5,用含x的式子表示y正确的是()A.x=B.y=C.x=D.y=15.写出二元一次方程x+4y=11的一个整数解.16.已知方程4x﹣3y﹣6=0,用含y的代数式表示x,则x=.17.将方程2x+3y=1改写成用含x的式子表示y的形式:.四.由实际问题抽象出二元一次方程18.列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后3小时相遇;如果乙比甲先走2小时,那么在甲出发后2.5小时相遇.甲、乙两人每小时各走多少千米?19.根据下列语句,设适当的未知数,列出二元一次方程(组):甲数的2倍与乙数的的差等于48的.五.二元一次方程的应用20.为了防治“新型冠状病毒”,某市某小区购买了若干瓶消毒剂和若干支红外线测温枪,积极号召主动接受测温和各楼道做好消毒工作.其中,每瓶消毒剂5元,每支红外线测温枪560元,总共消费金额为3000元.问本次小区购买消毒剂的数量和测温枪的数量.21.为倡导绿色出行,构建低碳环保生活理念,大青山李白文化旅游区于9月22日“世界无车日”上午9:00举办“2018当涂大青山环骑活动”.甲、乙同时从同一起点分别以一定的速度骑车,如果反向而行,那么他们每隔40分钟相遇一次;如果同向而行,那么他们每隔80分钟乙就追上甲一次.乙的速度是甲的速度的几倍?22.为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7辆B 型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金.六.二元一次方程组的定义23.下列方程组中不是二元一次方程组的是()A .B .C .D .24.下列方程组中,是二元一次方程组的是()A .B .C .D .25.下列方程组中,不是二元一次方程组的是()A .B .C .D .26.下列方程组中,二元一次方程组是()A .B .C .D .七.二元一次方程组的解27.若关于x,y 的二元一次方程组的解也是二元一次方程2x+3y=12的解,则k 的值为()A .B .C .D .28.已知关于x、y 的方程组的解满足x+y=5,求:m2021+2的值.29.已知,关于x、y 二元一次方程组的解满足方程2x﹣y=13,求a的值.30.若方程组与有相同的解,则a、b的值为多少?31.已知关于x的方程m+x=3的解满足,若﹣1<y<5,求实数m的取值范围.八.解二元一次方程组32.对于实数x,y定义一种新运算F(x,y)=mx+ny(其中m,n均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,例如m=3,n=1时,F (2,4)=3×2+1×4=10.若F(1,﹣3)=6,F(2,5)=1,则F(3,﹣2)=.33.二元一次方程组的解是.34.解方程:.35.解方程组.36.按要求解方程组:(1);(代入法)(2).(加减法)37.解方程组:(1);(2).38.解方程组:.九.由实际问题抽象出二元一次方程组39.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这两位数所列的方程组是.40.弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”求弟弟和哥哥的年龄.设这一年弟弟x岁,哥哥y岁,根据题意可列出二元一次方程组是.41.某班级为奖励网络课堂线上学习先进个人,花了800元钱购买甲、乙两种奖品共60件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,根据题意可列方程组为.十.二元一次方程组的应用42.某超市购进甲、乙两种型号的空气加湿器进行销售,已知购进4台甲型号空气加湿器和6台乙型号空气加湿器共用1820元,购进6台甲型号空气加湿器比购进4台乙型号空气加湿器多用520元.(1)求甲、乙两种型号的空气加湿器每台的进价.(2)超市根据市场需求,决定购进这两种型号的空气加湿器共60台进行销售,甲种型号每台售价260元,乙种型号每台售价190元,若超市购进的这两种空气加湿器全部售出后,共获利2800元,则该超市本次购进甲、乙两种型号的空气加湿器各多少台?十一.解三元一次方程组43.已知三元一次方程组,则x+y+z=.44.当x=﹣2时,代数式ax2+bx+c的值是5;当x=﹣1时,代数式ax2+bx+c的值是0;当x=1时,代数式ax2+bx+c的值是﹣4;则当x=2时,代数式ax2+bx+c的值是.45.已知方程组,则x:y:z=.46.已知关于a、b、c的方程组,则(a﹣b)c=.十二.三元一次方程组的应用47.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元.问购买铅笔11支,作业本5本,圆珠笔2支共需多少元?48.已知△ABC的周长为48cm,最长边与最短边之差为14cm,另一边与最短边之和为25cm,求△ABC各边的长.49.为了组织一个50人的旅游团开展“乡间民俗”游,旅游团住村民家,住宿客房有三人间、二人间、单人间三种,收费标准是三人间每人每晚20元,二人间每人每晚30元,单人间每人每晚50元,旅游团共住20间客房,旅游团如何安排住宿才能够使得住宿费最低,并说明理由.50.有甲、乙、丙三人,若甲、乙的年龄之和为15岁,乙、丙的年龄之和为16岁,丙、甲的年龄之和为17岁,则甲、乙、丙三人的年龄分别为多少岁?参考答案一.二元一次方程的定义1.解:A、该方程是二元一次方程,符合题意;B、该方程的未知数项的最高次数是2,不是二元一次方程,不符合题意;C、该方程不是整式方程,不符合题意;D、当a=0时,该方程不是二元一次方程,不符合题意.故选:A.2.解:A.是一元一次方程,不是二元一次方程,故本选项不符合题意;B.是二元二次方程,故本选项不符合题意;C.分式方程,不是二元一次方程,故本选项不符合题意;D.是二元一次方程,故本选项符合题意;故选:D.3.解:A.是二元二次方程,不是二元一次方程,故本选项不符合题意;B.是二元一次方程,故本选项符合题意;C.分式方程,不是二元一次方程,故本选项不符合题意;D.是二元二次方程,不是二元一次方程,故本选项不符合题意;故选:B.4.解:x﹣3my﹣2x=﹣4,﹣x﹣3my=﹣4,由题意得:﹣3m≠0,m≠0,故选:A.5.解:因为3x2a+b﹣3﹣5y3a﹣2b+2=﹣1是关于x、y的二元一次方程,则,利用代入法求出a=1,b=2.把a=1,b=2代入,得(a+b)b=9.二.二元一次方程的解(共6小题)6.解:由题意,得1+2m=5,解得m=2.故选:D.7.解:将代入方程3x﹣2y=5的左边,左边=5,左边=右边,所以是该方程的解.将代入方程3x﹣2y=5的左边,左边=6,左边≠右边,所以不是该方程的解.将代入方程3x﹣2y=5的左边,左边=2,左边≠右边,所以不是该方程的解.将代入方程3x﹣2y=5的左边,左边=﹣25,左边≠右边,所以不是该方程的解.故选:A.8.解:由2x﹣3y=3,得x=,y=,因为二元一次方程2x﹣3y=3的一组解为,所以当m<0时,n<0,故选项C符合题意.故选:C.9.解:将代入方程ax+y=2,得4a﹣6=2,解得a=2.故选:D.10.解:由题意,得x=,要使x,y都是正整数,则合适的y的值只能是y=1,3,5,7,相应的x的值为x=4,3,2,1.答案是4个.故选:D.11.解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数,∴y=0,1,2,相应的x=5,3,1.∴二元一次方程x+2y=5的所有非负整数解为,,.故答案为:,,.三.解二元一次方程(共6小题)12.解:∵3x﹣=1,∴,∴y=6x﹣2.故选:A.13.解:A、把代入方程得:左边=3﹣0=3,右边=3,左边=右边,不符合题意;B、把代入方程得:左边=﹣2﹣5=﹣7,右边=3,左边≠右边,符合题意;C、把代入方程得:左边=8﹣5=3,右边=3,左边=右边,不符合题意;D、把代入方程得:左边=﹣12+15=3,右边=3,左边=右边,不符合题意,故选:B.14.解:方程3x﹣4y=5,移项得:﹣4y=﹣3x+5,解得:.故选:D.15.解:方程整理得:x=﹣4y+11,当y=1时,x=7,则方程的一个整数解为,故答案为:16.解:方程4x﹣3y﹣6=0,移项得:4x=3y+6,解得:x=y+.故答案为:y+.17.解:方程2x+3y=1,解得:y=,故答案为:y=.四.由实际问题抽象出二元一次方程(共2小题)18.解:设甲,乙速度分别为x,y千米/时,,解得:,甲的速度是3.6千米每小时,乙的速度是6千米每小时.19.解:设甲数为x,乙数为y,则2x﹣y=48×.五.二元一次方程的应用(共3小题)20.解:设本次小区购买消毒剂的数量和测温枪的数量分别为x和y,根据题意可得:5x+560y=3000,当y=1时,x=488,当y=2时,x=376,当y=3时,x=264,当y=4时,x=152,当y=5时,x=40,答:本次小区购买消毒剂的数量和测温枪的数量分别为488,1或376,2或264,3或152,4或40,5.21.解:设乙的速度是xm/s,甲的速度是ym/s,环山一周为am,依题意有,解得:x=3y,答:乙的速度是甲的速度的3倍.22.解:(1)设每辆A型车有x个座位,每辆B型车有y个座位,依题意,得:,解得:.答:每辆A型车有45个座位,每辆B型车有60个座位.(2)设租m辆A型车,n辆B型车,依题意,得:45m+60n=480,解得:n=8﹣m.∵m,n为整数,∴(舍去),,,∴有两种租车方案,方案1:租4辆A型车、5辆B型车;方案2:租8辆A型车、2辆B型车.当租4辆A型车、5辆B型车时,所需费用为350×4+400×5=3400(元),当租8辆A型车、2辆B型车时,所需费用为350×8+400×2=3600(元).∵3400<3600,∴租4辆A型车、5辆B型车所需租金最少,最少租金为3400元.六.二元一次方程组的定义(共4小题)23.解:由二元一次方程组的定义可知,方程组中不是二元一次方程组的是.故选:D.24.解:A.是二元一次方程组,故本选项符合题意;B.是二元二次方程组,不是二元一次方程组,故本选项不符合题意;C.是二元二次方程组,不是二元一次方程组,故本选项不符合题意;D.第二个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;故选:A.25.解:由二元一次方程组的定义可知,方程组中不是二元一次方程组的是,因为方程xy=0中未知数的次数是2次,故选:B.26.解:A、是二元二次方程组,不合题意;B、,是二元一次方程组,符合题意;C、,是二元二次方程组,不合题意;D、,第2个方程不是整式方程,不合题意.故选:B.七.二元一次方程组的解(共5小题)27.解:解方程组得:.将代入2x+3y=12中得:2×7k+3×(﹣2k)=12.解得:k=.故选:D.28.解:,①﹣②,得x+y=4﹣m,∵关于x、y的方程组的解满足x+y=5,∴4﹣m=5,解得m=﹣1.∴m2021+2=(﹣1)2021+2=﹣1+2=1.29.解:由题意可得,解得,将代入2x﹣3y=7a﹣9,得10+9=7a﹣9,解得a=4.30.解:联立得:,①+②×4得:11x=22,即x=2,将x=2代入②得:4﹣y=5,即y=﹣1,∴方程组的解为,代入得:,解得:a=,b=﹣.31.解:,②﹣①,得3y=6a﹣3,解得y=2a﹣1,把y=2a﹣1代入①,得x﹣2a+1=3﹣a,解得x=a+2,∵关于x的方程m+x=3的解满足,∴x=3﹣m,∴y=2a﹣1=2(a+2)﹣5=2x﹣5=2(3﹣m)﹣5=1﹣2m,又∵﹣1<y<5,∴﹣1<1﹣2m<5,解得﹣2<m<1.八.解二元一次方程组(共7小题)32.解:∵F(1,﹣3)=6,F(2,5)=1,∴根据题中的新定义化简得:,解得:,即F(x,y)=3x﹣y,则F(3,﹣2)=9+2=11.故答案为:11.33.解:,①+②,得4x=20,解得x=5,把x=5代入②,得5﹣2y=5,解得y=0,故方程组的解为.故答案为:.34.解:(1)∵(x﹣4)2=25,∴x﹣4=±5,∴x=9或x=﹣1.(2),①×3得:6x+3y=6,③②﹣③得:x=,将x=代入①得:y=﹣1,∴该方程组的解为.35.解:将②代入①得:﹣y=﹣1,∴y=4,将y=4代入①中,x=12,∴.36.解:(1),由①得:y=3x﹣6③,把③代入②得:2x+3(3x﹣6)=15,解得:x=3,把x=3代入③得:y=3,则方程组的解为;(2),①+②×2得:5x=10,解得:x=2,把x=2代入②得:y=3,则方程组的解为.37.解:(1),①×2+②得:﹣5y=﹣9,解得:y=1.8,把y=1.8代入②得:﹣4x+1.8=﹣3,解得:x=1.2,则方程组的解为;(2)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:8﹣y=5,解得:y=3,则方程组的解为.38.解:由①得:4x+4=6y﹣2③,由②×2得:4x﹣12=10y﹣16④,③﹣④得:16=﹣4y+14,解得:y=﹣,把y=﹣代入③得:x=﹣,则方程组的解为.九.由实际问题抽象出二元一次方程组(共3小题)39.解:依题意得:.故答案为:.40.解:设这一年弟弟x岁,哥哥y岁,根据题意得:,故答案为:.41.解:若设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共60件,所以x+y=60因为甲种奖品每件16元,乙种奖品每件12元,所以16x+12y=800由上可得方程组:.故答案为:.一十.二元一次方程组的应用(共1小题)42.解:(1)设甲种型号的空气加湿器每台的进价为x元,乙种型号的空气加湿器每台的进价为y元,依题意得:,解得:.答:甲种型号的空气加湿器每台的进价为200元,乙种型号的空气加湿器每台的进价为170元.(2)设该超市本次购进购进甲种型号的空气加湿器m台,则购进乙种型号的空气加湿器(60﹣m)台,依题意得:(260﹣200)m+(190﹣170)(60﹣m)=2800,解得:m=40,∴60﹣m=20(台).答:该超市本次购进购进甲种型号的空气加湿器40台,乙种型号的空气加湿器20台.一十一.解三元一次方程组(共4小题)43.解:,①+②+③,得2x+2y+2z=12,等式两边都除以2,得x+y+z=6,故答案为:6.44.解:根据题意,得,解得,∴当x=2时,代数式ax2+bx+c的值为:1×22+(﹣2)×2+(﹣3)=4﹣4﹣3=﹣3.故答案为:﹣3.45.解:,①+②,得2x﹣4z=0,∴x=2z.①﹣②,得2y﹣6z=0,∴y=3z.∴x:y:z=2z:3z:z=2:3:1.故答案为:2:3:1.46.解:,②﹣①得:2a﹣2b=4,即a﹣b=2,把a﹣b=2代入①得:c=3,则原式=23=8.故答案为:8.一十二.三元一次方程组的应用(共4小题)47.解:设铅笔的单价为x元,作业本的单价为y元,圆珠笔的单价为z元,依题意得:,3×①﹣②得:11x+5y+2z=5.答:购买铅笔11支,作业本5本,圆珠笔2支共需5元.48.解:设该三角形的最长边为xcm,最短边为ycm,另一边为zcm,根据题意得:,解得:.答:△ABC的最长边为23cm,最短边为9cm,另一边长为16cm.49.解:设三人间,二人间,单人间分别住了x,y,z间,其中x,y,z都是自然数,总的住宿费为W元,则,解得(2分)∵x,y,z都是自然数∴,或,或,或,或,或(5分)∴w=60x+60y+50z=﹣10z+1200,∴w随z的增大而减小,∴当z=5时,即x=15,y=0,z=5时,住宿的总费用最低.(7分)50.解:设甲的年龄为x岁,乙的年龄为y岁,丙的年龄为z岁,依题意,得:,解得:.答:甲的年龄为8岁,乙的年龄为7岁,丙的年龄为9岁.。

第八章 二元一次方程组 章末检测卷(原卷版)

第八章 二元一次方程组 章末检测卷(原卷版)

第八章 二元一次方程组 章末检测卷全卷共26题,满分:120分,时间:120分钟一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·河南淇县·七年级期中)下列方程组中,是二元一次方程组的是( )A .2214x y x +=⎧⎨=⎩B .1236x y y z ⎧-=⎪⎨⎪-=⎩C .225x y x y +=-⎧⎨-=⎩D .213xy y y +=⎧⎨=-⎩2.(2022·江苏宿迁·七年级期末)二元一次方程1x y +=有无数个解,下列各组数值中,不是该方程的解的是( )A .10=⎧⎨=⎩x yB .122x y ⎧=⎪⎨⎪=⎩C .01x y =⎧⎨=⎩D .12x y =-⎧⎨=⎩3.(2022·重庆北碚区·七年级期末)古代《折绳测井》“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?“译文大致是:“用绳子测水井深度,如果将绳子折成三等分,井外余绳4尺;如果将绳子折成四等分,井外余绳1尺,问绳长、井深各是多少尺?“如果设绳长x 尺,井深y 尺,根据题意列方程组正确的是( )A .143114x y x y ⎧=+⎪⎪⎨⎪=+⎪⎩B .143114x y x y ⎧=-⎪⎪⎨⎪=-⎪⎩C .143114x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩D .143114x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩4.(2022·江苏·七年级期中)小明解得方程组3310x y x y +=⎧⎨-=⎩●解为2x y =⎧⎨=⎩★,由于不小心上了两滴墨水刚好遮住了两个数●和★,则这两个数分别为( ) A .10和4B .2和-4C .-2和4D .-2和-45.(2022·江苏·七年级课时练习)我们规定:[]m 表示不超过m 的最大整数,例如:[]3.13=,[]00=,[]3.14-=-,则关于x 和y 的二元一次方程组[][][]3.23.2x y x y ⎧+=⎪⎨-=⎪⎩的解为( )A .30.2x y =⎧⎨=⎩B .21.2x y =⎧⎨=⎩C . 3.30.2x y =⎧⎨=⎩D . 3.40.2x y =⎧⎨=⎩6.(2022·遂宁市七年级期中)解方程组231372533x y z x y z x y z -+=⎧⎪+-=⎨⎪-+=⎩如果要使运算简便,那么消元时最好应( )A .先消去xB .先消去yC .先消去zD .先消常数项7.(2022·河南·漯河七年级期末)若关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是23x y =⎧⎨=-⎩,则关于m ,n 的二元一次方程组()()()()111222a m n b m n c a m n b m n c ⎧-++=⎪⎨-++=⎪⎩的解是( )A .1252m n ⎧=-⎪⎪⎨⎪=-⎪⎩B .1252m n ⎧=-⎪⎪⎨⎪=⎪⎩C .5212m n ⎧=-⎪⎪⎨⎪=-⎪⎩D .5212m n ⎧=⎪⎪⎨⎪=⎪⎩8.(2022·湖北黄冈·七年级期末)已知x ,y ,z 满足43723131x y z x y z ++=⎧⎨--=-⎩ ,则2x y z +-的值为( ) A .2B .3C .4D .59.(2022·湖南邵阳·七年级期中)已知关于x ,y 的方程组324x y ax y a -=+⎧⎨+=⎩有下列结论:①21x y =⎧⎨=⎩是方程组的解;②存在a ,使得x y =;③当0a =时,方程组的解也是方程1x y a +=+的解;④x ,y 的解都为自然数的解有无数对.其中正确的个数为( ) A .3个B .2个C .1个D .4个10.(2022·仁寿县七年级期中)我校七年级某班为筹备篮球运动会,准备用265元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱恰好用尽的条件下,有( )种购买方案. A .1种B .2种C .3种D .4种二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上) 11.(2022·天津七年级期中)若()()20193202042021m n m x n y---++=是关于x ,y 的二元一次方程,则=m _________,=n _________.12.(2022·北京市第三十九中学七年级期中)已知关于x ,y 的二元一次方程组3110ax y x by +=⎧⎨+=⎩的解是22x y =⎧⎨=-⎩,则2a b +=______.13.(2022·湖南·长沙市中雅培粹学校八年级开学考试)已知x ,y 满足方程组5632x y x y +=⎧⎨-=⎩,则x y +的值为______.14.(2022·江苏·七年级期末)一家四口人的年龄加在一起是100岁,弟弟比姐姐小8岁,父亲比母亲大2岁,十年前他们全家人年龄的和是65岁,则父亲今年的年龄为__________岁.15.(2022·江苏·扬州市江都区第三中学七年级阶段练习)若方程组2439x yax y-=⎧⎨+=⎩无解,则a的值为_______.16.(2022·江苏·七年级阶段练习)如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的2倍,若中间小正方形的面积为1,则大正方形ABCD的面积是__________.17.(2022·上海普陀·期末)使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.如果一个二元一次方程的解中两个未知数的绝对值相等,那么我们把这个解称做这个二元一次方程的等模解.二元一次方程2x﹣5y=7的等模解是_________.18.(2022·重庆·七年级期末)我国的经济总量己居世界第二,人民富裕了,很多家庭都拥有多种车型.小明家有A、B、C三种车型,已知3辆A型车的载重量与4辆B型车的载重量之和刚好等于2辆C型车的载重量;4 辆B型车的载重量与1辆C型车的载重量之和刚好等于6辆A型车的载重量.现有一批货物,原计划用1辆C型车5次可全部运完,由于C型车另有运输任务,现在安排1辆A型车单独装运9次,余下的货物由1辆B型车单独装运刚好可以全部运完,则B型车需单独装运____次(每辆车每次都满载重量).三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2022·浙江台州·七年级期末)用适当方法解下列方程组:(1)2222x yx y+=⎧⎨-=⎩(2)2233213y xx y=+⎧⎨+=⎩20.(2022河南安阳·七年级期末)已知关于x 、y 的方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,求代数式2a +b 的平方根.21.(2022·北京市怀柔区第五中学七年级期末)我们知道方程组的解与方程组中每个方程的系数和常数项有联系,系数和常数项经过一系列变形、运算就可以求出方程组的解.因此,在现代数学的高等代数学科将系数和常数项排成一个表的形式,规定:关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩可以写成矩阵111222a b c a b c ⎛⎫ ⎪⎝⎭的形式.例如:34165633x y x y +=⎧⎨-=⎩可以写成矩阵34165633⎛⎫ ⎪-⎝⎭的形式. (1)填空:将543230y x x y -=⎧⎨--=⎩写成矩阵形式为:______⎛⎫⎪⎝⎭; (2)若矩阵5343a b --⎛⎫⎪--⎝⎭所对应的方程组的解为11x y =⎧⎨=⎩,求a 与b 的值.22.(2022·河北石家庄·七年级期中)甲、乙、丙在探讨问题“已知x ,y 满足25x y +=,且3753238x y m x y +=-⎧⎨+=⎩求m 的值.”的解题思路时,甲同学说:“可以先解关于x ,y 的方程组3753238x y m x y +=-⎧⎨+=⎩再求m 的值.”乙、丙同学听了甲同学的说法后,都认为自己的解题思路比甲同学的简单,乙、丙同学的解题思路如下.乙同学:先将方程组3753238x y m x y +=-⎧⎨+=⎩中的两个方程相加,再求m 的值;丙同学:先解方程组25238x y x y +=⎧⎨+=⎩,再求m 的值.你最欣赏乙、丙哪位同学的解题思路?先根据你最欣赏的思路解答此题,再简要说明你选择这种思路的理由.23.(2022·浙江·兰溪市实验中学七年级阶段练习)已知方程组231043215x y z x y z ++=⎧⎨++=⎩,求24x y z -++的值.小明凑出“()()()24223143220155x y z x y z x y z -++=⨯+++-⨯++=-=”,虽然问题获得解决,但他觉得凑数字很辛苦!他问数学老师丁老师有没有不用凑数字的方法,丁老师提示道:假设()()2423432x y z m x y z n x y z -++=+++++,对照方程两边各项的系数可列出方程组42231324m n m n m n +=-⎧⎪+=⎨⎪+=⎩它的解就是你凑的数!(1)根据丁老师的提示,已知方程组2334327x y z x y z ++=⎧⎨++=⎩,求258x y z ++的值.(2)已知24a b kc -+=,且322a b c ++=-,当k 为 时,832a b c +-为定值,此定值是 .(直接写出结果)24.(2022·浙江湖州·七年级期末)某水果销售商前往水果批发市场进货,已知苹果的批发价格为每箱40元,橙子的批发价格为每箱50元.他花了3500元购进苹果和橙子共80箱.(1)问苹果、橙子各购买了多少箱?(2)该水果销售商有甲、乙两家店铺,因地段不同,每售出一箱苹果和橙子的获利也不同,甲店分别可获利12元和18元,乙店分别可获利10元和15元.现将购进的80箱水果中的a箱苹果和b箱橙子分配到甲店,其余的分配到乙店.由于口碑良好,两家店都很快卖完这批水果.若此次销售过程中销售商在甲店获利600元,那么在乙店获利多少元?25.(2022·河南南阳·七年级期中)我市在创建省级卫生文明城市建设中,对城内的部分河道进行整治.现有一段长360米的河道整治任务由甲、乙两个工程队先后接力完成.甲工程队每天整治16米,乙工程队每天整治24米,共用时20天.求甲、乙两工程队分别整治河道多少米?(1)小明、小华两位同学提出的解题思路如下:①小明同学:设整治任务完成后单工程队整治河道x米,乙工程队整治河道y米.根据题意,得__________________20 x y+=⎧⎨+=⎩②小华同学:设整治任务完成后,m表示______,n表示______;则可列方程组为201624360.m nm n+=⎧⎨+=⎩请你补全小明、小华两位同学的解题思路.(2)请从①②中任选一个解题思路,写出完整的解答过程.26.(2022·江苏兴化七年级期末)已知关于x,y的方程组(1)225nx n y nx y mx++=+⎧⎨-+=-⎩(n是常数).(1)当n=1时,则方程组可化为2325 x yx y mx+=⎧⎨-+=-⎩①请直接写出方程x+2y=3的所有非负整数解.②若该方程组的解也满足方程x+y=2,求m的值.(2)当m每取一个值时,x-2y+mx=-5就对应一个方程,而这些方程有一个公共解,你能求出这个公共解吗?(3)当n=3时,如果方程组有整数解,求整数m的值.。

第八章 二元一次方程组复习(培优训练)

第八章 二元一次方程组复习(培优训练)

3x 2 y 2 x y 2 x 5y 3.解方程组: 4 5 3
5(3x 2 y ) 4( 2 x y 2) 解 : 原方程组可化为 3(3x 2 y ) 4( x 5 y ) 7 x 6 y 8 即 13x 26 y 解之得 x 2 y 1
x( x y z ) 6 4 . 解方程组: y ( x y z ) 12 z ( x y z ) 18
解 : (1) (2) (3) (1) (4) 得 x 1 (2) (4) 得 y 2 (3) (4) 得 z 3 x 1 x 1 原方程组的解是 y 2 和 y 2 z 3 z 3 ( x y z ) 36
2
(1) ( 2) (3)
( 4)
x y z 6
• 某厂计划第一、二季度共生产产品420台, 结果第一季度实际完成计划的1.1倍,第二 季度超产15%,两季度实际共生产473台, 求两季度计划各生产多少台?
解:设第一季度共生产 x台,第二季度共 生产y台,由题意,得:
1.1x (1 15%) y 473, x y 420. x 200 解得: y 220
2 3
解:由方程①-②得: -x+y=-3,即 x-y=3; 由方程①+②得: 4009x+4009y=4009,即 x+y=1; ∴ x y 2 x y 3 12 33 28
Ax By 2 1、甲、乙两人同解方程 组 Cx 3 y 2, x 1 x 2 甲正确解得 ,乙抄错C,解得 , y 1 y 6 求A、B、C的值。

七年级初一数学第二学期第八章 二元一次方程组单元 期末复习测试题

七年级初一数学第二学期第八章二元一次方程组单元期末复习测试题一、选择题1.同时适合方程2x+y=5和3x+2y=8的解是()A.12xy=⎧⎨=⎩B.21xy=⎧⎨=⎩C.31xy=⎧⎨=⎩D.31xy==-⎧⎨⎩2.如果方程组223x yx y+=⎧⎨-=⎩的解为5xy=⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A.14,4 B.11,1 C.9,-1 D.6,-4 3.下列方程组是三元一次方程组的是()A.123x yy zz x+=⎧⎪+=⎨⎪-=⎩B.2310x y zx yzy z++=⎧⎪-=⎨⎪-=⎩C.22154x yy zx z⎧+=⎪+=⎨⎪-=⎩D.563x yw zz x+=⎧⎪+=⎨⎪+=⎩4.某次数学竞赛共出了25题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2道,总分是74分,则他答对了()A.16题B.17题C.18题D.19题5.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么()A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁6.规定”△”为有序实数对的运算,如果(a,b)△(c,d)=(ac+bd,ad+bc).如果对任意实数a,b都有(a,b)△(x,y)=(a,b),则(x,y)为( )A.(0,1) B.(1,0) C.(﹣1,0) D.(0,﹣1)7.若关于x、y的方程组2{44x y ax y a+=-=的解是方程3x2y10+=的一个解,则a的值为()A.2 B.-2 C.1 D.-18.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译成白话文:“现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x尺,绳子的长度为y尺.则可列出方程组为()A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xyy-=⎧⎪⎨-=⎪⎩C.4.512y xyx-=⎧⎪⎨-=⎪⎩D.4.512x yyy-=⎧⎪⎨-=⎪⎩9.下列四组数值中,方程组2534a b ca b ca b c++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩10.若二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则a +b 的值是( )A .9B .6C .3D .1二、填空题11.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______. 12.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 13.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.14.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个. 15.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)16.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 17.若(x ﹣y +3)2+=0,则x +y 的值为______.18.若方程组2313{3530.9a b a b -=+=的解是8.3{ 1.2,a b ==则方程组的解为________19.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.20.某“欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元三、解答题21.阅读下列文字,请仔细体会其中的数学思想. (1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.22.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求BE OEOC-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.23.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 24.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由. 25.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?26.下图是小欣在“A超市”买了一些食品的发票.后来不小心发票被弄烂了,有几个数据看不清.(1)根据发票中的信息,请求出小欣在这次采购中,“雀巢巧克力”与“趣多多小饼干”各买了多少包;(2)“五一”期间,小欣发现,A、B两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A超市累计购物超过50元后,超过50元的部分打九折;在B超市累计购物超过100元后,超过100元的部分打八折.请问:①“五一”期间,小欣去哪家超市购物更划算?②“五一”期间,小欣又到“B超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择.【详解】解:方法一:把各个选项的答案依次代入,只有B答案适合方程组;方法二:由题意,得25, 328x yx y+=⎧⎨+⎩①=,②①×2-②得,x=2,代入①得,2×2+y=5,y=1故原方程组的解为2,1.x y =⎧⎨=⎩故选:B . 【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法.2.B解析:B 【分析】 把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1, 把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11, 故选B. 【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.3.A解析:A 【分析】根据三元一次方程组的定义来求解,对A 、B 、C 、D 四个选项进行一一验证. 【详解】A 、满足三元一次方程组的定义,故A 选项正确;B 、含未知数项的次数为2次,∴不是三元一次方程,故B 选项错误;C 、未知数的次数为2次,∴不是三元一次方程,故C 选项错误;D 、含有四个未知数,不满足三元一次方程组的定义,故D 选项错误; 故选:A . 【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.4.D解析:D 【分析】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +,根据“不答的题比答错的题多2道”以及“总分是74分”,列出方程组解出即可. 【详解】设答对了x 道题,答错了y 道题,则不答的题有()25?–x y +,根据题意得:()25?–2474x y y x y ⎧+=+⎨-=⎩,解得:192x y =⎧⎨=⎩,故小杰他答对了19题, 故选:D . 【点睛】本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.5.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.6.B解析:B 【解析】 【分析】根据新定义运算法则列出方程ax +by =a ①,ay +bx =b ②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由定义,知:(a ,b )△(x ,y )=(ax +by ,ay +bx )=(a ,b ),则ax +by =a ①,ay +bx =b ②由①+②,得:(a +b )x +(a +b )y =a +b . ∵a ,b 是任意实数,∴x +y =1③由①﹣②,得:(a ﹣b )x ﹣(a ﹣b )y =a ﹣b ,∴x ﹣y =1④ 由③④解得:x =1,y =0,∴(x ,y )为(1,0). 故选B . 【点睛】本题考查了二元一次方程组的解法.解答此题的关键是弄懂新定义运算的法则,根据法则列出方程组.7.A解析:A 【解析】(1)−(2)得:6y=−3a , ∴y=−2a , 代入(1)得:x=2a ,把y=−2a,x=2a 代入方程3x+2y=10, 得:6a −a=10, 即a=2. 故选A.8.C解析:C 【分析】根据“用绳子去量一根木头,绳子还剩余4.5尺,将绳子对折再量木头,木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】依题意,得: 4.512y x yx -=⎧⎪⎨-=⎪⎩, 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.B解析:B 【解析】分析:首先利用②-①和②+③得出关于a 和b 的二元一次方程组,从而求出a 和b 的值,然后将a 和b 代入任何一个式子得出c 的值,从而得出方程组的解.详解:0?25?34? a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a -2b=-5 ④, ②+③可得:5a -2b=-9 ⑤,④-⑤可得:-4a=4,解得:a=-1, 将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121a b c =-⎧⎪=⎨⎪=-⎩,故选B .点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.10.C解析:C 【分析】根据二元一次方程组的解及解二元一次方程组即可解答. 【详解】 解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩ 解得:12a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C . 【点睛】此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.二、填空题11.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可. 【详解】 将(m+1)解析:11x y =-⎧⎨=⎩【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可. 【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解, 所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩. 故答案为:11x y =-⎧⎨=⎩. 【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.12.【分析】将解方程组变形为,依据题意得,求解即可. 【详解】∵关于,的方程组的解为, 将解方程组变形为, ∴关于,的方程组的解为, 解得, 故答案为:. 【点睛】本题考查了二元一次方程组的解法解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可.【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩, 故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.13.51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:,即,解得:,,,解析:51【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y ,依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩,解得:81x y =⎧⎨=⎩, 818S ∴=⨯=小长方形,729DC DE EC ∴=+=+=,11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.14.无数【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=解析:13x y =⎧⎨=⎩无数 【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27, 解得:3(98)x y -=, ∵当x 、y 是正整数时,9-x 是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13x y =⎧⎨=⎩; ∵当x 、y 是整数时,9-x 是8的倍数,∴x 可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13x y =⎧⎨=⎩;无数. 【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.15.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程解析:8 9【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a袋,乙销售b袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a袋,乙销售b袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为8 9 .【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.16.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x、y、z包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x、y、z包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.17.1【解析】试题分析:根据非负数的性质,可得二元一次方程组,解方程组可得,故x+y=-1+2=1.故答案为:1.解析:1【解析】试题分析:根据非负数的性质,可得二元一次方程组30{20x y x y -+=+=,解方程组可得12x y =-⎧⎨=⎩,故x+y=-1+2=1. 故答案为:1.18.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .19.【分析】根据方程组解的定义,把x =5,y =10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.【详解】解:∵方程组∵解为:x =5,y =10,∴,∴∵,∴,①−②,得3a解析:25x y ⎧⎨⎩== 【分析】根据方程组解的定义,把x =5,y =10代入即可得出a 1,a 2,c 1,c 2的关系,再代入计算即可.【详解】解:∵方程组1122==a x y c a x y c +⎧⎨+⎩ ∵解为:x =5,y =10,∴1122510=510=a c a c +⎧⎨+⎩, ∴()12125a a c c -=-∵11122232=32=a x y a c a x y a c ++⎧⎨++⎩, ∴112232=61032=610a x y a a x y a ++⎧⎨++⎩①②, ①−②,得3a 1x−3a 2x =6a 1−6a 2,∴x =2,把x =2代入①得,y =5,∴方程组11122232=32a x y a c a x y a c ++⎧⎨+=+⎩的解是=2=5x y ⎧⎨⎩, 故答案为:=2=5x y ⎧⎨⎩. 【点睛】本题考查了解二元一次方程组,掌握方程组的解法是解题的关键. 20.5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.三、解答题21.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.22.(1)(40),(03)A B -,,;(2)1BE OE OC-=;(3)G ∠与H ∠之间的数量关系为2180G H ∠=∠-︒.【分析】(1)根据非负数的性质和解二元一次方程组求解即可;(2)设(0,),(0,)C c E y ,先根据平移的性质可得(43)D c +,,过D 作DP x ⊥轴于P ,再根据三角形ADP 的面积得出8(3)44(3)222c y y c +++=+,从而可得32c y +=,然后根据线段的和差可得BE OE c OC -=-=,由此即可得出答案;(3)设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ ,设,BAH CAH DFH GFH αβ∠=∠=∠=∠=,由平行线的性质可得180(),1802()QHF DGF αβαβ∠=︒-+∠=︒-+,由此即可得出结论.【详解】(1)∵2(25)0a b ≥++≥,且2(25)0a b ++= ∴250220a b a b ++=⎧⎨+-=⎩ 解得:43a b =-⎧⎨=⎩ 则(40),(03)A B -,,; (2)设(0,),(0,)C c E y∵将线段AB 平移得到CD ,(40),(03)A B -,, ∴由平移的性质得(43)D c +,如图1,过D 作DP x ⊥轴于P∴4,3,,AO OP DP c OE y OC c ===+==-∵ADP AOE OEDP SS S =+梯形 ∴()222AP DP OA OE OE DP OP ⋅⋅+⋅=+ 即8(3)44(3)222c y y c +++=+ 解得32c y +=∴()232BE OE BO OE OE BO OE y c -=--=-=-=- ∴1BE OE c OC c--==-;(3)G ∠与H ∠之间的数量关系为2180G H ∠=∠-︒,求解过程如下:如图2,设AH 与CD 交于点Q ,过H ,G 分别作DF 的平行线MN ,KJ∵HD 平分BAC ∠,HF 平分DFG ∠∴设,BAH CAH DFH GFH αβ∠=∠=∠=∠=∵AB 平移得到CD∴//,//AB CD BD AC∴BAH AQC FQH α∠=∠=∠=,180BAC ACD BDC ACD ∠+∠=︒=∠+∠ ∴2BAC BDC FDG α∠=∠=∠=∵//MN FQ∴,MHQ FQH NHF DFH αβ∠=∠=∠=∠=∴180180()QHF MHQ NHF αβ∠=︒-∠-∠=︒-+∵//KJ DF∴2,2DGK FDG DFG FGJ αβ∠=∠=∠=∠=∴1801802()DGF DGK FGJ αβ∠=︒-∠-∠=︒-+∴2180DGF QHF ∠=∠-︒.【点睛】本题属于一道较难的综合题,考查了解二元一次方程组、平移的性质、平行线的性质等知识点,较难的是题(3),通过作两条辅助线,构造平行线,从而利用平行线的性质是解题关键.23.(1)2(a+b);(2)(2+21ba+);(2+21ab+);(3)36.【分析】(1)根据两地间的距离=两人的速度之和×第一次相遇所需时间,即可得出结论;(2)利用时间=路程÷速度结合2小时后第一次相遇,即可得出结论;(3)设AB两地的距离为S千米,根据路程=速度×时间,即可得出关于(a+b),S的二元一次方程组(此处将a+b当成一个整体),解之即可得出结论.【详解】(1)A、B两地的距离可以表示为2(a+b)千米.故答案为:2(a+b).(2)甲乙相遇时,甲已经走了2a千米,乙已经走了2b千米,根据相遇后他们的速度都提高了1千米/小时,得甲还需21ba+小时到达B地,乙还需21ab+小时到达A地,所以甲从A到B所用的时间为(2+21ba+)小时,乙从B到A所用的时间为(2+21ab+)小时.故答案为:(2+21ba+);(2+21ab+).(3)设AB两地的距离为S千米,3小时36分钟=185小时.依题意,得:2()182(11)5S a bS a b=+⎧⎪⎨=+++⎪⎩,令x=a+b,则原方程变形为2182(2)5S xS x=⎧⎪⎨=+⎪⎩,解得:1836 xS=⎧⎨=⎩.答:AB两地的距离为36千米.【点睛】本题考查了列代数式以及二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(1)C的坐标为(0,4),点D的坐标为(1,2);(2)①点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在△PEF 的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E(,4)、F(﹣,4).【解析】【分析】(1)由点A和点C在y轴上确定出向右平移3个单位,再根据△ACD的面积求出向上平移的单位,然后写出点C、D的坐标即可.(2)①根据线段EF平行于线段OM且等于线段OM,得出2a+1=﹣2b+3,|a﹣b|=1,解答即可;②首先根据题意求出点P的坐标为(,2),设点E在F的左边,由EF∥x轴得出a+b=1,求出△PEF的面积=(b﹣a)×|2a+1﹣2|=2,得出(b﹣a)|2a﹣1|=4,当EF在点P 的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+b=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)即可.【详解】解:(1)∵A(﹣3,0),点C在y轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)得:E(﹣,0)、F(,0),或E(,4)、F(﹣,4);综上所述,存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E (,4)、F(﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.25.(1)方程的正整数解是13x y =⎧⎨=⎩或21x y =⎧⎨=⎩.(只要写出其中的一组即可);(2)满足条件x 的值有4个:x=3或x=4或x=5或x=8;(3)有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.【解析】(1)1231{{(x x y y ====或任写一组即可)---------------------------.(2) C(3)解:设购买单价为3元的笔记本x 个,购买单价5元的钢笔y 个,由题意得: 3x+5y=35此方程的正整数解为∴有两种购买方案:方案一:购买单价为3元的笔记本5个,购买单价为5元的钢笔4支.方案二:购买单价为3元的笔记本10个,购买单价为5元的钢笔1支(1)只要使等式成立即可(2)x-2必须是6的约数(3)设购买单价为3元的笔记本x 个,购买单价5元的钢笔y 个,根据题意列二元一次方程,去正整数解求值26.(1)买了雀巢巧克力1包,趣多多小饼干4包;(2)如果购物在50元以内,去两家购物都一样;如果购物在50元至150元之间,则去A 超市更划算;如果购物等于150元,去两家购物都一样;如果购物超过150元,则去B 超市更划算;②小欣在“B 超市”至少购买9包“雀巢巧克力”时,平均每包价格不超过20元.【解析】分析:(1)设雀巢巧克力买了x包,趣多多小饼干买了y包.等量关系:两种食品的购买数量=30-20-5;两种食品的购买费用之和=100-18-52;(2)①小欣的购物金额为z(z>100)元,分别计算在A超市和在B超市购买物品需要的金额;然后再分类讨论;②设小欣在“B超市”购买了m包“雀巢巧克力”时,平均每包的价格不超过20元.根据题意列出不等式,通过解不等式来求m的值.详解:(1)设买了雀巢巧克力x包,趣多多小饼干y包,依题意得30-20-5222100-18-52.x yx y+=⎧⎨+=⎩,解得14.xy=⎧⎨=⎩,答:买了雀巢巧克力1包,趣多多小饼干4包.(2)①设小欣累计购物额为a元.当a≤50时,A、B两超市都不能享受到优惠,所以在任意两家购物都一样;当50<a≤100时,在A超市可以享受到优惠;而在B超市享受不到优惠,所以选择在A超市购物更划算;当a>100时,若在A超市购物花费少,则50+0.9(a-50)<100+0.8(a-100),解得a<150.若在B超市购物花费少,则50+0.9(a-50)>100+0.8(a-100),解得a>150;若在两超市购物花费一样多,则a=150.综上可得:如果购物在50元以内,去两家购物都一样;如果购物在50元至150元之间,则去A超市更划算;如果购物等于150元,去两家购物都一样;如果购物超过150元,则去B超市更划算.②设小欣在“B超市”购买了b包“雀巢巧克力”时,平均每包价格不超过20元,据题意可得100+(22b-100)×0.8≤20b.解得b≥81 3 .据题意b取整数,可得b的最小取值为9.所以,小欣在“B超市”至少购买9包“雀巢巧克力”时,平均每包价格不超过20元.点睛:本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.。

第8章《二元一次方程组》(原卷)

2022-2023学年人教版数学七年级下册易错题真题汇编(提高版)第8章《二元一次方程组》考试时间:120分钟试卷满分:100分姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•秀英区校级月考)方程组的解为()A.B.C.D.2.(2分)(2022秋•凤翔县期末)已知3x|m|+(m+1)y=6是关于x、y的二元一次方程,则m的值为()A.m=1 B.m=﹣1 C.m=±1 D.m=23.(2分)(2022春•鼓楼区校级期中)已知关于x,y的二元一次方程组的解为,则关于x,y的方程组的解为()A.B.C.D.4.(2分)(2022•长春二模)下列方程组中是二元一次方程组的是()A.B.C.D.5.(2分)(2022•钟山县模拟)已知是二元一次方程组的解,则m,n的值分别是()A.B.C.D.6.(2分)(2022春•增城区期末)已知非负数x、y、z满足==,设ω=3x+4y+5z,则ω的最大值和最小值的和为()A.54B.56C.35D.467.(2分)(2021春•饶平县校级期末)太原市城乡居民用电价格按用电需求分为三个档次,电价分档递增:第一档电量为170千瓦时及以下,第二档电量为171千瓦时至260千瓦时,第三档电量为261千瓦时及以上,小颖家7月用电量为210千瓦时,交电费102.17元;8月用电量为180千瓦时,交电费86.36元.若第一档电价为x元/千瓦时,第二档电价为y元/千瓦时,则可得方程()A. B.C. D.8.(2分)(2021春•饶平县校级期末)若关于x,y的方程组有非负整数解,则正整数m为()A.0,1 B.1,3,7 C.0,1,3 D.1,39.(2分)(2021•武进区校级自主招生)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()A.1.2元B.1.05元C.0.95元D.0.9元10.(2分)(2022春•南关区期末)已知.当x=1.5时,y>0;当x=1.8时,y<0.则方程的解可能是()A.1.45 B.1.64 C.1.92 D.2.05评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021秋•百色期末)已知方程组中,a,b互为相反数,则m=.12.(2分)(2022秋•滕州市期末)已知a,b满足方程组,则3a+b的值为.13.(2分)(2022秋•金牛区校级月考)若关于x、y的方程(m﹣3)x|m|﹣2﹣2y m+2n=5是二元一次方程,则m﹣n=.14.(2分)(2022春•安溪县期中)三元一次方程组的解是.15.(2分)(2022春•静海区校级期中)若(m﹣2020)x|m|﹣2019+(n+4)y|n|﹣3=2021是关于x,y的二元一次方程,则m=,n=.16.(2分)(2022春•丹凤县期末)已知关于x,y的二元一次方程组和的解相同,则2m ﹣n=.17.(2分)(2022春•齐齐哈尔期末)若关于x,y的方程组的解为,则关于m,n的方程组的解为.18.(2分)(2022秋•沙坪坝区校级期末)三月初某书店销售A、B两种书籍,销售36本A书籍和25本B书籍收入3495元,销售24本A书籍和30本B书籍收入3330元,月底发现部分书籍有污迹,决定对有污迹的书籍进行打六折促销,张老师根据实际购买了原价或打折的两种书籍,共花费3150元,其中购买的A种打折书籍的本数是购买所有书籍本数的,张老师购买A种打折书籍本.19.(2分)(2022秋•九龙坡区校级月考)某市新冠疫情爆发,需订购一定数量的口罩,现有甲、乙、丙三个工厂可供选择,甲单独生产这批口罩所用的时间是乙、丙两厂合作生产这批口罩所用时间的4倍,乙单独生产这批口罩所用时间是甲、丙两厂合作生产这批口罩所用时间的2倍,则丙单独生产这批口罩是所用时间是甲、乙合作生产这批口罩所用时间的倍.20.(2分)(2022春•南川区期末)为了表彰本学期表现优秀的同学,学校计划订购A、B、C三种不同的奖品共100枚,其中A奖品的数量高于B奖品的数量,C奖品的数量不高于60枚.已知A奖品每枚40元,B奖品每枚30元,C奖品每枚25元.实际购买时,A奖品每枚降低了5元,其他奖品价格不变,学校实际订购的三种奖品数量也均有所改变,A奖品的数量是计划的,C奖品的数量是计划的,结果实际购进三种奖品共74枚,实际花费比计划少了940元,则学校原计划购进A奖品枚.评卷人得分三.解答题(共9小题,满分60分)21.(6分)(2023春•朝阳区校级月考)解下列方程组:(1);(2).22.(6分)(2022•南京模拟)学校举办“艺术周”创意设计展览,如图,现有一个大正方形和四个一样的小正方形,小明、小聪、小方分别用这些正方形设计出了图1,图2,图3三种图案:(1)根据图1,图2中所标数据,求出大正方形和小正方形的边长分别是多少厘米?(2)图3中四个小正方形的重叠部分也是三个一样的小正方形,求阴影部分的面积.23.(6分)(2022秋•历下区期中)是二元一次方程ax﹣3y=2和2x+y=b的公共解,求a与b的值.24.(6分)(2022春•仓山区校级期中)如果某个二元一次方程组的解中两个未知数的值互为相反数,那么我们称这个方程组为“奇妙方程组”.(1)请判断关于x,y的方程组是否为“奇妙方程组”,并说明理由;(2)如果关于x,y的方程组是“奇妙方程组,求a的值.25.(6分)(2022秋•九龙坡区校级期末)某书店购进甲、乙两种图书共100本,甲、乙两种图书的进价分别为每本10元、30元,甲、乙两种图书的标价分别定为每本15元、40元.(1)若书店恰好用了2300元购进这100本图书,求购进的甲、乙图书各多少本?(2)在(1)的结论下,在销售时,该书店考虑到要迅速将图书售完,于是甲图书打8折,乙图书也打折进行促销,为使甲、乙两种图书全部销售完后共获利460元,请问乙图书应打几折出售?26.(6分)(2022秋•历下区期中)如图,8块相同的长方形地砖拼成一个矩形,设每块长方形地砖的长为xcm,宽为ycm.请求出每块地砖的长与宽.(应用二元一次方程组解决)27.(8分)(2022春•蓝山县期末)据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨.现有15吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)若甲型车每辆需租金180元/次,乙型车每辆需租金200元/次,请选出最省钱的租车方案,并求出最少租车费用.28.(8分)(2022春•滨江区期末)列方程解应用题:某商店将甲、乙、丙三种糖果混合而成什锦糖,并以糖的平均价格作为什锦糖的单价,若购买10千克甲种糖果和20千克乙种糖果共需费用650元,购买20千克甲种糖果和10千克乙种糖果共需费用700元.(1)求甲、乙两种糖果的单价;(2)设丙种糖果单价为15元/千克,且甲、乙、丙三种糖果的重量之比为1:2:a,若什锦糖的单价为20元/千克,求a的值.29.(8分)(2022春•上城区校级期中)目前,新型冠状病毒在我国虽可控可防,但不可松懈,建兰中学欲购置规格分别为200mL和500mL的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要80元,购买1瓶甲和4瓶乙免洗手消毒液需要110元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校在校师生共1000人,平均每人每天都需使用10mL的免洗手消毒液,若校方采购甲、乙两种免洗手消毒液共花费2500元,则这批消毒液可使用多少天?(3)为节约成本,该校购买散装免洗手消毒液进行分装,现需将8.4L的免洗手消毒液全部装入最大容量分别为200mL和500mL的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗10mL,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.。

第8章《二元一次方程组》复习资料【1】【含答案】

第8章《二元一次方程组》复习资料【1】一.选择题(共10小题)1.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C. D.2.已知是二元一次方程组的解,则的算术平方根为()A.±3 B.3 C.D.3.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元4.二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.45.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.36.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.7.已知二元一次方程组无解,则a的值是()A.a=2 B.a=6 C.a=﹣2 D.a=﹣68.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.9.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种10.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.9二.填空题(共10小题)11.若是方程2x+y=0的解,则6a+3b+2=.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.13.定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=.14.已知(n﹣1)x|n|﹣2y m﹣2014=0是关于x,y的二元一次方程,则n m=.15.方程x+5y+4=0,若用含有x的代数式表示y为;若用含有y的代数式表示x为.16.若方程组与的解相同,则a=,b=.17.已知是二元一次方程组的解,则m+3n的值为.18.已知方程租与有相同的解,则m+n=.19.若(a﹣2b+1)2与互为相反数,则a=,b=.20.清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有名同学.三.解答题(共10小题)21.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?22.某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?23.某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?24.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?25.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?26.一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)27.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?28.某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?29.从甲地到乙地的路有一段上坡,一段下坡.如果上坡平均每分钟走50米,下坡平均每分钟走100米,那么从甲地走到乙地需要25分钟,从乙地走到甲地需要20分钟.甲地到乙地上坡与下坡的路程各是多少?30.我校七年级(1)班小伟同学裁剪了16张一样大小长方形硬纸片,小强用其中的8张恰好拼成一个大的长方形,小红用另外的8张拼成一个大的正方形,但中间留下一个边长为2cm的正方形(见如图中间的阴影方格),请你算出小伟裁剪的长方形硬纸片长与宽分别是多少?第8章《二元一次方程组》复习资料【1】参考答案与试题解析一.选择题(共10小题)1.(2016•毕节市)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C. D.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A2.(2015•天桥区一模)已知是二元一次方程组的解,则的算术平方根为()A.±3 B.3 C.D.【解答】解:将x=2,y=1代入方程组得:,①+②×2得:5n=10,即n=2,将n=2代入②得:4﹣m=1,即m=3,∴m+3n=3+6=9,则=3,3的算术平方根为.故选C.3.(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元【解答】解:设该商品的进价为x元,标价为y元,由题意得,解得:x=2500,y=3750.则3750×0.9﹣2500=875(元).故选:B.4.(2015春•莒县期中)二元一次方程x+3y=10的非负整数解共有()对.A.1 B.2 C.3 D.4【解答】解:∵x+3y=10,∴x=10﹣3y,∵x、y都是非负整数,∴y=0时,x=10;y=1时,x=7;y=2时,x=4;y=3时,x=1.∴二元一次方程x+3y=10的非负整数解共有4对.故选:D.5.(2016•宁夏)已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【解答】解:,①+②得:4x+4y=20,则x+y=5,故选C6.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.【解答】解:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选:D.7.(2014春•西安期末)已知二元一次方程组无解,则a的值是()A.a=2 B.a=6 C.a=﹣2 D.a=﹣6【解答】解:,由②得:y=2x﹣1③,把③代入①得:ax+3(2x﹣1)=2,∴(a+6)x=5,∵方程组无解,∴a+6=0,∴a=﹣6,故选D.8.(2016•临沂)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.9.(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种【解答】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7﹣x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.10.(2015•江都市模拟)如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A.3 B.5 C.7 D.9【解答】解:由①+②,可得2x=4a,∴x=2a,将x=2a代入①,得y=2a﹣a=a,∵二元一次方程组的解是二元一次方程的一个解,∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,∴a=7故选C.二.填空题(共10小题)11.(2015•滨州模拟)若是方程2x+y=0的解,则6a+3b+2=2.【解答】解:把代入方程2x+y=0,得2a+b=0,∴6a+3b+2=3(2a+b)+2=2.故答案为:2.12.(2015•南充)已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.13.(2015•武汉)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=10.【解答】解:根据题中的新定义化简已知等式得:,解得:a=1,b=2,则2*3=4a+3b=4+6=10,故答案为:10.14.(2015•宜春模拟)已知(n﹣1)x|n|﹣2y m﹣2014=0是关于x,y的二元一次方程,则n m=﹣1.【解答】解:根据题意,得m﹣2014=1,n﹣1≠0,|n|=1解得m=2015,n=﹣1,n m=﹣1,故答案为:﹣115.(2015•重庆校级模拟)方程x+5y+4=0,若用含有x的代数式表示y为;若用含有y的代数式表示x为﹣5y﹣4.【解答】解:(1)x+5y+4=0,移项得5y=﹣x﹣4,y=;(2)x+5y+4=0,移项得x=﹣5y﹣4;故答案为,﹣5y﹣4.16.(2016•富顺县校级模拟)若方程组与的解相同,则a=33,b=.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.17.(2016•江宁区二模)已知是二元一次方程组的解,则m+3n的值为3.【解答】解:把代入得,①+②得m+3n=3,故答案为:3.18.(2013春•硚口区期末)已知方程租与有相同的解,则m+n=3.【解答】解:∵与有相同的解,∴解方程组得,∴解m、n的方程组得∴m+n=4﹣1=3.故答案为:3.19.(2016•富顺县校级模拟)若(a﹣2b+1)2与互为相反数,则a=3,b=2.【解答】解:∵(a﹣2b+1)2与互为相反数,∴(a﹣2b+1)2+=0,(a﹣2b+1)2=0且=0,即,解得:a=3,b=2故答案为:3,2.20.(2015•潜江)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有59名同学.【解答】解:设一共分为x个小组,该班共有y名同学,根据题意得,解得.答:该班共有59名同学.故答案为59.三.解答题(共10小题)21.(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【解答】解:(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.(2)300×(36﹣24)+200×(48﹣33)=3600+3000=6600(元).答:该商场共获得利润6600元.22.(2015•佛山)某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?【解答】解:(1)一共支付1118元;可得人数大于90,只需花费816元,可知人数大于100的,设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得,解得:.答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(10﹣8)×53=106元.23.(2014•聊城)某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?【解答】解:(1)设A种服装购进x件,B种服装购进y件,由题意,得,解得:.答:A种服装购进50件,B种服装购进30件;(2)由题意,得3800﹣50(100×0.8﹣60)﹣30(160×0.7﹣100)=3800﹣1000﹣360=2440(元).答:服装店比按标价售出少收入2440元.24.(2014•铜仁地区)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?【解答】解:(1)设这批游客的人数是x人,原计划租用45座客车y辆.根据题意,得,解这个方程组,得.答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元),租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).答:租用4辆60座客车更合算.25.(2015•张家界)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?【解答】解:设平路有xm,下坡路有ym,根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.26.(2016春•丰都县期末)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)【解答】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得解得答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.27.(2015•徐州)某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元;打折后,买50件A商品和40件B商品仅需364元,这比打折前少花多少钱?【解答】解:设打折前A商品的单价为x元,B商品的单价为y元,根据题意得:,解得:,则打折前需要50×8+40×2=480(元),打折后比打折前少花480﹣364=116(元).答:打折后比打折前少花116元.28.(2015•福建)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?【解答】解:设批发的黄瓜是x千克,茄子是y千克,由题意得解得答:这天他批发的黄瓜15千克,茄子是25千克.29.(2014•呼伦贝尔)从甲地到乙地的路有一段上坡,一段下坡.如果上坡平均每分钟走50米,下坡平均每分钟走100米,那么从甲地走到乙地需要25分钟,从乙地走到甲地需要20分钟.甲地到乙地上坡与下坡的路程各是多少?【解答】解:设甲地到乙地上坡路x米,下坡路y米.根据题意,得,解得.答:甲地到乙地上坡路1000米,下坡路500米.30.(2016•富顺县校级模拟)我校七年级(1)班小伟同学裁剪了16张一样大小长方形硬纸片,小强用其中的8张恰好拼成一个大的长方形,小红用另外的8张拼成一个大的正方形,但中间留下一个边长为2cm的正方形(见如图中间的阴影方格),请你算出小伟裁剪的长方形硬纸片长与宽分别是多少?【解答】解:设小长方形的长、宽分别为xcm,ycm,则,解得:,经检验得出,符合题意.答:小伟裁剪的长方形的长、宽分别为10cm,6cm.。

七年级初一数学第二学期第八章 二元一次方程组单元 期末复习提优专项训练

七年级初一数学第二学期第八章 二元一次方程组单元 期末复习提优专项训练一、选择题1.六(2)班学生进行小组合作学习,老师给他们分组:如果每组6人,那么会多出3人;如果每组7人,那么有一组少4人.如果六(2)班学生数为x 人,分成y 组,那么可得方程组为( )A .6374y x y x =-⎧⎨=+⎩B .6374y x y x =+⎧⎨=+⎩C .6374x y x y +=⎧⎨-=⎩D .6374y x y x =+⎧⎨+=⎩ 2.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x a y b=⎧⎨=⎩是哪一个方程的解( ) A .34x y += B .34x y -= C .439x y -= D .439x y +=3.方程组5213310x y x y +=⎧⎨-=⎩的解是( ) A .31x y =⎧⎨=-⎩ B .13x y =-⎧⎨=⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩ 4.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元5.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a c ax by a c-+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩ B .32x y =⎧⎨=⎩ C .52x y =⎧⎨=⎩ D .51x y =⎧⎨=⎩6.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( ) A .5 B .-5 C .15 D .257.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩ 8.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( ) A .1a =- B .1a = C .23a = D .32a = 9.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( )A .173B .888C .957D .6910.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( )A . ;B .;C .;D .二、填空题11.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____.12.若m 满足关系式35223x y m x y m +--++-199199x y x y =--⋅-+,则m =________.13.方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.14.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.15.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.16.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A、B两种文学书籍若干本,用去6138元.其中A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.17.若方程组2232x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为_____.18.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.19.若(x﹣y+3)2+=0,则x+y的值为______.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.三、解答题21.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:运行区间大人票价学生票出发站终点站一等座二等座二等座泉州福州65(元)54(元)40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m人,请直接用含m的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x张,且学生全部按表中的“学生票二等座”购买,其余的买一等座动车票,且买票的总费用不低于9000元,求x的最大值.22.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN=43BM ,求m 和n 值.23.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(a,a ),点B 的坐标(b,c ),且a 、b 、c 满足34624a b c a b c +-=⎧⎨-+=-⎩. (1)若a 没有平方根,判断点A 在第几象限并说明理由.(2)连AB 、OA 、OB ,若△OAB 的面积大于5而小于8,求a 的取值范围;(3)若两个动点M (2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M 、N 为端点的线段MN ∥AB ,且MN=AB .若存在,求出M 、N 两点的坐标;若不存在,请说明理由.24.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示,m p 之间的关系: ;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t 之间的关系,并写出所有,s t 可能的取值.25.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值, }min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组: }}1{,?{?3{39,311?4max x x y min x x y -=++=. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设学生数为x 人,分成y 组,根据组数和总人数的数量关系建立方程组求解即可.【详解】设学生数为x 人,分成y 组,由题意知如果每组6人,那么多出3人,可得出:63y x =-,如果每组7人,组数固定,那么有一组少4人,可得出:74y x =+,故有:6374y x y x =-⎧⎨=+⎩. 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.2.D解析:D【分析】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩后求出,a b 的值,最后把x a y b =⎧⎨=⎩分别代入四个选项即可. 【详解】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩得:31032a b b -=⎧⎨+=⎩, 解得31a b =⎧⎨=-⎩,即31x y =⎧⎨=-⎩, 当31x y =⎧⎨=-⎩时, 30x y +=,A 选项错误;36x y -=,B 选项错误;4315x y -=,C 选项错误;439x y +=,D 选项正确;故选D【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.3.A解析:A【分析】利用代入消元法即可求解.【详解】解:5213310x y x y +=⎧⎨-=⎩①②, 由②得:310y x =-③,把③代入②可得:()5231013x x +-=,解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩, 故选:A .【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.4.C解析:C【分析】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y 的值.【详解】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意得53523544x y x y +⎧⎨+⎩==, 解得8x+8y=96,即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元,故选C .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.5.B解析:B【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by c ax by c-=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(), ∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩, ∴142x y +=⎧⎨=⎩, 即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B.【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 6.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728x y x y +=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.7.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x 尺,绳子长为y 尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C .【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.8.B解析:B【分析】直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值. 【详解】解:根据题意,∵2x y a =⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=,∴1a =;故选:B .【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.9.A解析:A【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案.【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018=a 12+a 22+…+a 20142+2156,设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173,∴有888个1,957个-1,173个0,故答案为173.【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.10.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= . 故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 二、填空题11.15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩,化简得30(1)2(2)501542(3) a b cc abx a b c-+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b=6a(4),把(2)和(4)都代入(3)得,300ax=15a+24a+6a,∴x=15%,故答案为15%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.12.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m的值.【详解】解:由题意可得,199-x-y≥0,x-199+y≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520 230x yx y mx y m+=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m,将y=4-m代入③,解得x=2m-6,将x=2m-6,y=4-m代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.13.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.14.26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册解析:26、24或22【解析】【分析】通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.【详解】解:假设购买小纪念册x本,购买大纪念册y本,则x,y为整数.则有题目可得二元一次方程:5x+7y=142,解得:x,y有4组整数解即:271xy=⎧⎨=⎩,206xy=⎧⎨=⎩,1311xy=⎧⎨=⎩,616xy=⎧⎨=⎩即有四种情况即:两种纪念册共买28、26、24或22本.故答案为28、26、24或22本.【点睛】本题考查了一次方程的实际应用,中等难度,解决此类问题的关键在于,找出题目中所给的等量关系,列出方程,求解方程.15.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.16.311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本解析:311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x元/本,则甲为(7+x)元/本,甲购买了a本,乙买了b本,∴A的单价为x元/本,B为(7+x)元/本, A购买了a本,B买了b本,依题意得:①-②得:7a-7b=2177,∴a-b=311,即甲种书籍比乙种书籍多买了311本.【点睛】本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 17.3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.18.8【解析】试题分析:设小矩形的长为x ,宽为y ,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.解析:8【解析】试题分析:设小矩形的长为x ,宽为y ,则2 5.7{2 4.5x y x y +=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.19.1【解析】试题分析:根据非负数的性质,可得二元一次方程组,解方程组可得,故x+y=-1+2=1.故答案为:1.解析:1【解析】试题分析:根据非负数的性质,可得二元一次方程组30{20x y x y -+=+=,解方程组可得12x y =-⎧⎨=⎩,故x+y=-1+2=1. 故答案为:1.20.【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩,解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.三、解答题21.(1)购买一等票为 195m ; 购买二等票为162m ;(2)210;(3)180,193.【分析】(1)求出教师和家长的总人数,根据一等票和二等票两种情况求出代数式.(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,根据若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元,可求出解.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票,根据票的总费用不低于9000元,可列不等式求解.【详解】解:(1)购买一等票为:65•3m =195m ;购买二等票为:54•3m =162m ,(2)设参加社会实践的老师有m 人,学生有n 人,则学生家长有2m 人,依题意得: 1956513650{543408820m n m n +=⨯+=,解得:10{180m n ==, 则2m =20,总人数为:10+20+180=210(人)经检验,符合题意;答:参加活动的总人数为210人.(3)由(2)知所有参与人员总共有210人,其中学生有180人,所以买学生票共180张,有(x ﹣180)名大人买二等座动车票,(210﹣x )名大人买一等座动车票. ∴购买动车票的总费用=40×180+54(x ﹣180)+65(210﹣x )=﹣11x +11130. 依题意,得:﹣11x +11130≥9000… 解得:719311x ≤, ∵x 为整数,∴x 的最大值是193.【点睛】本题考查理解题意的能力,关键是根据买一等票和二等票的价格做为等量关系求出人数,然后根据实际买票的总费用列出不等式求出解.22.(1)n-m;(2)①M是AN的中点,n=2m+3;②A是MN中点,n=-m-6;③N是AM的中点,13 22 =-n m;(3)4mn=⎧⎨=⎩或62mn=-⎧⎨=-⎩或9515mn⎧=-⎪⎪⎨⎪=-⎪⎩.【解析】【分析】(1)由两点间距离直接求解即可;(2)分三种情况讨论:①M是A、N的中点,n=2m+3;②当A点在M、N点中点时,n=﹣6﹣m;③N是M、A的中点时,n32m-+=;(3)由已知可得|m+3|=|n﹣1|,n﹣m43=|m+3|,分情况求解即可.【详解】(1)MN=n﹣m.故答案为:n﹣m;(2)分三种情况讨论:①M是A、N的中点,∴n+(-3)=2m,∴n=2m+3;②A是M、N点中点时,m+n=-3×2,∴n=﹣6﹣m;③N是M、A的中点时,-3+m=2n,∴n32m-+=;(3)∵AM=BN,∴|m+3|=|n﹣1|.∵MN 43=BM , ∴n ﹣m 43=|m +3|, ∴3133412m n n m m +=-⎧⎨-=+⎩或3133412m n n m m +=-⎧⎨-=--⎩或3133412m n n m m +=-+⎧⎨-=+⎩或3133412m n n m m +=-+⎧⎨-=--⎩, ∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩或35m n =⎧⎨=-⎩. ∵n >m ,∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了列代数式,解二元一次方程组以及数轴上两点间的距离公式,解答本题的关键是:(1)根据两点间的距离公式求出线段AB 的长;(2)分三种情况讨论;(3)分四种情况讨论.解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程是关键.23.(1)第三象限;(2)见解析;(3)见解析【解析】【分析】(1)根据平方根的意义得到a <0,然后根据各象限点的坐标点的特征可判断点A 在第三象限;(2)先利用方程组34624a b c a b c +-=⎧⎨-+=-⎩,用a 表示b 、c ,得b=2+a.c=a, 则B 点的坐标为(2+a ,a ),故AB //x 轴,AB=|2+a-a|=2,故11|y |2||||22OAB B S AB a a =⨯⨯=⨯⨯= 由若△OAB 的面积大于5而小于8,可得5||8a <<计算即可得a 的取值范围;(3)由AB //x 轴即MN ∥AB 可得MN ∥x 轴,则M 、N 的y 坐标,以及MN=AB =2,可得方程组解得m 、n 的值,即可得出结论;【详解】(1)∵a 没有平方根,∴a <0,∴点A 在第三象限;(2)解方程组34624a b c a b c +-=⎧⎨-+=-⎩用a 表示b 、c ,得2b a c a =+⎧⎨=⎩∵点B 坐标为(b ,c )∴点B 坐标为(2+a ,a )∵点A 的坐标为(a ,a )∴AB =|2+a-a|=2,AB 与x 轴平行 ∴11|y |2||||22OAB B SAB a a =⨯⨯=⨯⨯= ∵△OAB 的面积大于5而小于8,∴5||8a << 解得:58a <<或85a -<<-(3) ∵AB ∥x 轴又∵MN ∥AB∴MN ∥x 轴∵M(2m, 3m-5) N(n-1, -2n-3), MN=AB=2 ∴3523122m n n m -=--⎧⎨--=⎩∴3523122m n n m -=--⎧⎨--=⎩ 3523122m n n m -=--⎧⎨--=-⎩∴47137m n ⎧=-⎪⎪⎨⎪=⎪⎩ 或4717m n ⎧=⎪⎪⎨⎪=⎪⎩∴847647,,7774M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 或823623,,7777M N ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭、 【点睛】本题考查了坐标与图形的性质,平方根,解三元一次方程组,三角形的面积,解不等式,审清题意,能灵活运用各个知识点之间的联系是解决的关键.24.(1)31p m +=;(2)正方形有16个,六边形有12个;(3)216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p 个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x 个, 正方形y 个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s 、t 间的关系,再根据s 、t 均为正整数进行讨论即可求得所有可能的取值.【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1),摆2个正方形需要7根小木棍,4=4+3×(2-1),摆3个正方形需要10根小木棍,10=4+3×(3-1),……,摆p 个正方形需要m=4+3×(p-1)=3p+1根木棍,故答案为:31p m +=;(2)设六边形有x 个,正方形有y 个,则51311104x y x y+++=⎧⎨+=⎩, 解得1216x y =⎧⎨=⎩, 所以正方形有16个,六边形有12个;(3)据题意,350t s +=,据题意,t s ≥,且,s t 均为整数,因此,s t 可能的取值为:216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩. 【点睛】本题考查二元一次方程组的实际运用,找出连续摆放正方形共用小木棍的根数,六方形共用小木棍的根数是解决问题的关键.25.1{ 3x y == 或 35{?95x y =-= 【解析】分析: }1max{x x y 3-,=,需要分类讨论,当x≥-x 时,x =1y 3;当x <-x 时,-x =1y 3;因为3x +9<3x +11,所以}min{3x 93x 114y +,+=所表示的方程为3x +9=4y ,则可得到两个二元一次方程组.详解:当x≥-x 时,x =1y 3,原方程组变形为:1{3394x y x y=+=,解得1{3x y ==. 当x <-x 时,-x =1y 3,原方程组变形为:1{3394x y x y -=+=,解得35{95x y -==. 点睛:本题考查了新定义及二次一次方程组的解法,对于新定义,要理解它所规定的运算规则,再根据这个规则,列式或列方程(组),解二元一次方程组的基本思路是消元,通过消元化二元一次方程组为一元一次方程,解一元一次方程求出其中的一个未知数,再代入原方程组中的一个方程中,求另一个未知数,消元的方法有两种:代入消元法和加减消元法,用加减消元法时,尽量消系数的最小公倍数比较小的字母.26.(1)甲乙两种型号的挖掘机各需5台、3台;(2)应选择1辆甲型挖掘机和6辆乙型挖掘机,支付最少为820元【解析】分析:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.等量关系:甲、乙两种型号的挖掘机共8台;每小时挖掘土石方540m 3;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解;然后分别计算支付租金,选择符合要求的租用方案.详解:(1)设甲种型号的挖掘机需x 台、乙种型号的挖掘机需y 台.依题意得:86080540x y x y +=⎧⎨+=⎩,解得: 53x y =⎧⎨=⎩. 答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机.依题意得:60m +80n =540,化简得:3m +4n =27,∴m =9﹣43n ,∴方程的解为53m n =⎧⎨=⎩或16m n =⎧⎨=⎩. 当m =5,n =3时,支付租金:100×5+120×3=860元当m =1,n =6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章二元一次方程组复习题
1、下列方程组中,属于二元一次方程组的是 ( )
A 、⎩⎨⎧==+725xy y x
B 、⎪⎩⎪⎨⎧=-=+043112y x y x
C 、⎪⎩⎪⎨⎧=+=343453y x y x
D 、⎩⎨⎧=+=-12382y x y x
2、若3243y x b a +与b a y x -634是同类项,则=+b a ( )A 、-3
B 、0
C 、3
D 、6
3、已知
⎩⎨⎧=+=+25ay bx by ax 的解是 ⎩⎨⎧==34y x ,则( ) A 、⎩⎨⎧==12b a B 、⎩⎨⎧-==12b a C 、⎩⎨⎧=-=12b a D 、⎩⎨⎧-=-=12b a
4、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为 ( )
A 、⎩⎨⎧=++=x y x y 5837
B 、⎩⎨⎧=-+=x y x y 5837
C 、⎩⎨⎧+=-=5837x y x y
D 、⎩⎨⎧+=+=5837x y x y
5、若2121350a b a b x y ++--+=是关于字母x 、y 的二元一次方程,则_____,_______a b ==。

6、由2x -3y -4=0,可以得到用x 表示y 的式子 。

7、二元一次方程27x y +=的在正整数范围内的解是___ __。

8、如果2150x y x y -+=+-=,那么x = ,y = 。

9、解方程组⎩⎨⎧=+-=-2
316133y x y x 10、二元一次方程组⎩⎨⎧-=-+=+122323m y x m y x 的解互为相反数,求m 的值.
11、解关于x,y 的方程组⎩⎨⎧-=-=+239cy x by ax 时,甲正确地解出⎩⎨⎧==42y x ,乙因为把c 抄错了,误解为⎩⎨⎧-==14y x ,求a ,b ,c 的值.
12、某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲、乙两股票各是多少元?
第九章不等式与不等式组复习题
1.若a <b ,则ac >bc 成立,那么c 应该满足的条件是( ). A. c >0 B .c <0 C .c ≥0 D .c ≤0
2.不等式4(x -2)>2(3x + 5)的非负整数解的个数为( ). A .0个 B .1个 C .2个 D .3个
3.如果不等式⎩⎨⎧-b
y x <>2无解,则b 的取值范围是( ). A .b >-2 B . b <-2 C .b ≥-2 D .b ≤-2
4.如图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处)则甲的体重x 的取值范围是( )
A .x <40
B .x >50
C .40<x <50
D .40≤x ≤50
5.若a >b ,则a -3______b -3 -4a ______-4b (填 “>”“<”或“=”).
6.当x ______时,代数式2
13-x -2x 的值是非负数. 7.不等式-3≤5-2x <3 的正整数解是_________________.
8.某射击运动员在一次训练中,打靶10次的成绩为89环,已知前6次射击的成绩为50环,则他第七次射击时,击中的环数至少是______环.
9.解不等式和不等式组并把它的解集表示在数轴上。

11237x x --≤, 513(1)13172
2x x x x ->+⎧⎪⎨-≤-⎪⎩
10.求不等式组 ⎪⎩
⎪⎨⎧+≤-4210112x x x > 的整数解. 11.当a 在什么范围取值时,方程组 ⎩⎨⎧-=-=+123232a y x a y x 的解都是正数?
12.学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满。

有多少间宿舍,多少名女生?
甲。

相关文档
最新文档