运算定律和简便运算

合集下载

第二课时 运算定律及简便运算

第二课时 运算定律及简便运算

125÷(50÷8)
=3.25÷(2.5×4) =125÷50×8
350÷(35×2) =350÷35÷2
=3.25÷10
=2.5×8
=10÷2
=0.325
=20
=5
差错类型及归纳
类型1 添括号后运算符号的错误使用。 【例1】计算:493-255-145 错解:493-255-145 =493-(255-145) =493-110 =383
104×0.25 =(100+4)×0.25 =100×0.25+4×0.25
=25+1
=26
125÷(50÷8) =125÷50×8
=125×8÷50
=1000÷50
=20
72×101-72 =72×(101-1) =72×100 =7200
69×32+67×69+69 =69×(32+67+1) =69×100 =6900
3. 在○填上“>”“<”或“=”。
(87-87)÷3○= (105-105)÷3
50+<4×5○(50+4)×
750÷15-10○< 750÷(15-10) 69+65÷5○> 69-65÷5
4. 一套校服,上衣每件35元,裤子每条25元,某班订
购了40套校服,需要( 2400 )元。
5.学校新采购了50套课桌椅(1张课桌和1把椅子是1套),
凡 事都 是多棱 镜, 不同 的角 度会
凡 事都是 多棱 镜, 不同 的角度 会看 到不 同的 结果 。若 能把一 些事 看淡 了, 就会 有个好 心境 ,若 把很 多事 看开 了 ,就会 有个 好心 情。 让聚散 离合 犹如 月缺 月圆那 样寻 常, 让得失 利弊 犹如花 开花 谢那 样自然 ,不 计较, 也不 刻意执 着;让 生命 中各 种的喜 怒哀 乐,就 像风 儿一 样,来 了, 不管是 清风 拂面 ,还是 寒风 凛冽, 都报 以自 然 的微笑 ,坦然 的接 受命 运的馈 赠, 把是非 曲折 ,都 当作是 人生 的

人教版四年级下册数学【运算定律与简便计算】知识篇

人教版四年级下册数学【运算定律与简便计算】知识篇

加、减法的速算与巧算( 基础篇)前进实验小学史爱东1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。

即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。

)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。

)②个位:1与9,2与8,3与7,4与6,5与5,结合。

③十位:0与9,1与8,2与7,3与6,4与5,结合。

连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。

即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。

如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。

如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。

如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。

小学四年级数学下册运算定律及简便运算知识点

小学四年级数学下册运算定律及简便运算知识点

小学四年级数学下册运算定律及简便运算知识点小学四年级数学下册运算定律及简便运算知识点在日复一日的学习中,相信大家一定都接触过知识点吧!知识点就是学习的重点。

掌握知识点是我们提高成绩的关键!下面是店铺整理的小学四年级数学下册运算定律及简便运算知识点,仅供参考,欢迎大家阅读。

一、加法运算定律1、加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b)+c=a+(b+c)加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

a-b-c=a-(b+c)二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。

ab=ba2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

(ab)c=a(bc)乘法的这两个定律往往结合起来一起使用。

如:125788的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。

(a+b)c=ac+bc(a-b)c=ac-bc 小学生数学法则知识归类(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。

(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。

(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。

小学数学0的性质1、0既不是正数也不是负数,而是介于-1和+1之间的整数。

2、0的相反数是0,即-0=0。

3、0的绝对值是其本身。

(完整版)人教版小学数学四年级下册【运算定律与简便计算】知识篇

(完整版)人教版小学数学四年级下册【运算定律与简便计算】知识篇

加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。

即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

即:(a+b)+c = a+(b+c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。

)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。

)②个位:1与9,2与8,3与7,4与6,5与5,结合。

③十位:0与9,1与8,2与7,3与6,4与5,结合。

连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35 =(65+35)+(28+72)=100+98 =488+100 =93+(165+35) = 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。

即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

即:a-b-c=a-c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。

如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。

如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。

如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。

四年级运算定律与简便计算练习题大全

四年级运算定律与简便计算练习题大全

运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。

字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。

例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。

减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。

字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。

字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-120(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。

字母表示:a b b a ⨯=⨯例如:85×18=18×85 23×88=88×232.乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变。

字母表示:)()(c b a c b a ⨯⨯=⨯⨯乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。

例如:25×4=100, 2.5×4=10,0.25×4=1, 25×0.4=10, 0.25×0.4=0.1125×8=1000, 12.5×8=100, 1.25×8=10, 0.125×8=1,…例5.简便计算:(1)25×9×43.乘法分配律定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

小学四年级:运算定律与简便计算公式整理(附练习题)

小学四年级:运算定律与简便计算公式整理(附练习题)

小学四年级:运算定律与简便计算公式整理(附练习题)小学四年级:运算定律与简便计算一、运算定律必须弄清加法交换律 a b = b a例:25 37=37 25加法结合律 a b c=a (b c)例:25 37 63=25 (37 63)(扩展) a-b-c=a-(b c)例:125-37-63=25-(37 63)a-b c=a-(b-c)例:300-159 59=300-(159-59)乘法交换律a×b×c=a×c×b例:25×9×4=25×4×9乘法结合律a×b×c=(a×c) ×b例:128×3×8=(125×8) ×3乘法分配律a×(b c)=a×b a×c例:8×(125 25)=8×125 8×25(扩展)a÷b÷c=a÷(c×b)例:100÷5÷2=100÷(5×2)a÷(c×b)= a÷b÷c例:100÷(5×2)=100÷5÷2二、必须背下来的几个算式2×5=102×50=1004×25=1008×25=20012×5=608×125=100037×3=111333=111×3999=333×3=111×9三、加法简便计算训练1、凑整法简便计算:例:(28 36) 64=28 (36 64)=28 100=128182 18 276 24=(182 18)(276 24)=200 300=500小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。

人教四下数学【运算定律与简便计算】知识篇

人教四下数学【运算定律与简便计算】知识篇

人教版四年级下册数学加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。

即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。

)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。

)②个位:1与9,2与8,3与7,4与6,5与5,结合。

③十位:0与9,1与8,2与7,3与6,4与5,结合。

连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。

即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。

如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。

如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。

如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。

运算定律和简便运算

运算定律和简便运算

定律与简便计算(一)加减法运算定律1、加法交换律定义:两个加数交换位置,与不变字母表示:例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,与不变.字母表示:注意:加法结合律有着广泛得应用,如果其中有两个加数得与刚好就是整十、整百、整千得话,那么就可以利用加法交换律将原式中得加数进行调换位置,再将这两个加数结合起来先运算。

例1、用简便方法计算下式:(1)63+16+84(2)76+15+24 (3)140+639+860 3、减法交换律、结合律注:减法交换律、结合律就是由加法交换律与结合律衍生出来得。

减法交换律:如果一个数连续减去两个数,那么后面两个减数得位置可以互换。

字母表示:例2、简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数得与。

字母表示:例3、简便计算:(1)369-45—155 (2)896—580-1204、拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些得时候,我们可以把这个数拆分成整百、整千与一个较小数得与,然后利用加减法得交换、结合律进行简便计算。

例如:103=100+3,1006=1000+6,…例4、计算下式,能简便得进行简便计算:(1)89+106(2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170(2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)63+71+37+29 (8)85-17+15—33 (9)34+72-43-57+28 (二)乘除法运算定律1、乘法交换律定义:交换两个因数得位置,积不变。

字母表示:例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变.字母表示:乘法结合律得应用基于要熟练掌握一些相乘后积为整十、整百、整千得数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定律与简便计算
(一)加减法运算定律
1.加法交换律
定义:两个加数交换位置,和不变
字母表示:a b b a +=+
例如:16+23=23+16 546+78=78+546
2.加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。

字母表示:)()(c b a c b a ++=++
注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。

例1.用简便方法计算下式:
(1)63+16+84 (2)76+15+24 (3)140+639+860
3.减法交换律、结合律
注:减法交换律、结合律是由加法交换律和结合律衍生出来的。

减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。

字母表示:b c a c b a --=--
例2.简便计算:198-75-98
减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。

字母表示:)(c b a c b a +-=--
例3.简便计算:(1)369-45-155 (2)896-580-120
4.拆分、凑整法简便计算
拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。

例如:103=100+3,1006=1000+6,…
例4.计算下式,能简便的进行简便计算:
(1)89+106 (2)56+98 (3)658+997
随堂练习:计算下式,怎么简便怎么计算
(1)730+895+170 (2)820-456+280 (3)900-456-244
(4)89+997 (5)103-60 (6)458+996
(7)63+71+37+29 (8)85-17+15-33 (9)34+72-43-57+28
(二)乘除法运算定律
1.乘法交换律
定义:交换两个因数的位置,积不变。

字母表示:a b b a ⨯=⨯
例如:85×18=18×85 23×88=88×23
2.乘法结合律
定义:先乘前两个数,或者先乘后两个数,积不变。

字母表示:)()(c b a c b a ⨯⨯=⨯⨯
乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。

例如:25×4=100, 2.5×4=10,0.25×4=1, 25×0.4=10, 0.25×0.4=0.1
125×8=1000, 12.5×8=100, 1.25×8=10, 0.125×8=1,…
例5.简便计算:(1)0.25×9×4 (2)2.5×12 (3)12.5×56
举一反三:简便计算
(1) 48×125 (2)125×33×0.8 (3)32×0.25×12.5
3.乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

字母表示:c b c a c b a ⨯+⨯=⨯+)(,或者是c a b a c b a ⨯+⨯=+⨯)(
简便计算中乘法分配律及其逆运算是运用最广泛的一个,一个要掌握它和它的逆运算。

例6.简便计算:(1)125×(8+16) (2)150×63+36×150+150
(3)12×36+120×4.2+1.2×220 (4)33×13+33×79+33×12
简便计算(二)——加减乘除综合简便计算
除了乘法分配律经常单独使用外,大多数的简便计算都同时包括了加减法、乘除法的运算定律率,看下面例题:
例7.简便计算:(1)97×15 (2)102×99 (3)35×8+35×6-4×35
例8.简便计算:(1)4.8×100.1 (2)5.7×99.9 (3)53.9×23.6+40.5×23.6+23.6×5.6
例9.简便计算:(1)1.25×2.5×32 (2)600÷2.5÷40 (3)25×64×12.5
例10.简便计算:(1)17×62+17×31+12×17 (2)8.3×36+56.7×36+36×34.1+36
例11.简便计算:(1)16×56-16×13+16×61-16×5 (2)43×23+18×23-23×9+4.81×230
课堂练习:简便计算
(1)36×84+36×15+36 (2)6.9×170+17×28+1.7×30
(3)71×15+15×22+15×12 (4)26×19+26×56+27×26
4.除法交换律、结合律
类似于加减法的运算定律,除法的交换律和结合律是由乘法的运算定律率衍生出来的。

除法交换律:从被除数里面连续除以两个数,交换这两个除数的位置商不变。

字母表示:b c a c b a ÷÷=÷÷
例13.简便计算:1000÷25÷8
除法结合律:从被除数里面连续除以两个数,等于被除数除以这两个数的积。

字母表示:)(c b a c b a ⨯÷=÷÷
例14.简便计算:100÷2.5÷4
举一反三:简便计算
(1)80÷5÷4 (2)100÷1.25÷8 (3)100÷8÷2.5。

相关文档
最新文档