第八章 二元一次方程组知识点及练习题及答案

合集下载

数学第八章 二元一次方程组知识归纳总结及答案

数学第八章 二元一次方程组知识归纳总结及答案

数学第八章 二元一次方程组知识归纳总结及答案一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( ) A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩3.方程组3453572x y x y +=⎧⎪⎨-+=-⎪⎩的解是( )A .20.25x y =⎧⎨=-⎩B . 4.53x y =-⎧⎨=⎩C .10.5x y =-⎧⎨=-⎩D .10.5x y =⎧⎨=⎩4.若二元一次方程组,3x y a x y a-=⎧⎨+=⎩的解是二元一次方程3570x y --=的一个解,则a 为( ) A .3B .5C .7D .95.在关于x 、y 的二元一次方程组321x y ax y +=⎧⎨-=⎩中,若232x y +=,则a 的值为( )A .1B .-3C .3D .46.已知且x +y =3,则z 的值为( ) A .9B .-3C .12D .不确定7.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩8.两位同学在解方程组时,甲同学由278ax by xcx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为A .452a b c ===-,,B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,,9.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( ) A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩10.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.12.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.13.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.14.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下:如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.15.方程组1111121132x y x z y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.16.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.17.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒18.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.19.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.20.已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.23.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:运行区间大人票价学生票出发站终点站一等座二等座二等座泉州福州65(元)54(元)40(元)根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m人,请直接用含m的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x张,且学生全部按表中的“学生票二等座”购买,其余的买一等座动车票,且买票的总费用不低于9000元,求x的最大值.24.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.25.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?26.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据关键语句“若每组7人,余3人”可得方程7y +3−x ;“若每组8人,则缺5人.”可得方程8y−5=x ,联立两个方程可得方程组. 【详解】解:设运动员人数为x 人,组数为y 组,由题意得: 列方程组为7385y x y x -⎧⎨+⎩== 故选D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.2.C解析:C 【分析】根据“新建1个地上停车位和1个地下停车位共需0.6万元”以及“新建3个地上停车位和2个地下停车位共需1.3万元”分别列出等式,由此进一步即可得出相应的方程组. 【详解】由题意得:新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元, ∵新建1个地上停车位和1个地下停车位共需0.6万元,∴0.6x y,又∵新建3个地上停车位和2个地下停车位共需1.3万元, ∴32 1.3x y +=, ∴可列方程组为:0.632 1.3x y x y +=⎧⎨+=⎩,故选:C . 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.3.D解析:D 【分析】整理后①×7+②×2得出41x=41,求出x ,把x 的值代入①求出y 即可. 【详解】解:整理得:34510143x y x y +=⎧⎨-=⎩①② , ①×7+②×2得:41x=41, ∴x=1,把x=1代入①得:3+4y=5, ∴y=0.5,∴方程组的解是:10.5x y =⎧⎨=⎩,故选D . 【点睛】本题考查了解二元一次方程组,关键是把二元一次方程组转化成一元一次方程,解题时要根据方程组的特点进行有针对性的计算.4.C解析:C 【分析】先用含a 的代数式表示x 、y ,即解关于x 、y 的方程组,再代入3570x y --=中即可求解. 【详解】 解:解方程组3x y a x y a -=⎧⎨+=⎩,得2x ay a =⎧⎨=⎩,把x =2a ,y=a 代入方程3570x y --=,得6570a a --=, 解得:a =7. 故选C. 【点睛】本题考查了解二元一次方程组和二元一次方程组的解的概念,求解的关键是先把a看成已知,通过解关于x、y的方程组,得到x、y与a的关系.5.C解析:C【解析】分析:上面方程减去下面方程得到2x+3y=a﹣1,由2x+3y=2得出a﹣1=2,即a=3.详解:3{21x y ax y+=-=①②,①﹣②,得:2x+3y=a﹣1.∵2x+3y=2,∴a﹣1=2,解得:a=3.故选C.点睛:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.6.B解析:B【解析】【分析】先利用x+y=3,得2x+2y=6,3x+3y=9,进而将方程组进行化简整理,再用代入消元法即可求解.【详解】解:∵x+y=3,将其代入方程组得,由(1)得y=z-6,将其代入(2)得z=-3,故选B.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入消元的方法和对原方程组进行化简是解题关键.7.C解析:C【解析】分析:由原方程组的解及两方程组的特点知,x+y、x﹣y分别相当于原方程组中的x、y,据此列出方程组,解之可得.详解:由题意知:3{4x yx y+=-=①②,①+②,得:2x=7,x=3.5,①﹣②,得:2y=﹣1,y=﹣0.5,所以方程组的解为3.50.5 xy=⎧⎨=-⎩.故选C.点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x、y的方程组.8.A解析:A 【分析】把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得,3223148a b c -=⎧⎨+=⎩由方程组中第二个式子可得:c=-2.用排除法,可以直接解答. 【详解】解:把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得:3223148a b c -=⎧⎨+=⎩①②, 由②得:c 2=-,四个选项中行只有A 符合条件. 故选择:A. 【点睛】此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.9.B解析:B 【分析】设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x 、y 的二元一次方程组. 【详解】设一个大桶盛酒 x 斛,一个小桶盛酒 y 斛, 根据题意得:5352x y x y +=⎧⎨+=⎩,故选B.【点睛】根据文字转化出方程条件是解答本题的关键.10.D解析:D 【分析】根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可.【详解】A 、把12x y =⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12x y =⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.二、填空题11.6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-,∵x、y都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题.12.【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)解析:11 xy=-⎧⎨=⎩【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m(x+2y-1)+x-y+2=0,因为无论实数m取何值,此二元一次方程都有一个相同的解,所以21020x yx y+-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.13.【分析】先把原方程化为的形式,再分别令a,b的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】 本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.14.15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩,解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.15.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.16.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。

七年级初一数学 第八章 二元一次方程组知识点及练习题含答案

七年级初一数学 第八章 二元一次方程组知识点及练习题含答案

七年级初一数学 第八章 二元一次方程组知识点及练习题含答案一、选择题1.若关于x ,y 的方程组()348217x y mx m y +=⎧⎨+-=⎩的解也是二元一次方程x -2y =1的解,则m的值为( ) A .52B .32C .12D .12.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( ) A .50人,40人 B .30人,60人 C .40人,50人D .60人,30人3.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩4.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩5.若|321|0x y --=,则x ,y 的值为( ) A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩ D .11x y =⎧⎨=⎩6.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩,其中1122a D a b b =,1122x b a D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组3137x y x y -=⎧⎨+=⎩时,下面的说法错误..的是( ). A .311013D -==B .10x D =C .方程组的解为12x y =⎧⎨=⎩D .20y D =-7.甲、乙两人练习跑步,如果让甲先跑10m ,那么乙跑5s 就追上了甲;如果让甲先跑2s ,那么乙跑4s 就追上了甲,求甲、乙两人的速度.若设甲、乙两人的速度分别为/, /x m s y m s ,则下列方程组中正确的是( )A .()()510422x y x y x ⎧-=⎪⎨-=⎪⎩B .5105442y xy x x =+⎧⎨-=⎩C .()551042x y x y y -=⎧⎨-=⎩D .5510424x y x y=+⎧⎨-=⎩8.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x 人,生产螺母的有y 人,则可以列方程组( )A .351624x y x y +=⎧⎨=⎩B .352416x y x y +=⎧⎨=⎩ C .35 16224x y x y +=⎧⎨=⨯⎩ D .3521624x y x y +=⎧⎨⨯=⎩9.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .910.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1B .1C .13D .﹣13二、填空题11.方程组251036238x y z x z ⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).12.商场购进A 、B 、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C 的标价为80元,为了促销,商场举行优惠活动:如果同时购买A 、B商品各两件,就免费获赠三件C 商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..13.方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.14.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.15.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题. 16.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.17.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 18.若是满足二元一次方程的非负整数,则的值为___________.19.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.20.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.三、解答题21.阅读下列文字,请仔细体会其中的数学思想. (1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.22.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路: 甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.23.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 24.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.25.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由. 26.“一带一路”是对古丝绸之路的传承和提升,让中国和世界的联系更紧密,电气设备是“一带一路”沿线国家受青睐的商品。

中考数学第八章 二元一次方程组知识点-+典型题含答案

中考数学第八章 二元一次方程组知识点-+典型题含答案

中考数学第八章 二元一次方程组知识点-+典型题含答案一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-3.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( )A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩4.若45x y =-⎧⎨=-⎩是方程27x ky +=的解,则k 是( ).A .3B .5C .-3D .以上都不对5.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( )A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁6.解方程组时,第一次消去未知数的最佳方法是( )A .加减法消去x ,将①-③×3与②-③×2B .加减法消去y ,将①+③与①×3+②C .加减法消去z ,将①+②与③+②D .代入法消去x ,y ,z 中的任何一个 7.已知实数a 、m 满足a >m ,若方程组325x y a x y a -=+⎧⎨+=⎩的解x 、y 满足x >y 时,有a >-3,则m 的取值范围是( ) A .m >-3 B .m≥-3C .m≤-3D .m <-38.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( )A .﹣1B .1C .﹣5D .59.下列方程组的解为31x y =⎧⎨=⎩的是( )A.224x yx y-=⎧⎨+=⎩B.253x yx y-=⎧⎨+=⎩C.32x yx y+=⎧⎨-=⎩D.2536x yx y-=⎧⎨+=⎩10.已知关于x,y的方程组232x y ax y a-=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②2xy=⎧⎨=⎩是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③二、填空题11.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.12.某公园的门票价格如表:现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=_____;b=_____.13.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.14.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.15.若方程组2232x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为_____.16.已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.17.对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 18.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 19.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果. 20.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.三、解答题21.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由. 22.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案. 23.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.24.已知:平面直角坐标系中,A (a ,3)、B (b ,6)、C (c ,1),a 、b 、c 都为实数,并且满足3b -5c =-2a -18,4b -c =3a +10 (1) 请直接用含a 的代数式表示b 和c(2) 当实数a 变化时,判断△ABC 的面积是否发生变化?若不变,求其值;若变化,求其变化范围(3) 当实数a 变化时,若线段AB 与y 轴相交,线段OB 与线段AC 交于点P ,且S △PAB >S △PBC ,求实数a 的取值范围.25.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?26.下图是小欣在“A 超市”买了一些食品的发票.后来不小心发票被弄烂了,有几个数据看不清.(1)根据发票中的信息,请求出小欣在这次采购中,“雀巢巧克力”与“趣多多小饼干”各买了多少包;(2)“五一”期间,小欣发现,A 、B 两超市以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在A 超市累计购物超过50元后,超过50元的部分打九折;在B 超市累计购物超过100元后,超过100元的部分打八折. 请问:①“五一”期间,小欣去哪家超市购物更划算?②“五一”期间,小欣又到“B 超市”购买了一些“雀巢巧克力”,请问她至少购买多少包时,平均每包价格不超过20元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据关键语句“若每组7人,余3人”可得方程7y +3−x ;“若每组8人,则缺5人.”可得方程8y−5=x ,联立两个方程可得方程组. 【详解】解:设运动员人数为x 人,组数为y 组,由题意得: 列方程组为7385y x y x -⎧⎨+⎩== 故选D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.2.C【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.3.C解析:C 【分析】根据“新建1个地上停车位和1个地下停车位共需0.6万元”以及“新建3个地上停车位和2个地下停车位共需1.3万元”分别列出等式,由此进一步即可得出相应的方程组. 【详解】由题意得:新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元, ∵新建1个地上停车位和1个地下停车位共需0.6万元, ∴0.6xy,又∵新建3个地上停车位和2个地下停车位共需1.3万元, ∴32 1.3x y +=, ∴可列方程组为:0.632 1.3x y x y +=⎧⎨+=⎩,故选:C . 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.4.C解析:C 【分析】根据题意,将45x y =-⎧⎨=-⎩代入方程27x ky +=,通过计算即可得到答案.【详解】∵45x y =-⎧⎨=-⎩是方程27x ky +=的解 ∴把45x y =-⎧⎨=-⎩代入方程27x ky +=,得: ()()2457k ⨯-+-=故选:C . 【点睛】本题考查了二元一次方程和一元一次方程的知识;求解的关键是熟练掌握二元一次方程和一元一次方程的性质,从而完成求解.5.A解析:A 【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解. 【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁. 故选:A . 【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.6.C解析:C 【解析】 【分析】根据加减消元的方法,当未知数的系数相等或互为相反数时即可进行加减消元.据此即可解题. 【详解】解:∵三个方程中z 的系数已经相等或互为相反数,∴第一次消去未知数的最佳方法是加减法消去z ,将①+②与③+② 故选C. 【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元法的应用条件是解题关键.7.C解析:C 【解析】 解:325x y a x y a -=+⎧⎨+=⎩①②,①+②得,3x =6a +3,得到:x =2a +1③,把③代入①得,2a +1-y =a +3,解得y =a ﹣2,所以,方程组的解是212x a y a =+⎧⎨=-⎩,∵x >y ,∴2a +1>a ﹣2,解得a >﹣3.∵a >-3,a >m ,∴m ≤-3,故选C .点睛:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.8.A解析:A 【分析】 把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案. 【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选A . 【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.9.D解析:D 【解析】把31x y =⎧⎨=⎩代入选项A 第2个方程24x y +=不成立,故错误;把31x y =⎧⎨=⎩代入选项B 第2个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项C 第1个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项D 两个方程均成立,故正确; 故选D.10.B解析:B 【分析】把a =0代入方程组,可求得方程组的解,把20x y =⎧⎨=⎩代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案. 【详解】解:①当a =0时,原方程组为230x y x y -=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩,②把20x y =⎧⎨=⎩代入方程组得到a =1,不符合题意.③当a =﹣1时,原方程组为242x y x y -=⎧⎨+=-⎩,解得02x y =⎧⎨=-⎩,当02x y =⎧⎨=-⎩时,代入方程组可求得a =﹣1, 把02x y =⎧⎨=-⎩与a =﹣1代入方程2x ﹣y =1﹣a 得,方程的左右两边成立, 综上可知正确的为①③. 故选:B . 【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.二、填空题 11.95 【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组,求解即可得,即这个两位数为95. 故答案为95. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知解析:95 【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组14101036x y x y y x +=⎧⎨+--=⎩,求解即可得95x y =⎧⎨=⎩,即这个两位数为95. 故答案为95. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,注意掌握二位数的表示方法.12.40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵ ,,∴1≤b≤50,51<a≤100,若a+解析:40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵12903991313=,129031171111=,∴1≤b≤50,51<a≤100,若a+b≤100时,由题意可得:13111290 11()990b aa b+=⎧⎨+=⎩,∴60150ab=-⎧⎨=⎩(不合题意舍去),若a+b>100时,由题意可得13111290 9(990b aa b+=⎧⎨+=⎩),∴7040 ab=⎧⎨=⎩,故可70,40.【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.13.19%【分析】设甲种蜂蜜每瓶x元,乙种蜂蜜每瓶y元,丙种蜂蜜每瓶z元,首先根据题中所给的两种情况分别列式求出4z=3y+6x①和z=3x②,然后可得y=2x,最后列式求售出的甲、乙、丙蜂蜜瓶数之解析:19%【分析】设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,首先根据题中所给的两种情况分别列式求出4z=3y+6x ①和z=3x ②,然后可得y=2x ,最后列式求售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时获得的总利润即可.【详解】解:设甲种蜂蜜每瓶x 元,乙种蜂蜜每瓶y 元,丙种蜂蜜每瓶z 元,当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,设甲种蜂蜜卖出a 瓶, 则:10%320%30%22%3ax ay az ax ay az ,整理得:4z=3y+6x ①,当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,设丙种蜂蜜卖出b 瓶, 则:310%220%30%20%32bx by bz bx by bz,整理得:z=3x ②,由①②可得:y=2x , ∴当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,设丙种蜂蜜卖出c 瓶, 则该公司得到的总利润率为:510%620%30%0.5 1.20.30.5 2.40.9100%19%56565123cx cy cz x y z x x x cx cy czx y z x x x ,故答案为:19%.【点睛】本题考查了三元一次方程组的应用,利用利润、成本与利润率之间的关系列式计算是解题的关键. 14.3:20【解析】【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积x 、贝母已种植面积x 、黄连已种植面积x ,依题意列出方程组,用y 的代数解析:3:20【解析】【分析】设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x ,依题意列出方程组,用y 的代数式分别表示x 、y ,然后进行计算即可. 【详解】解:设该村已种药材面积x ,余下土地面积为y ,还需种植贝母的面积为z ,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键15.3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.16.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x zz yx y z-+=⎧⎪-+=⎨⎪+-+=⎩,解得135xyz=⎧⎪=⎨⎪=⎩,所以x+y+z=9.17.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.18.【解析】试题分析:根据x、y互为相反数,可得x+y=0,然后和方程构成方程组,解得,所以3x-2y=.19.【分析】可设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,依题意有()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.20.【分析】根据方程组解的定义,把x =5,y =10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.【详解】解:∵方程组∵解为:x =5,y =10,∴,∴∵,∴,①−②,得3a解析:25x y ⎧⎨⎩== 【分析】根据方程组解的定义,把x =5,y =10代入即可得出a 1,a 2,c 1,c 2的关系,再代入计算即可.【详解】解:∵方程组1122==a x y c a x y c +⎧⎨+⎩ ∵解为:x =5,y =10,∴1122510=510=a c a c +⎧⎨+⎩, ∴()12125a a c c -=-∵11122232=32=a x y a c a x y a c ++⎧⎨++⎩,∴112232=61032=610a x y a a x y a ++⎧⎨++⎩①②, ①−②,得3a 1x−3a 2x =6a 1−6a 2,∴x =2,把x =2代入①得,y =5,∴方程组11122232=32a x y a c a x y a c ++⎧⎨+=+⎩的解是=2=5x y ⎧⎨⎩, 故答案为:=2=5x y ⎧⎨⎩. 【点睛】本题考查了解二元一次方程组,掌握方程组的解法是解题的关键. 三、解答题21.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)只,费用为w 元, 5720021400w a a a +-+=()=-,3200a a ≤-(),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.22.(1)七(1)班有47人,七(2)班有51人;(2) 如果两个班联合起来买票,不可以买单价为9 元的票, 省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付 1078 元可知:710879=1209÷可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x 人,七(2)班有y 人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。

七年级数学下册第八章二元一次方程组知识点梳理(带答案)

七年级数学下册第八章二元一次方程组知识点梳理(带答案)

七年级数学下册第八章二元一次方程组知识点梳理单选题1、已知{x =2y =−1 是关于x ,y 的二元一次方程组{ax +by =−52bx −ay =2的解,则a +b 的值为( ) A .﹣5B .﹣1C .3D .7答案:B分析:将{x =2y =−1代入方程组,然后利用加减消元法解方程组,从而求解. 解:∵{x =2y =−1 是关于x ,y 的二元一次方程组{ax +by =−52bx −ay =2的解 ∴{2a −b =−54b +a =2,解得:{a =−2b =1 ∴a +b =-1故选:B .小提示:本题考查解二元一次方程组,掌握加减消元法解方程组的步骤和计算法则,正确计算是解题关键.2、已知二元一次方程y =kx +1的一个解是{x =1y =2,则k 的值为( ) A .−1B .2C .1D .0答案:C分析:使二元一次方程的两边相等的未知数的值是二元一次方程的解,把方程的解代入原方程可得答案.解:∵ 二元一次方程y =kx +1的一个解是{x =1y =2, ∴k +1=2,∴k =1.故选:C.小提示:本题考查的是二元一次方程的解,掌握二元一次方程的解的含义是解题的关键.3、《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木还剩余1尺,问长木多少尺?如果设长木长x 尺、绳长y 尺,则可以列方程组是( )A .{x −y =4.5x −12y =1B .{x −y =4.512y −x =1C .{y −x =1x −12y =1D .{y −x =4.512y −x =1 答案:D分析:设长木长x 尺、绳长y 尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木还剩余1尺,”列出方程组,即可求解.解:设长木长x 尺、绳长y 尺,根据题意得:{y −x =4.512y −x =1 .故选:D小提示:本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.4、2x 3y m+1与3x n y 2是同类项,则m 与n 的值为( )A .{m =1n =3B .{m =3n =1C .{m =2n =3D .{m =3n =2答案:A分析:根据同类项定义,所含字母相同,相同字母的指数也相同,列方程组求解即可.解:2x 3y m+1与3x n y 2是同类项,则{3=n m +1=2, 解得:{m =1n =3. 故选A .小提示:本题考查同类项,二元一次方程组,掌握所含字母相同并且相同字母的指数也相同的项叫做同类项是解题关键.5、已知方程组{x +2y =k 2x +y =4的解满足x +y =2,则k 的值为( ) A .−2B .−4C .2D .4答案:C分析:将方程组中两方程相加可得3(x +y )=k +4,根据x +y =2可得关于k 的方程,解之可得.{x +2y =k①2x +y =4②①+②得:3(x +y )=k +4∵x +y =2∴k +4=6解得:k =2故选:C .小提示:本题考查二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6、《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌,如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A .{x +9=2(y −9)y +9=xB .{x +9=2(y −9)y +9=x −9C .{x +9=2y y +9=x −9D .{x +9=2y y +9=x 答案:B分析:根据甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样,可以列出相应的方程组,本题得以解决.解:由题意可得{x +9=2(y −9)y +9=x −9. 故选:B .小提示:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.7、古代《折绳测井》“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?”译文大致是:“用绳子测水井深度,如果将绳子折成三等分,井外余绳4尺;如果将绳子折成四等分,井外余绳1尺,问绳子、井深各是多少尺?”如果设绳子x 尺,井深y 尺,根据题意列方程组正确的是( )A .{13x =y +414x =y +1B .{13x =y −414x =y −1C .{13x =y −414x =y +1D .{13x =y +414x =y −1 答案:A分析:用代数式表示井深即可得方程.本题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.解:设绳长x 尺,井深y 尺,根据题意可列方程组为{x 3=y +4x 4=y +1 ,故选:A .小提示:本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8、若方程组{2x +y =5ax −by =4与{ax +by =8x −y =1 有相同的解,则a ,b 的值为( ) A .a =2,b =−3B .a =3,b =2C .a =2,b =3D .a =3,b =−2答案:B分析:两个方程组有相同的解,即有一对x 和y 的值同时满足四个方程,所以可以先求出第一个方程组的解,再把求得的解代入第二个方程组中,得到一个新的关于a 、b 的方程,并解得,求出a 、b .解:先解{2x +y =5x −y =1, 得{x =2y =1, 把{x =2y =1 代入方程组{ax −by =4ax +by =8, 得{2a −b =42a +b =8, 解得{a =3b =2, 故选:B .小提示:本题考查了解二元一次方程组,解题的关键是先根据已知方程组求出未知数的值,再把未知数的值代入另一个方程组中得到新的方程组.9、一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是( )A .容易题和中档题共60道B .难题比容易题多20道C.难题比中档题多10道D.中档题比容易题多15道答案:B分析:设容易题有a题,中档题有b题,难题有c题,根据“三种题型共100道,每道题至少有一人解对,且每人都解对了其中的60道”,即可得出关于a,b,c的三元一次方程组,用方程①×2-方程②,可求出c-a=20,即难题比容易题多20题,此题得解.解:设容易题有a题,中档题有b题,难题有c题,依题意,得:{a+b+c=100①3a+2b+c=3×60②①×2-②,得:c-a=20,∴难题比容易题多20题.故选:B.小提示:本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.10、如图,三个天平的托盘中形状相同的物体质量相等.图①、图②所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( )A.3个球B.4个球C.5个球D.6个球答案:C分析:题目中的方程实际是说明了两个相等关系:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据第一个天平得到:5x+2y=x+3z;根据第二个天平得到:3x+3y=2y+2z,把这两个式子组成方程组,解这个关于y,z 的方程组即可.解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:{5x+2y=x+3z;3x+3y=2y+2z解得:{y=xz=2x;第三图中左边是:x+2y+z=x+2x+2x=5x,因而需在它的右盘中放置5个球.答:需在它的右盘中放置5个球.所以C选项是正确的.小提示:解决本题的关键是借助方程关系进行等量代换,进而求出球的数量.填空题11、某中学为积极开展校园足球运动,计划购买A和B两种品牌的足球,已知一个A品牌足球价格为120元,一个B品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买_______个A品牌足球,买________个B品牌足球.答案: 10 12分析:设买x个A品牌足球,买y个B品牌足球,根据题意列出二元一次方程,根据整数解确定x,y的值即可求解.解:设买x个A品牌足球,买y个B品牌足球,根据题意得,120x+150y=3000,整理得:y=20−45x,∵x,y是正整数,∴x是5的倍数,∴{x=5y=16,{x=10y=12,{x=15y=8,{x=20y=4.所以答案是:10,12(答案不唯一).小提示:本题考查了二元一次方程的应用,整除,根据题意列出方程是解题的关键.12、《张丘建算经》里有一道题:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?请你结合你学过的知识,写出一组能够按要求购买的方案:公鸡买______只,母鸡买_______只,小鸡买_______只.答案:4(答案不唯一)18(答案不唯一)78(答案不唯一)分析:设买了x只公鸡,y只母鸡,则买了(100−x−y)只小鸡,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x ,y ,(100−x −y )均为自然数,即可求出结论.解:设买了x 只公鸡,y 只母鸡,则买了(100−x −y )只小鸡,依题意得:5x +3y +13(100−x −y )=100,即y =25−74x , 又∵x ,y ,(100−x −y )均为自然数,∴{x =0y =25100−x −y =75 或{x =4y =18100−x −y =78 或{x =8y =11100−x −y =81 或{x =12y =4100−x −y =84, ∴买的公鸡、母鸡、小鸡各0、25、75只或4、18、78只或8、11、81只或12、4、84只,所以答案是:0、25、75只或4、18、78只或8、11、81只或12、4、84.小提示:本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.13、若关于x ,y 的二元一次方程组{3x +2y =22x +y =m −18的解x 、y 互为相反数,则点P(m ,y)在第_______象限. 答案:四分析:根据x 、y 互为相反数得:x +y =0,与方程组的第一个方程组成新的方程组,解出可得x 、y 的值,代入第二个方程可得m 的值.即得出P 点坐标,最后根据坐标系内点的坐标特征即可得出答案.解:由已知得:x +y =0,则{x +y =03x +2y =2, 解得:{x =2y =−2, 将{x =2y =−2代入2x +y =m −18,得:2×2−2=m −18, ∴m =20.∴P (20,-2),∴点P 在第四象限.所以答案是:四.小提示:本题考查了二元一次方程组的解、互为相反数的性质以及坐标系内点的坐标特征.根据题意建立新的方程组是解决问题的关键.14、已知关于x 、y 的二元一次方程组{ax +by =7bx +ay =9的解为{x =2y =3 ,那么关于m 、n 的二元一次方程组{a(m +n)+b(m −n)=7b(m +n)+a(m −n)=9的解为 _____. 答案:{m =52n =−12分析:首先利用整体代值的数学思想可以得到m +n 与m ﹣n 的值,然后解关于m 、n 的方程组即可求解.解:∵关于x 、y 的二元一次方程组{ax +by =7bx +ay =9的解为{x =2y =3 , ∴关于m 、n 的二元一次方程组{a(m +n)+b(m −n)=7b(m +n)+a(m −n)=9 中{m +n =2m −n =3, ∴解这个关于m 、n 的方程组得:{m =52n =−12 . 故答案为{m =52n =−12 . 小提示:本题主要考查了二元一次方程组的解,解题的关键是掌握整体代值的数学思想,对于学生的能力要求比较高.15、我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何?”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛,则6个大桶加6个小桶可以盛酒_________斛. 答案:5分析:设每个大桶可以盛酒x 斛,每个小桶可以盛酒y 斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x ,y 的二元一次方程组,将方程①+②相加,即可得出结论.解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,则{5x +y =3①x +5y =2②, 由①+②可得6x +6y =5,∴则6个大桶加6个小桶可以盛酒5斛,所以答案是:5.小提示:本题考查了二元一次方程组的应用以及数学常识,解题的关键是找准等量关系,正确列出二元一次方程组.解答题16、重庆某超市有A ,B 两种产品进行销售,购买50件A 产品,30件B 产品,一共花费1450元,如果购买60件A 产品,10件B 产品,则一共花费1350元.(1)请问A 、B 两种产品的单价为多少元?(2)五一即将来临,超市分别针对A 、B 商品进行打折销售.购买A 种商品数量超过20的每件商品打八折销售;购买B 种品数超过30的每件商品打六折销售.小红去超市购买A ,B 两种产品54件,一共花费了640元,请问小红分别购买A 、B 两种产品多少件?答案:(1)A 种产品的单价为20元、B 种产品的单价为15元(2)小红购买A 种产品为22件、B 种产品的32件或小红购买A 种产品为14件、B 种产品的40件分析:(1)设A 种产品的单价为x 元、B 种产品的单价为y 元,由题意列出方程组,解方程组即可;(2)设购买A 种产品为m 件、B 种产品的n 件,由题意列出方程组,解方程组解可.(1)解:设A 种产品的单价为x 元、B 种产品的单价为y 元,由题意得:{50x +30y =145060x +10y =1350, 解得{x =20y =15. 答:A 种产品的单价为20元、B 种产品的单价为15元.(2)解:设购买A 种产品为m 件、B 种产品的n 件,①购买A 种商品数量超过20件,购买B 种品数超过30件,由题意得:{m +n =5420×0.8m +15×0.6n =640, 解得:{m =22n =32; ②购买A 种商品数量超过20件,购买B 种品数不超过30件,由题意得:{m +n =5420×0.8m +15n =640,解得:{m =−170n =224, 不合题意舍去,③购买A 种商品数量不超过20件,购买B 种品数超过30件,由题意得:{m +n =5420m +15×0.6n =640, 解得:{m =14n =40, 答:小红购买A 种产品为22件、B 种产品的32件或小红购买A 种产品为14件、B 种产品的40件.小提示:此题考查了二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程解题,难度一般,第二问需要分类讨论,注意不要遗漏.17、解方程组:{x +y =102x +y =16答案:{x =6y =4分析:利用加减消元法进行求解即可得.解:{x +y =10①2x +y =16②, ②﹣①得:x =6,把x =6代入①得:y =4,则方程组的解为{x =6y =4. 小提示:本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18、随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?答案:(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.分析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:{6x+3y=60050×0.8x+40×0.75y=5200,解得:{x=40y=120.答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.小提示:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.。

七年级数学下册第八章二元一次方程组重点知识归纳(带答案)

七年级数学下册第八章二元一次方程组重点知识归纳(带答案)

七年级数学下册第八章二元一次方程组重点知识归纳单选题1、已知方程组{x +2y =k 2x +y =4的解满足x +y =2,则k 的值为( ) A .−2B .−4C .2D .4答案:C分析:将方程组中两方程相加可得3(x +y )=k +4,根据x +y =2可得关于k 的方程,解之可得.{x +2y =k①2x +y =4②①+②得:3(x +y )=k +4∵x +y =2∴k +4=6解得:k =2故选:C .小提示:本题考查二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2、《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌,如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A .{x +9=2(y −9)y +9=xB .{x +9=2(y −9)y +9=x −9C .{x +9=2y y +9=x −9D .{x +9=2y y +9=x 答案:B分析:根据甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样,可以列出相应的方程组,本题得以解决.解:由题意可得{x +9=2(y −9)y +9=x −9 . 故选:B .小提示:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找出等量关系,列出相应的方程组.3、某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x ,负的场数为y ,则可列方程组为( )A .{x −y =83x −y =12B .{x +y =183x +y =12C .{x +y =83x −y =12D .{x −y =83x +y =12答案:C分析:根据“胜1场得3分,负一场扣1分”以及“菁英中学队在8场比赛中得到12分”列出关于x ,y 的二元一次方程组即可.解:若设该队胜的场数为x ,负的场数为y ,依题意得:{x +y =83x −y =12. 故选C .小提示:本题主要考查了二元一次方程组的应用,读懂题意、设出未知数、找出合适的等量关系是解答本题的关键.4、若方程组{2x +y =5ax −by =4与{ax +by =8x −y =1 有相同的解,则a ,b 的值为( ) A .a =2,b =−3B .a =3,b =2C .a =2,b =3D .a =3,b =−2答案:B分析:两个方程组有相同的解,即有一对x 和y 的值同时满足四个方程,所以可以先求出第一个方程组的解,再把求得的解代入第二个方程组中,得到一个新的关于a 、b 的方程,并解得,求出a 、b .解:先解{2x +y =5x −y =1, 得{x =2y =1, 把{x =2y =1 代入方程组{ax −by =4ax +by =8,得{2a −b =42a +b =8, 解得{a =3b =2, 故选:B .小提示:本题考查了解二元一次方程组,解题的关键是先根据已知方程组求出未知数的值,再把未知数的值代入另一个方程组中得到新的方程组.5、如图所示的是由截面为同一种长方形的墙砖粘贴的部分墙面,其中三块横放的墙砖比两块竖放的墙砖低30cm,两块竖放的墙砖比两块横放的墙砖高50cm,则每块墙砖的截面面积是( )A .600cm 2B .900cm 2C .1200cm 2D .1500cm 2答案:B分析:设每块墙砖的长为x cm ,宽为y cm ,观察图形,根据长方形墙砖长宽之间的关系,即可得出关于x ,y 的二元一次方程组,解之即可求出x ,y 的值,再利用长方形的面积计算公式,即可求出每块墙砖的截面面积.解:设每块墙砖的长为x cm ,宽为y cm ,由题意得:{2x −3y =302x −2y =50, 解得:{x =45y =20, ∴xy =45×20=900,∴每块墙砖的截面面积是900cm 2.故选:B小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6、关于x,y 的二元一次方程组的解{3x −4y =5−k 2x −y =2k +3满足x −3y =10+k ,则k 的值是( ) A .2B .−2C .−3D .3答案:B分析:将①-②,得x −3y =2−3k ,再根据题意x −3y =10+k ,得10+k =2−3k ,求解即可.解:{3x −4y =5−k①2x −y =2k +3②, ①-②,得x −3y =2−3k ,∵x −3y =10+k ,∴10+k =2−3k ,解得:k =−2,故选:B .小提示:本题考查二元一次方程组的含参问题,利用方程组进行化简,利用整体思想进行求解是解决问题的关键.7、若实数满足(x+y+2)(x+y ﹣1)=0,则x+y 的值为( )A .1B .﹣2C .2或﹣1D .﹣2或1答案:D解:因为(x +y +2)(x +y ﹣1)=0,所以(x +y +2)=0,或(x +y ﹣1)=0.即x +y =﹣2或x +y =1.故选D .8、植树节这天有35名同学共种了85棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是( )A .{x +y =852x +3y =35B .{x +y =853x +2y =35C .{x +y =352x +3y =85D .{x +y =353x +2y =85答案:D分析:设男生有x 人,女生有y 人,根据题意,列二元一次方程组即可.解:设男生有x 人,女生有y 人,根据题得,{x +y =353x +2y =85, 故选D .小提示:本题考查了列二元一次方程组,根据题意找到等量关系是解题的关键.9、若方程mx-2y=3x+4是关于x,y 的二元一次方程,则m 的取值范围是( )A .m≠0B.m≠3C.m≠-3D .m≠2答案:B分析:首先把方程整理为二元一次方程的一般形式,再根据定义要求x 、y 的系数均不为0,即m -3≠0解出即可.移项合并,得(m -3)x -2y =4,∵mx -2y =3x +4是关于x 、y 的二元一次方程,∴m -3≠0,得m ≠3.故选B .小提示:本题主要考查二元一次方程的定义,即一个方程只含有两个未知数,并且所含未知项的次数都是1,那么这个整式方程就叫做二元一次方程.10、五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( )A .30B .26C .24D .22答案:B分析:设1艘大船与1艘小船分别可载x 人,y 人,根据“1艘大船与2艘小船一次共可以满载游客32人”和“2艘大船与1艘小船一次共可以满载游客46人”这两个等量关系列方程组,解出(x +y )即可.设1艘大船与1艘小船分别可载x 人,y 人,依题意:{x +2y =32①2x +y =46②(①+②)÷3得:x +y =26故选:B .小提示:本题考查二元一次方程组的实际应用;注意本题解出(x +y )的结果即可.填空题11、若关于x ,y 的二元一次方程组{3x +2y =22x +y =m −18的解x 、y 互为相反数,则点P(m ,y)在第_______象限. 答案:四分析:根据x 、y 互为相反数得:x +y =0,与方程组的第一个方程组成新的方程组,解出可得x 、y 的值,代入第二个方程可得m 的值.即得出P 点坐标,最后根据坐标系内点的坐标特征即可得出答案.解:由已知得:x +y =0,则{x +y =03x +2y =2, 解得:{x =2y =−2, 将{x =2y =−2代入2x +y =m −18,得:2×2−2=m −18, ∴m =20.∴P (20,-2),∴点P 在第四象限.所以答案是:四.小提示:本题考查了二元一次方程组的解、互为相反数的性质以及坐标系内点的坐标特征.根据题意建立新的方程组是解决问题的关键.12、已知关于x 、y 的二元一次方程组{ax +by =7bx +ay =9的解为{x =2y =3 ,那么关于m 、n 的二元一次方程组{a(m +n)+b(m −n)=7b(m +n)+a(m −n)=9的解为 _____. 答案:{m =52n =−12分析:首先利用整体代值的数学思想可以得到m +n 与m ﹣n 的值,然后解关于m 、n 的方程组即可求解.解:∵关于x 、y 的二元一次方程组{ax +by =7bx +ay =9的解为{x =2y =3 , ∴关于m 、n 的二元一次方程组{a(m +n)+b(m −n)=7b(m +n)+a(m −n)=9 中{m +n =2m −n =3, ∴解这个关于m 、n 的方程组得:{m =52n =−12. 故答案为{m =52n =−12 . 小提示:本题主要考查了二元一次方程组的解,解题的关键是掌握整体代值的数学思想,对于学生的能力要求比较高.13、已知方程组{x +2y =62x +y =21,则x +y 的值为______. 答案:9分析:解方程组,求得x 、y 的值,进而求得答案.解:由方程组{x +2y =62x +y =21,解得{x =12y =−3 ∴x +y =9所以答案是:9.小提示:本题考查求方程组的解,熟练掌握相关知识是解题的关键.14、有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.答案:100或85.分析:设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.解:设所购商品的标价是x 元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.小提示:本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.15、请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵.答案: 45 10分析:本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x棵,即可列方程:4x+5=5(x﹣1)求解.解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有10棵,鸦的个数为:10×4+5=45故答案为45,10小提示:本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.解答题16、已知关于x、y的方程组{mx−12ny=12mx+ny=5的解为{x=2y=3,求m、n的值.答案:m=1,n=1.分析:把x与y的值代入方程组得出关于m、n的二元一次方程组,求得方程组的解即可.∵关于x 、y 的方程组{mx −12ny =12mx +ny =5的解为{x =2y =3 , ∴{2m −32n =122m +3n =5, 解得:{m =1n =1. 即m =1,n =1.17、阅读材料:善于思考的小军在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代入”的解法如下: 解:将方程②变形:4x +10y +y =5,即2(2x +5y)+y ③;把方程①代入③,得:2×3+y =5,所以y =−1;把y =−1代入①得,x =4,所以方程组的解为{x =4y =−1. 请你模仿小军的“整体代入”法解方程组{3x +2y −2=03x+2y+15−x =−25答案:{x =1y =−12分析:将方程变形为3x +2y =2,再整体代入其他一个方程得到2+15−x =−25,进而得出x 的值,再进一步得到y 的值.将方程①变形为:3x +2y =2③,将方程③整体代入②中,得2+15−x =−25,解得:x =1,将x =1代入③,得3×1+2y =2,解得:y =−12,∴方程组的解是{x =1y =−12.小提示:本题考查用整体代换法解二元一次方程组,理解示例并正确运用时关键.18、已知|x +3|+(2x +y )2=0,求(−|x |y )5的值.答案:−132 分析:根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.解:由题意得{x +3=02x +y =0 ,{x =−3y =6, 则(−|x |y )5=(−|−3|6)5=−132 小提示:本题考查了非负数的性质和乘方运算、代入消元法解方程组,熟练掌握相关知识是解题的关键。

七年级数学下册第八章二元一次方程组基础知识手册(带答案)

七年级数学下册第八章二元一次方程组基础知识手册(带答案)

七年级数学下册第八章二元一次方程组基础知识手册单选题1、幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12答案:D分析:根据题意设出相应未知数,然后列出等式化简求值即可.解:设如图表所示:根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x+22+n=20+z+n,20+y+m=x+z+m,整理得:x=-2+z,y=2z-22,∴x-y=-2+z-(2z-22)=-4+z,解得:z=12,∴x +y=3z -24=12故选:D .小提示:题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.2、《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x 人,物品的价格为y 钱,根据题意,可列方程组为( )A .{y =8x −3y =7x +4B .{x =8y +3x =7y −4C .{y =8x +3y =7x −4D .{x =8y −3x =7y +4答案:A分析:根据“每人出8元,还盈余3元;每人出7元,则还差4元”,即可得出关于x ,y 的二元一次方程组,此题得解.解:设人数为x 人,物品的价格为y 钱,依题意,得{y =8x −3y =7x +4. 故选:A .小提示:本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3、解方程组{2x +3y =5①x −2y =−1②时,经过下列步骤,能消去末知数y 的是( ) A .①×2−②×3B .①×3−②×2C .①×3+②×2D .①×2+②×3答案:D分析:由消去未知数y ,可得方程组中y 的未知数系数化为绝对值相等,符号相反,①×2+②×3可消去y . 解:∵消去未知数y ,解方程组{2x +3y =5①x −2y =−1②中y 的未知数系数化为绝对值相等,符号相反,∴①×2+②×3可消去y .故选:D小提示:本题考查二元一次方程组加减消元法,关键是化某一未知数系数化为绝对值相等,系数相同用减法,系数相反用加法.4、《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.”设甲有x 只羊,乙有y 只羊,根据题意列出二元一次方程组为( )A .{x −9=2(y +9),y +9=x −9.B .{x +9=2(y −9),y +9=x −9.C .{x +9=2y,y +9=x.D .{x −9=2y,y +9=x −9.答案:B分析:根据“我若得你9只羊,我的羊多你一倍.”和“我若得你9只羊,我们两家的羊数就一样多.”为等量关系,列出方程即可求解.解:由题意得:{x +9=2(y −9)y +9=x −9, 故选:B .小提示:本题考查了二元一次方程组的应用,找准等量关系,根据等量关系列出方程组是解题的关键.5、甲乙两辆小车同时从A 地开出,甲车比乙车每小时快10km ,结果甲车行驶了40分钟到达了B 地,而乙车比甲车晚5分钟到达B 地,设甲车和乙车的速度分别为x km/h ,y km/h ,则下列方程组正确的是( )A .{40x =45y y −x =10B .{4060x =4560y x −y =10C .{40x =35y x −y =10D .{4060x =3560y y −x =10答案:B分析:根据甲车比乙车每小时快10km ,得x-y =10,根据甲车行驶了40分钟到达了B 地,而乙车比甲车晚5分钟到达B 地,得4060x =4560y ,由此得到方程组.解:设甲车和乙车的速度分别为x km/h,y km/h,根据甲车比乙车每小时快10km,得x-y=10,根据甲车行驶了40分钟到达了B地,而乙车比甲车晚5分钟到达B地,得4060x=4560y,故选:B.小提示:此题考查了二元一次方程组的实际应用,正确理解题意是列得方程组的关键.6、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有()A.5个B.6个C.7个D.8个答案:D分析:设原来的两位数为10a+b,则新两位数为10b+a,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.小提示:本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:10×十位上的数+个位上的数,注意不要漏数.7、已知{m+2n=−42m+n=9,则代数式m−n的值是()A.-5B.5C.13D.1答案:C分析:两式相减即可得出答案.解:{m+2n=−4①2m+n=9②将②-①,得m−n=13故选C.小提示:本题考查了二元一次方程的特殊解法,找到两式与m −n 的关系是解题的关键.8、春节将至,某超市准备用价格分别是36元/kg 和20元/kg 的两种糖果混合成100kg 的什锦糖出售,混合后什锦糖的价格是28元/kg .若设需要36元/kg 的糖果x kg ,20元/kg 的糖果y kg ,则下列方程组中能刻画这一问题中数量关系的是( )A .{x +y =10036x +20y =28B .{x +y =10036x +20y =28×100C .{x +y =10028x +28y =100×(36+20) D .{x +y =10020x +36y =28×100 答案:B分析:由题意得等量关系:两种糖果混合成100kg 的什锦糖;36元/kg 的糖果x kg 的费用+20元/kg 的糖果y kg 的费用=100kg×28,即可得出方程组.解:设需要36元/kg 的糖果x kg ,20元/kg 的糖果y kg ,由题意得:{x +y =10036x +20y =28×100故选:B .小提示:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.9、若二元一次方程组{x +y =3,3x −5y =4的解为{x =a,y =b, 则a −b 的值为( ) A .1B .3C .−14D .74答案:D分析:先解方程组求出x −y =74,再将{x =a,y =b, 代入式中,可得解. 解:{x +y =3,①3x −5y =4,② ①+②,得4x −4y =7,所以x −y =74,因为{x =a,y =b,所以x −y =a −b =74.故选D.小提示:本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.10、如图,三个天平的托盘中形状相同的物体质量相等.图①、图②所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( )A.3个球B.4个球C.5个球D.6个球答案:C分析:题目中的方程实际是说明了两个相等关系:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据第一个天平得到:5x+2y=x+3z;根据第二个天平得到:3x+3y=2y+2z,把这两个式子组成方程组,解这个关于y,z 的方程组即可.解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:{5x+2y=x+3z;3x+3y=2y+2z解得:{y=xz=2x;第三图中左边是:x+2y+z=x+2x+2x=5x,因而需在它的右盘中放置5个球.答:需在它的右盘中放置5个球.所以C选项是正确的.小提示:解决本题的关键是借助方程关系进行等量代换,进而求出球的数量. 填空题11、如果{x+2y=32x−3y=4,那么2x+4y−22+6x−9y3=______.答案:6分析:观察方程组,容易发现,可以整体求得2x+4y和6x-9y的值,直接代入即可.解:{x +2y =3①2x −3y =4②①×2得:2x +4y =6,②×3得:6x -9y =12,整体代入可得:2x+4y−22+6x−9y 3=6−22+123=6,所以答案是:6.小提示:本题考查了解二元一次方程组、代数式求值,注意整体代入思想的应用.12、已知x 、y 满足方程组{3x +y =2021x +3y =2022,则x −y =______. 答案:−12##﹣0.5分析:方程组两方程相减得2x -2y =﹣1,两边同除以2得出x ﹣y 即可.解:{3x +y =2021①x +3y =2022② ①-②得,2x -2y =﹣1,两边同除以2得,x -y =−12, 所以答案是:−12小提示:此题考查了二元一次方程组,整体法的应用是求解此题的关键.13、如果x a−2+2y b+1=0是二元一次方程,则a =____,b =_____.答案: 3 0分析:根据二元一次方程的定义可知a −2=1,b +1=1,据此可解出a 、b .解:依题意,得:{a −2=1b +1=1, 解得:{a =3b =0. 所以答案是:3,0.小提示:此题考查的是对二元一次方程的定义理解,根据未知数的次数为1,可以列出方程组求解.14、《张丘建算经》里有一道题:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?请你结合你学过的知识,写出一组能够按要求购买的方案:公鸡买______只,母鸡买_______只,小鸡买_______只.答案: 4(答案不唯一) 18(答案不唯一) 78(答案不唯一)分析:设买了x 只公鸡,y 只母鸡,则买了(100−x −y )只小鸡,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y ,(100−x −y )均为自然数,即可求出结论.解:设买了x 只公鸡,y 只母鸡,则买了(100−x −y )只小鸡,依题意得:5x +3y +13(100−x −y )=100,即y =25−74x ,又∵x ,y ,(100−x −y )均为自然数,∴{x =0y =25100−x −y =75 或{x =4y =18100−x −y =78 或{x =8y =11100−x −y =81 或{x =12y =4100−x −y =84 , ∴买的公鸡、母鸡、小鸡各0、25、75只或4、18、78只或8、11、81只或12、4、84只,所以答案是:0、25、75只或4、18、78只或8、11、81只或12、4、84.小提示:本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15、如图是一个正方体的展开图,正方体相对面的数字或代数式互为相反数,则x 的值为______,y 的值为______.答案: 2 −12##-0.5分析:根据相对面的数字或代数式互为相反数得到方程组{x +4y =02x −1=3,求出x 和y 的值. 解:根据题意得{x +4y =02x −1=3, 解得{x =2y =−12 ,故答案为2,−12 . 小提示:本题考查正方体的展开图以及解二元一次方程组,注意相隔的面是相对的面.解答题16、已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.答案:(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨;(2)故共有四种租车方案,分别为:①A 型车0辆,B 型车9辆;②A 型车4辆,B 型车6辆;③A 型车8辆,B 型车3辆;④A 型车12辆,B 型车0辆.分析:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有36吨货物,即可得出3a +4b =36,即b =36−3a 4,由a 、b 均为整数即可得出租车方案.解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4, 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨;(2)由题意可得:3a +4b =36,∴b =36−3a 4=9−34a , ∵a ,b 均为整数,∴有{a =0b =9、{a =4b =6、{a =8b =3和{a =12b =0四种情况,故共有四种租车方案,分别为:①A 型车0辆,B 型车9辆②A 型车4辆,B 型车6辆;③A 型车8辆,B 型车3辆;④A 型车12辆,B 型车0辆.小提示:本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货36吨,找出3a +4b =36.17、重庆某超市有A ,B 两种产品进行销售,购买50件A 产品,30件B 产品,一共花费1450元,如果购买60件A 产品,10件B 产品,则一共花费1350元.(1)请问A 、B 两种产品的单价为多少元?(2)五一即将来临,超市分别针对A 、B 商品进行打折销售.购买A 种商品数量超过20的每件商品打八折销售;购买B 种品数超过30的每件商品打六折销售.小红去超市购买A ,B 两种产品54件,一共花费了640元,请问小红分别购买A 、B 两种产品多少件?答案:(1)A 种产品的单价为20元、B 种产品的单价为15元(2)小红购买A 种产品为22件、B 种产品的32件或小红购买A 种产品为14件、B 种产品的40件分析:(1)设A 种产品的单价为x 元、B 种产品的单价为y 元,由题意列出方程组,解方程组即可;(2)设购买A 种产品为m 件、B 种产品的n 件,由题意列出方程组,解方程组解可.(1)解:设A 种产品的单价为x 元、B 种产品的单价为y 元,由题意得:{50x +30y =145060x +10y =1350, 解得{x =20y =15. 答:A 种产品的单价为20元、B 种产品的单价为15元.(2)解:设购买A 种产品为m 件、B 种产品的n 件,①购买A 种商品数量超过20件,购买B 种品数超过30件,由题意得:{m +n =5420×0.8m +15×0.6n =640 ,解得:{m =22n =32; ②购买A 种商品数量超过20件,购买B 种品数不超过30件,由题意得:{m +n =5420×0.8m +15n =640, 解得:{m =−170n =224, 不合题意舍去,③购买A 种商品数量不超过20件,购买B 种品数超过30件,由题意得:{m +n =5420m +15×0.6n =640, 解得:{m =14n =40, 答:小红购买A 种产品为22件、B 种产品的32件或小红购买A 种产品为14件、B 种产品的40件.小提示:此题考查了二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程解题,难度一般,第二问需要分类讨论,注意不要遗漏.18、甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时中甲先花了1小时修理工具,之后甲每小时比以前多加工10件,乙由于体力消耗较大,每小时比原来少加工1件,结果在后5小时内,甲比乙多加工了15件,甲、乙两人原来每小时各加工多少件?答案:甲原来每小时加工20件,乙原来每小时加工22件分析:设甲原来每小时加工x 件,乙每小时加工y 件,利用工作总量=工作效率×工作时间,结合“前3小时两人共加工126件,后5小时内,甲比乙多加工了15件”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.解:设甲原来每小时加工x 件,乙每小时加工y 件,依题得:{3x +3y =1264(x +10)−5(y −1)=15, 解方程组得:{x =20y =22, 答:甲原来每小时加工20件,乙原来每小时加工22件.小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

数学第八章 二元一次方程组知识点及练习题及答案

数学第八章 二元一次方程组知识点及练习题及答案

数学第八章 二元一次方程组知识点及练习题及答案一、选择题1.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .2x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩2.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=3.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ). A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩4.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .10011003x y x y +=⎧⎪⎨+=⎪⎩ C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 6.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( ) A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩7.《九章算术》是我国东汉初年编订的一部数学经典著作。

七年级数学下册第八章二元一次方程组知识点总结(超全)(带答案)

七年级数学下册第八章二元一次方程组知识点总结(超全)(带答案)

七年级数学下册第八章二元一次方程组知识点总结(超全)单选题1、关于x,y 的二元一次方程组的解{3x −4y =5−k 2x −y =2k +3满足x −3y =10+k ,则k 的值是( ) A .2B .−2C .−3D .3答案:B分析:将①-②,得x −3y =2−3k ,再根据题意x −3y =10+k ,得10+k =2−3k ,求解即可. 解:{3x −4y =5−k①2x −y =2k +3②, ①-②,得x −3y =2−3k ,∵x −3y =10+k ,∴10+k =2−3k ,解得:k =−2,故选:B .小提示:本题考查二元一次方程组的含参问题,利用方程组进行化简,利用整体思想进行求解是解决问题的关键.2、方程组{x +y =−1x +z =0y +z =1的解是( )A .{x =−1y =1z =0B .{x =1y =0z =−1C .{x =0y =1z =−1D .{x =−1y =0z =1答案:D分析:观察方程组,①-②可消去x ,即可将三元一次方程组化为二元一次方程组求解.解:{x +y =−1①x +z =0②y +z =1③①﹣②,得:y ﹣z =﹣1,④③+④,得:y + z + y ﹣z =﹣1+1,解得y =0,⑤⑤代入①,得:x =﹣1,⑤代入③,得:z =1,因此方程组的解为:{x =−1y =0z =1;故选D .小提示:此题主要考查的是三元一次方程组的解法,常用的方法是加减法和代入法,要结合题意灵活选用合适的方法.3、已知x,y 满足方程组{x +6y =123x −2y =8,则x+y 的值为() A .5B .7C .9D .3答案:A分析:直接把两式相加即可得出结论.{x +6y =12①3x −2y =8②, ①+②得,4x+4y=20,解得x+y=5.故选A .小提示:本题考查的是解二元一次方程组,熟知利用加减法解二元一次方程组是解答此题的关键.4、如果方程x −y =3与下面方程中的一个组成的方程组的解为{x =4y =1,那么这个方程可以是( ) A .3x −4y =16B .14x +2y =5C .12x +3y =8D .2(x −y)=6y答案:D分析:将解代入每个方程,使若方程两边相等则该组解是该方程的解,即为所求的方程.解:将{x =4y =1 依次代入,得: A 、12-4≠16,故该项不符合题意;B 、1+2≠5,故该项不符合题意;C 、2+3≠8,故该项不符合题意;D 、6=6,故该项符合题意;故选:D .小提示:此题考查二元一次方程的解:使方程两边相等的未知数的值叫做方程的解,正确计算是解题的关键.5、若方程组{3x −y =4k −52x +6y =k的解中x +y =16,则k 等于( ) A .15B .18C .16D .17答案:D分析:先将两个方程相加即可得到x +y =k −1,再根据x +y =16即可得到关于k 的方程,解方程即可得解. 解:{3x −y =4k −5 ① 2x +6y =k ②①+②得,5x +5y =5k −5∴x +y =k −1∵x +y =16∴k −1=16∴k =17.故选:D小提示:本题考查了二元一次方程组的解满足一定条件求参数问题,加减消元法和代入消元法是求值的常用方法.6、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有45张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套.则下列方程组中符合题意的是( )A .{x +y =45y =2xB .{x +y =4525x =2×40yC .{x +y =4525x =40y 2D .{x +y =452x 25=y 40答案:C分析:设用x 张制作盒身,y 张制作盒底,根据题意列出二元一次方程组即可求解.解:设用x 张制作盒身,y 张制作盒底,根据题意得:{x +y =4525x =40y 2 .故选:C .小提示:本题考查了列二元一次方程组,理解题意是解题的关键.7、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是( )A .{7x −7=y 9(x −1)=yB .{7x +7=y 9(x −1)=yC .{7x +7=y 9x −1=yD .{7x −7=y 9x −1=y 答案:B分析:设该店有客房x 间,房客y 人;根据题意一房七客多七客,一房九客一房空得出方程组即可. 解:设该店有客房x 间,房客y 人;根据题意得:{7x +7=y 9(x −1)=y, 故选:B .小提示:本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.8、由x 3−y 2=1可以得到用x 表示y 的式子为( ) A .y =2x−23B .y =2x 3−2 C .y =2x 3−13D .y =2−2x 3答案:B分析:先移项,后系数化为1,即可得.解:x 3−y 2=1移项,得y 2=x 3−1, 系数化为1,得y =2x 3−2,故选B . 小提示:本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.9、若|x −y −1|+3(x +y)2=0,则x 、y 的值为( )A .x =0.5,y =0.5B .x =−0.5,y =−0.5C .x =−0.5,y =0.5D .x =0.5,y =−0.5答案:D分析:本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”,得到方程组,解出x 、y 的值即可.解:依题意得:{x −y −1=0...(1)x +y =0 (2), 由(1)得:x =y +1(3),将(3)代入(2)中得:y +1+y =2y +1=0,y =−0.5(4).将(4)代入(3)得:x =0.5.故选:D .小提示:本题考查解二元一次方程组和绝对值、偶次方的非负性,解题的关键是熟练运用二元一次方程组的解法.10、“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A .{x +y =73x +y =17B .{x +y =93x +y =17C .{x +y =7x +3y =17D .{x +y =9x +3y =17答案:A分析:由题意知:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分等量关系:胜场+平场+负场=9,得分总和为17.解:设该队胜了x 场,平了y 场,根据题意,可列方程组为:{x +y +2=93x +y =17, ∴{x +y =73x +y =17故选:A .小提示:根据实际问题中的条件列方程组时,解题的关键是要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.填空题11、已知x,y,z满足方程组{x−2y+z=07x+4y−5z=0,则x:y:z=____.答案:1:2:3分析:把z看做是常数,可得{x−2y=−z①7x+4y=5z②,再分别求解x,y的值,从而可得答案.解:{x−2y+z=07x+4y−5z=0整理得:{x−2y=−z①7x+4y=5z②①×2+②得:9x=3z,∴x=13z,把x=13z代入①得:y=23z,∴x:y:z=13:23:1=1:2:3.所以答案是:1:2:3.小提示:本题考查的是三元不定方程组,掌握把其中一个未知数看成是常数是解题的关键.12、某商场购进商品后,加价40%作为销售价.五一期间,商场搞优惠促销,决定由顾客抽签确定折扣.某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款448元.两种商品原销售价之和为560元.则两种商品进价分别为________元.答案:200,200分析:设甲、乙两种商品的进价分别为x元、y元,然后根据“某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款448元.两种商品原销售价之和为560元”列方程组求解即可.解:设甲、乙两种商品的进价分别为x元、y元.由题意可得:{(1+40%)x+(1+40%)y=5600.7(1+40%)x+0.9(1+40%)y=448 ,解得{x=200y=200.故答案为200、200.小提示:本题考查二元一次方程组的应用,明确题意、找准等量关系、列出相应的方程组成为解答本题的关键.13、若关于x ,y 的方程x +2y =1,2x −y =7,kx −y =4有公共解,则k 的值为 __.答案:1分析:先将x +2y =1和2x -y =7组成二元一次方程组,解得x 、y 的值后代入kx -y =4即可得到答案.解:由题意得:{x +2y =12x −y =7, 解得:{x =3y =−1, 把{x =3y =−1代入kx −y =4得: 3k +1=4,解得k =1,所以答案是:1.小提示:本题考查了方程的解,解二元一次方程组,理解方程的解的意义是本题的解题关键.14、若|a ﹣b +1|与√a +2b +4互为相反数,则(a −b )2021=_____.答案:-1分析:根据绝对值与二次根式的非负性,及|a ﹣b +1|与√a +2b +4互为相反数,可得{a −b +1=0a +2b +4=0,解方程组即可求得a 、b 的值,据此即可求解.∵|a ﹣b +1|≥0,√a +2b +4≥0,且|a ﹣b +1|与√a +2b +4互为相反数,∴{a −b +1=0a +2b +4=0解得{a =−2b =−1, ∴(a −b )2021=(−2+1)2021=−1,所以答案是:-1.小提示:本题考查了绝对值与二次根式的非负性,代数式求值问题,互为相反数的两个数之间的关系,根据题意列出方程组,求得a 、b 的值是解决本题的关键.15、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).答案:ab设大正方形的边长为x 1,小正方形的边长为x 2,由图①和②列出方程组得,{x 1+2x 2=a x 1−2x 2=b解得,{x 1=a +b 2x 2=a −b 4②的大正方形中未被小正方形覆盖部分的面积=(a+b 2)2-4×(a−b 4)2=ab . 所以答案是:ab .解答题16、仔细阅读下面解方程组得方法,然后解决有关问题.解方程组{19x +18y =17①17x +16y =15② 时,如果直接消元,那将时很繁琐的,若采用下面的解法,则会简单很多. 解:①-②,得2x +2y =2,即x +y =1③,③×16,得16x +16y =16④,②-④,得:x =−1,将x =−1代入③得:y =2,∴方程组的解为:{x =−1y =2. (1)问题解决,请你采用上述方法解方程组{2014x +2013y =20122012x +2011y =2010(2)延伸探究:请你采用上述方法填空:{(a +2)x +(a +1)y =a (b +2)x +(b +1)y =b(a ≠b) ,则x +y = . 答案:(1){x =−1y =2(2)1分析:(1)先把两式相减得出x+y的值,再把x+y的值与2011相乘,再用加减消元法求出x的值,再代入方程求出y的值即可;(2)先把两式相减得出(a﹣b)x+(a﹣b)y=a﹣b的值,由a-b≠0,得到x+y=1,再用加减消元法求出y的值,再代入方程求出x的值即可.(1)解:{2014x+2013y=2012①2012x+2011y=2010②,①−②,得:2x+2y=2,即x+y=1③,③×2011,得:2011x+2011y=2011④,.②−④,得:x=−1,.将x=−1代入③得:y=2,∴方程组的解为:{x=−1y=2;(2)解:{(a+2)x+(a+1)y=a①(b+2)x+(b+1)y=b②(a≠b),①-②,得:(a-b)x+(a-b)y=a-b,∵a≠b,∴a-b≠0,∴x+y=1③,③×(b+2),得:(b+2)x+(b+2)y=b+2④,④-②,得:y=2,把y=2代入③得:x+2=1,解得:x=﹣1,∴方程组的解为:{x=−1y=2,∴x+y=1.所以答案是:1小提示:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17、A 、B 两地相距3千米,甲从A 地出发步行到B 地,乙从B 地出发步行到A 地,两人同时出发,20分钟后两人相遇,又经过10分钟,甲所余路程为乙所余路程的2倍.(1)求甲、乙每小时各行多少千米?(2)在他们出发后几分钟两人相距1.5千米(直接写出结果)?答案:(1)甲每小时行4千米,乙每小时行5千米(2)10分钟或30分钟分析:(1)这是行程问题中的相遇问题,三个基本量:路程、速度、时间.关系式为:路程=速度×时间.题中的两个等量关系是:20分钟×甲的速度+20分钟×乙的速度=3千米,3千米-30分钟×甲的速度=(3千米-30分钟×乙的速度)×2,依此列出方程求解即可,注意单位换算;(2)先求出两人一共行驶的路程,再除以速度和即可求解.(1)解:设甲每小时行x 千米.乙每小时行y 千米.依题意:{2060x +2060y =33−3060x =2(3−3060y)解方程组得{x =4y =5答:甲每小时行4千米,乙每小时行5千米.(2)相遇前:(3-1.5)÷(115+112) =1.5÷320=10(分钟),相遇后:(3+1.5)÷(115+112)=4.5÷320 =30(分钟).故在他们出发后10分钟或30分钟两人相距1.5千米.小提示:本题考查了二元一次方程组的应用,本题是行程问题中的相遇问题,解题关键是如何建立二元一次方程组的模型.18、在解方程组{ax +3y =−2①2x −by =7②时,由于粗心,甲看错了方程组中的a ,而得解为{x =1y =−1 ,乙看错了方程组中的b ,而得解为{x =5y =1,根据上面的信息解答: (1)甲把a 看成了什么数,乙把b 看成了什么数?(2)求出正确的a ,b 的值;(3)求出原方程组的正确解,并代入代数式(x −y )⋅(5x −19y )3求值.答案:(1)甲把a 看成了1,乙把b 看成了3(2)5(3)-64分析:(1)根据题意把{x =1y =−1 代入①求出a ,然后把{x =5y =1代入②求出b ,进而问题得解; (2)根据题意把{x =1y =−1 代入②求出b ,然后把{x =5y =1代入①求出a ,进而问题得解; (3)由(2)可求出方程组的解,然后代值求解即可.(1)解:把{x =1y =−1代入①,得a −3=−2,解得a =1; 把{x =5y =1代入②,得10−b =7,解得b =3. ∴甲把a 看成了1,乙把b 看成了3.(2)解:把{x =5y =1代入①,得5a +3=−2,解得:a =−1;把{x =1y =−1代入②,得2+b =7,解得:b =5. (3)解:由(2)可得原方程组为{−x +3y =−22x −5y =7, 解得原方程组的正确解为:{x =11y =3. ∴(x −y )⋅(5x −19y )3=8×(−2)3=8×(−8)=−64.小提示:本题主要考查二元一次方程的解法及代数式的值,熟练掌握二元一次方程组的解法是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 二元一次方程组知识点及练习题及答案一、选择题1.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( )A .2B .2-C .1D .1-2.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( )A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩3.已知22x y =-⎧⎨=⎩是方程kx +2y =﹣2的解,则k 的值为( )A .﹣3B .3C .5D .﹣54.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③ B .①③ C .②③ D .①② 5.已知10a b +=,6a b -=,则22a b -的值是( )A .12B .60C .60-D .12-6.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( )A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩7.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩8.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( ) A .﹣2 B .2 C .3 D .﹣3 9.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-810.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤,雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只 雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为( )A .56156x y x y y x +=⎧⎨-=-⎩B .65156x y x y y x +=⎧⎨+=+⎩C .56145x y x y y x +=⎧⎨+=+⎩D .65145x y x y y x +=⎧⎨-=-⎩二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生A 的妻子是__________.12.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.13.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.14.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下: 购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.15.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.16.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____. 17.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____. 18.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.19.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.20.关于x ,y 的二元一次方程组5323x y x y a +=⎧⎨+=⎩的解是正整数,试确定整数a 的值为_________________.三、解答题21.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?22.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示);乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 23.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和. 24.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案. 25.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.26.某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车. (1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】把x 与y 的值代入方程计算即可求出a 的值. 【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=,解得1a =. 故选C. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.C解析:C 【分析】根据“新建1个地上停车位和1个地下停车位共需0.6万元”以及“新建3个地上停车位和2个地下停车位共需1.3万元”分别列出等式,由此进一步即可得出相应的方程组. 【详解】由题意得:新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元, ∵新建1个地上停车位和1个地下停车位共需0.6万元, ∴0.6xy,又∵新建3个地上停车位和2个地下停车位共需1.3万元, ∴32 1.3x y +=, ∴可列方程组为:0.632 1.3x y x y +=⎧⎨+=⎩,故选:C . 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.3.B解析:B 【分析】 把22x y =-⎧⎨=⎩代入是方程kx +2y =﹣2得到关于k 的方程求解即可. 【详解】解:把22x y =-⎧⎨=⎩代入方程得:﹣2k +4=﹣2,解得:k =3, 故选B . 【点睛】本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.4.A解析:A 【分析】根据二元一次方程组的解法逐个判断即可. 【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+=解得10k =,则结论②正确解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③ 故选:A .本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.5.B解析:B 【分析】先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得.【详解】由题意得:106a b a b +=⎧⎨-=⎩,解得82a b =⎧⎨=⎩,则22222864460a b -==-=-, 故选:B . 【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.6.B解析:B 【分析】根据A 、B 两种商品共60件以及用1680元购进A 、B 两种商品,分别得出等式组成方程组即可. 【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩. 故选B.. 【点睛】本题考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.7.B解析:B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 8.B【详解】把11x y =⎧⎨=-⎩代入方程组231ax by ax by +=⎧⎨-=⎩得:231a b a b -=⎧⎨+=⎩, 解得:4313a b ⎧=⎪⎪⎨⎪=-⎪⎩, 所以a−2b=43−2×(13-)=2. 故选B.9.A解析:A 【分析】将第二个方程代入第一个方程消去m 即可得. 【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.C解析:C 【分析】根据题意,可以列出相应的方程组,从而可以解答本题. 【详解】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x+6y =1(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x+y =5y+x, 故选C. 【点睛】此题考查二元一次方程组应用,解题关键在于列出方程组二、填空题11.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y的二元一次方程组,求出x 、y 的值,再找出符合和 解析:c【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答. 【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y ,依题意有x 2-y 2=48,即()()48x y x y +-=, ∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性, 又∵x y x y +>-,48=24×2=12×4=8×6, ∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩,解得13x =,11y =或8x =,4y =或7x =,1y =, 符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件, 同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件, ∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a . 故答案为:c . 【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.12.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案. 【详解】 解:由已知得: ∴两式相加得:,即, 把代入得到,, 故此方程组的解为:. 故答案为:. 【点睛】 本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案. 【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =, 把0x =代入10x y --=得到,1y =-, 故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.13.51 【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积. 【详解】解:设小长方形的长、宽分别为、, 依题意得: ,即, 解得:, , ,解析:51 【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y , 依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩,解得:81x y =⎧⎨=⎩, 818S ∴=⨯=小长方形,729DC DE EC ∴=+=+=,11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.14.15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.15.62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)解析:62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=346245y-,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴504xy=⎧⎨=⎩,269xy=⎧⎨=⎩,214xy=⎧⎨=⎩,∴x+y+2y=62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.16.536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1解析:536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,分三种情况讨论:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c ﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10,求出a、b、c的值,即可得出最大三位数.【详解】∵|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,∴(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)≥30.∵a、b、c是整数,(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,∴有三种情况:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10.∴要使三位数最大,首先要保证a尽可能大.当|a﹣2|+|a﹣4|=4时,解得:a=1或a=5;当|a﹣2|+|a﹣4|=2时,解得:2≤a≤4;∴a=5.当a=5时,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5.解得:0≤b≤3,1≤c≤6,∴由a、b、c组成的最大三位数为536.故答案为:536.【点睛】本题考查了三元一次方程、绝对值的意义以及绝对值方程;熟练掌握绝对值的几何意义,利用不等式和数轴解题是关键.17.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x依题意可得,5919()121640191:3:4 3164x y x yx y y z x z⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+=⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①②由①得32x y =③将③代入②得38 z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202yzx y y y==++故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键18.3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.19.7或3【解析】【分析】解此题可设b=-a,求出a,b的值,然后代入代数式求解即可.【详解】由题意得,解得:或,当a=2,b=-2时,=7;当a=-2,b=2时,=3,故答案为:7或解析:7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】 由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩, 当a=2,b=-2时,2a ab 1 a ab 1-+++=7; 当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3.【点睛】本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键. 20.7或5【解析】分析:首先用含a 的代数式分别表示x ,y ,再根据条件二元一次方程组的解为正整数,得到关于a 的不等式组,求出a 的取值范围,再根据a 为整数确定a 的值. 详解:①-②×3,得2x=2解析:7或5【解析】分析:首先用含a 的代数式分别表示x ,y ,再根据条件二元一次方程组的解为正整数,得到关于a 的不等式组,求出a 的取值范围,再根据a 为整数确定a 的值.详解:5323x y x y a +=⎧⎨+=⎩①②①-②×3,得2x=23-3a解得x=2332a - 把x=2332a -代入②得y=5232a -∵关于x,y的二元一次方程组5323x yx y a+=⎧⎨+=⎩的解是正整数∴2332a->0,5232a->0解得2323 53a<<即a=5、6、7∵x、y为正整数∴a为5或7.故答案为:5或7.点睛:本题考查了二元一次方程组的解,解二元一次方程组,解一元一次方程的应用,关键是能根据题意得出关于a的方程.三、解答题21.(1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.【分析】(1)设制作甲x个,乙y个,则需要A,B型号的纸板如下表:(2)设制作甲m个,乙k个,则需要A,B型号的纸板如下表:(3)由1个丙型大纸盒可以拆成7块B型纸板,所以6个丙型大纸盒可以拆成42块B型纸板,而制作1个甲纸盒要4块B型纸板,制作1个乙纸盒要4.5块B型纸板,通过列方程求方程的正整数解得到答案.【详解】解:(1)设制作甲x个,乙y个,则34160270x y x y +=⎧⎨+=⎩, 解得:2422x y =⎧⎨=⎩, 即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数,所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.【点睛】此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.22.(1)2(a +b );(2)(2+21b a +);(2+21a b +);(3)36. 【分析】(1)根据两地间的距离=两人的速度之和×第一次相遇所需时间,即可得出结论; (2)利用时间=路程÷速度结合2小时后第一次相遇,即可得出结论;(3)设AB 两地的距离为S 千米,根据路程=速度×时间,即可得出关于(a+b ),S 的二元一次方程组(此处将a+b 当成一个整体),解之即可得出结论.【详解】(1)A 、B 两地的距离可以表示为2(a +b )千米.故答案为:2(a +b ).(2)甲乙相遇时,甲已经走了2a 千米,乙已经走了2b 千米,根据相遇后他们的速度都提高了1千米/小时,得甲还需21b a +小时到达B 地,乙还需21a b +小时到达A 地,所以甲从A 到B 所用的时间为(2+21b a + )小时,乙从B 到A 所用的时间为(2+21a b +)小时.故答案为:(2+21b a +);(2+21a b +). (3)设AB 两地的距离为S 千米,3小时36分钟=185小时. 依题意,得: 2()182(11)5S a b S a b =+⎧⎪⎨=+++⎪⎩, 令x =a +b ,则原方程变形为2182(2)5S x S x =⎧⎪⎨=+⎪⎩, 解得:1836x S =⎧⎨=⎩. 答:AB 两地的距离为36千米.【点睛】本题考查了列代数式以及二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.(1)B ;(2),x y 的最小整数解为104x y =⎧⎨=⎩;(3)隐线中s 的最大值和最小值的和为72【分析】(1)将A,B,C 三点坐标代入方程,方程成立的点即为所求,(2)将P,Q 代入方程,组成方程组求解即可,(3)将P 代入隐线方程,27n +=组成方程组,求解方程组的解,再由()2723147s n n n =--=-即可求解.【详解】解:(1)将A,B,C 三点坐标代入方程,只有B 点符合,∴隐线326x y +=的亮点的是B.(2)将()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭代入隐线方程 得:226163h t h -=⎧⎪⎨-=⎪⎩解得253t h ⎧=⎨=-⎩ 代入方程得:5626x y -=,x y ∴的最小整数解为104x y =⎧⎨=⎩(3)由题意可得273n n s==⎪⎩72n =-72n ∴= ()2723147s n n n ∴=--=-212s ∴=- s ∴的最大值为14,最小值为212- 隐线中s 的最大值和最小值的和为2171422-= 【点睛】本题考查了二元一次方程的新定义,二元一次方程与直线的关系,运用了数形结合的思想,理解题意是解题关键.24.(1)七(1)班有47人,七(2)班有51人;(2) 如果两个班联合起来买票,不可以买单价为9 元的票, 省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付 1078 元可知:710879=1209÷可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x 人,七(2)班有y 人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。

相关文档
最新文档