荧光和化学发光的基本知识
第三章分子荧光和化学发光

41
• 化学发光反应都包括化学激发和发光两个 步骤,则有
ψCL= ψCE·ψEN
(1)
• 式中ψCL为化学发光效率;ψCE为生成激发 态分子效率;ψEN为激发态发光效率,ψCL、 ψCE分别定义为:
42
生成激发态的分子数
CE 参加反应的分子数
10
(5)磷光发射 • 从单重态到三重态的分子系间跨越跃迁发生
后,接着发生快速的振动弛豫而到达三重态 的最低振动能层上,当没有其他过程同它竞 争时,在10-4~10s左右时间内 跃迁回基态而 发生磷光.
11
2. 激发光谱和发射光谱及其特征
Link
• Stokes位移. • 荧光发射光谱与激发波长的选择无关 • 镜像规则 二者呈镜像对称关系
35
• 荧光法定性和定量分析方法与紫外及可见吸收 光谱法相似,由实验得到的样品的荧光激发光 谱和荧光发射光谱与标准荧光光谱图比较可定 性分析样品成分.
• 在进行定量分析时,一般以激发光谱最大峰值 波长为激发光波长,以发射光谱最大峰值波长 为发射波长.
36
• 荧光法同样也可用于混合物的同时测定和络合 物组成的研究.
12
二、荧光强度与浓度的关系
• 分子产生荧光必须具备两个条件: (ⅰ)分子必须具有与所照射的辐射频率相适应的 结构,才能吸收激发光; (ⅱ)吸收了与其本身特征频率相同的能量之后, 必须具有一定的荧光量子产率.
• 荧光量子产率(φ)也称荧光量子效率,它表示物质 发射荧光的能力,通常用下式 表示
13
发射的光量子数
20
三、荧光计和荧光分光光度计
• 用于测量荧光的仪器种类很多,从简单 的滤光荧光计到复杂的精密荧光分光光 度计.所用仪器的各部件和分光光度计 相类似(下图).
荧光和化学发光的基本知识

化学发光检测方法
1.X光片压片(传统方法) 但曝光时间需要摸索,压片法有一定不便,定量也不准 2.扫描仪 一定波长范围扫描 3.成像仪 Cooled CCD 4.荧光化学发光酶标仪
化学发光在生物学检测中的应用
杂交检测中的信号物质(非放射性标记): 1. 核酸杂交(Southern&Northern Blot) 2. 蛋白印迹(Western Blot) 3. 酶联免疫(Elisa) 4. 其他:
三、荧光的性质
• 吸收光 • 保持固有的荧光特性 • 荧光波长>激发波长(STOKES 法则) • 荧光强度极小于激发光的强度 • 有不同程度的衰减 • 荧光强度取决于激发光强度、被检物浓
度、荧光效率
四、荧光的产生与分子结构的关系
1.分子产生荧光必须具备的条件
(1)具有合适的结构;
(2)具有一定的荧光量子产率。
一、荧光发生过程
荧光产生于某些分子(通常是含多聚芳香烃的碳 水化合物或杂环的 特异性区域或对特异性刺激因子发生反应。
荧光发生是一个3阶段的过程。
① 激发
外源的白炽灯或激光提供的能 量(hvEX)的光子被荧光体吸收, 产生被激发的电子单峰态(S1’ )。 这个过程是荧光和化学发光的区 别,化学发光的激发态是由化学反 应产生的。
Luminol
和定量 • 激光扫描仪
荧光信号
荧光强度的定量取决于这些参数:吸光度,光径 和稀释浓度,染料的荧光量子的产量,激发光源强度 和仪器荧光采集效率。在稀释溶液或悬液中,荧光强 度与这些参数成线性比例关系。
化学发光
化学发光的原理
某些荧光物质(例如Luminol, C8H7N3O2)可將化学反应中产生的能 量,转化成使分子內的电子由基态(ground state)跃升到激发态(excited state),处于激发态的分子并不穩定,將能量以光的形式释放出來;有的 光波长为可见光范围,但占多数的是荧光(fluorescence)。
原子发射光谱,荧光光谱,化学发光谱的区别

原子发射光谱、荧光光谱和化学发光光谱是分析化学中常见的光谱技术,它们在原子结构分析和元素检测等方面具有重要的应用价值。
然而,这三种光谱具有不同的原理和特点。
下面将分别介绍原子发射光谱、荧光光谱和化学发光光谱的区别。
一、原子发射光谱1. 原理:原子发射光谱是利用原子在能级跃迁时所发射的特征光谱线进行分析的一种技术。
当原子受到激发能量后,原子的电子会跃迁至较高的能级,而后再跃迁至较低的能级时会发射出特征波长的光谱线。
通过测量这些特征光谱线的强度和波长,可以确定样品中各种元素的含量和种类。
2. 应用:原子发射光谱广泛应用于金属材料分析、环境污染物检测、地质勘探等领域,尤其在工业生产中具有重要的应用价值。
3. 优势:原子发射光谱的灵敏度高、测定范围广,能够同时检测多种元素,具有较高的分析精度和准确度。
二、荧光光谱1. 原理:荧光光谱是利用物质在受到紫外光激发后,发射出荧光光谱进行分析的一种技术。
当样品受到紫外光激发后,部分分子会吸收能量并跃迁至激发态,随后分子会再跃迁至基态并发射出荧光光谱,通过测量荧光光谱的强度和波长,可以得到样品的成分和结构信息。
2. 应用:荧光光谱在生物医学、材料科学、环境监测等领域具有广泛的应用,尤其在生物分析和药物检测中得到广泛应用。
3. 优势:荧光光谱对于生物分子具有较高的灵敏度和选择性,能够实现实时、非破坏性的分析。
三、化学发光光谱1. 原理:化学发光光谱是利用化学反应产生的发光进行分析的一种技术。
当两种或多种试剂混合后,在化学反应的作用下产生的化学发光可以被测定,通过测量化学发光的强度和时间,可以获得样品的化学成分和反应动力学信息。
2. 应用:化学发光光谱广泛应用于医学诊断、食品安全检测、环境监测等领域,尤其在微量分析和实时检测方面具有重要意义。
3. 优势:化学发光光谱对于微量物质具有较高的检测灵敏度和快速响应性,适用于多种复杂样品的分析。
原子发射光谱、荧光光谱和化学发光光谱分别具有不同的原理和应用特点,它们在元素分析和化学反应动力学研究中发挥着重要的作用。
化学发光和荧光的性质与应用

化学发光和荧光的性质与应用化学发光和荧光是一种具有独特性质和应用的化学现象。
这一现象在科学、工业、医药等领域有着广泛的应用。
化学发光,也称为化学发光分析或化学发光测定,是一种利用化学反应发生时产生的光来分析化合物的方法。
这种方法具有灵敏度高、分析速度快、对样品的数量要求低等优点,因此被广泛应用于环境监测、食品检测、医药研究等领域。
其中,最具代表性的化学发光方法是电化学发光法和化学发光酶标法。
电化学发光法利用电化学反应产生的活性中间体在后续反应中发生化学发光的方法。
这种方法对微量物质具有高度灵敏度,因此常被用于分析无机和有机化合物等微量物质。
化学发光酶标法则是利用化学发光酶标记化合物的方法进行检测。
这种方法处理简单,样品数量要求低,因此在食品、药品、环境检测等领域得到广泛应用。
荧光是一种发射可见光或紫外线的现象。
荧光分为自发荧光和诱导荧光两种类型。
其中,自发荧光通常是一些化合物在受到紫外线、X射线或自然光刺激后,从低能态激发至高能态,然后再退到低能态时发出的光。
而诱导荧光则是在化合物发生化学反应过程中,受到某些物质的激发而发出光。
荧光的应用领域广泛,如环境检测、医药研究、生物成像等。
其中,荧光成像技术则是一种用于研究生物过程和诊断疾病的重要手段。
通过对受体蛋白、细胞膜等进行染色,可以直接观察到这些物质在细胞内的动态变化。
同时,荧光成像技术在抗癌药物筛选、生物传感器等领域也有着广泛的应用。
在化学发光和荧光应用的同时,也面临着一些问题。
例如,荧光染料的选择和性能优化,化学发光方法的准确性和可靠性等。
因此,未来需要通过不断的技术创新和研究来解决这些问题,推动化学发光和荧光技术的应用和发展。
化学发光法免疫荧光法

化学发光法免疫荧光法
化学发光是利用化学反应产生的能量促使产生能级跃迁,从而发光,典型的如鲁米诺检测血迹;荧光是一种光致发光现象,必须提供光源去激发分子产生能级跃迁,进而发光。
使用上述两种方法进行免疫分析时,其区别很明显,化学发光无需外加光源,背景干扰小;而荧光则需要外加光源,在垂直光源的方向上检测,生物样品中的蛋白质、氨基酸等分子也会产生背景荧光,背景稍高一些,需要选择合适的荧光试剂,以及样品处理方法以减少非特异性吸附蛋白的影响。
免疫分析是利用抗原抗体反应进行的检测方法,即利用抗原与抗体的特异性反应,应用制备好的抗原或抗体作为试剂,以检测标本中的相应抗体或抗原。
由于免疫的特异性结合,免疫分析方法具有很好的选择性,荧光免疫分析和化学发光化学发光法免疫分析是其中典型的两种。
第5章 荧光分析法与化学发光分析法

散射光的影响
瑞利散射光
拉曼散射光
干扰荧光测定,应采取措施消除
30
硫酸奎宁在不同波长激发下的荧光与散射光谱
31
5.1.3
荧光分光光度计
32
1. 激发光源
高压氙灯 ——强谱线的连续光谱
连续分布在250-700nm波长范围内,尤其是300-400nm波 长之间的谱线强度几乎相等
汞灯 ——线光谱
高压:近紫外区365nm,398nm,405nm,436nm,546nm,579nm 低压:紫外区,最强254nm
-Cl、-Br、-I等
第三类取代基:-R、-SO3H、-NH3+等
23
3.影响荧光强度的外部因素
温度 溶剂 pH值的影响
荧光熄灭剂的影响
散射光的干扰
24
温度和溶剂
温度:温度升高,荧光物质的荧光效率 和荧光强度下降 溶剂:溶剂极性增大,荧光波长随着而 长移,荧光强度增强;溶剂粘度减小, 荧光强度减小
化学发光分析主要用于定量分析。 1.化学发光强度与反应物浓度的关系
I Cl (t)= Cl dc A dt
55
2.常用发光试剂
(1)鲁米诺类 (2)光泽精类
(3)钌(Ⅱ)-联吡啶配合物
(4)其它化学发光试剂
56
5.2.5 应用与示例
1.无机化合物的分析 可以利用某些具有还原性的无 机阳离子和发光试剂作用对其进行测定;有些离子对 化学发光反应有增强或抑制作用,基于此,可直接测 定此类离子。此外,可利用置换偶合反应间接测定某 些离子。 2.有机化合物的分析 可以利用物质的还原性,直接 被氧化剂氧化发光测定。
51
3.液相化学发光
常用的发光物质有鲁米诺、光泽精、洛粉 碱、没食子酸、过氧草酸盐等,其中鲁米 诺是最常用的发光试剂 。
荧光和化学发光免疫分析方法

荧光和化学发光免疫分析方法荧光和化学发光免疫分析方法是一种常用的生物分析技术,广泛应用于生命科学研究、临床诊断和药物研发等领域。
本文将详细介绍荧光和化学发光免疫分析方法的原理、应用以及优缺点等方面。
首先,荧光免疫分析方法利用标记有荧光物质的抗体或抗原与待检测物相互作用,通过检测荧光信号来定量分析目标物。
其原理是当荧光标记物被激发后,会发射出特定波长的荧光信号,利用荧光光谱仪测量荧光强度来确定目标物的浓度。
荧光免疫分析方法具有高灵敏度、高选择性和多样性的优点,可用于检测蛋白质、核酸、细胞等生物分子。
化学发光免疫分析方法则是利用特定的化学反应产生荧光信号来检测目标物。
常用的化学发光免疫分析方法有酶免疫分析和化学发光免疫分析。
在酶免疫分析中,酶标记的抗体或抗原与待检测物相互作用后,加入底物,酶催化底物发生化学反应产生荧光信号。
而化学发光免疫分析则是通过特定的化学反应产生激发态分子,激发态分子发生无辐射跃迁产生荧光信号。
化学发光免疫分析方法具有高灵敏度、快速、稳定性好的特点,常用于临床诊断和药物研发等领域。
荧光和化学发光免疫分析方法在生命科学研究中有广泛的应用。
例如,在蛋白质研究中,可以利用荧光免疫分析方法检测蛋白质的表达水平、相互作用以及酶活性等。
在细胞研究中,荧光免疫分析方法可以用于检测细胞的分子分布、内源性蛋白质的表达和细胞信号传导等。
此外,荧光和化学发光免疫分析方法还可以用于检测病原体、药物残留和环境污染物等。
荧光和化学发光免疫分析方法具有许多优点。
首先,这些方法具有高灵敏度,可以检测到非常低浓度的目标物。
其次,这些方法具有高选择性,能够在复杂的样品中准确地检测目标物。
此外,荧光和化学发光免疫分析方法还可以实现高通量分析,节省时间和成本。
然而,荧光和化学发光免疫分析方法也存在一些缺点。
首先,荧光信号受到背景干扰的影响,可能导致误差的产生。
其次,荧光标记物的稳定性较差,容易受到光照和温度等因素的影响。
化学发光收

化学发光收1. 前言化学发光是指在某些化学反应中,吸收了外部能量,然后通过一系列的能量释放和跃迁,产生明亮的发光现象。
该现象既能用于科学研究,也可以用于工业生产和日常生活中。
2. 化学发光的基本原理化学发光的基本原理是发光体发生化学反应后产生的化学能以光学形式传递出来,即“荧光”。
荧光是指在吸收电磁辐射(如紫外光)后,产生可见光的现象。
化学反应中能量的跃迁是化学发光的关键。
该跃迁可能是电子从一个能级跃迁到另一个能级造成的,也可能是分子结构的改变,能量的释放导致的。
化学发光通常可以分为两类:荧光和化学发光。
荧光是指在化学反应中由吸收外部能量所产生的光辉,在外部能量消失后可以持续较长的时间。
而化学发光,则是在一系列化学反应中由能量的释放产生的短暂而强烈的光辉。
3. 化学发光的应用3.1. 生物医学领域化学发光技术作为一种非常敏感的检测技术,应用非常广泛。
在生物医学领域,化学发光可以被用于分析和检测各种生物分子,如蛋白质、DNA、RNA等。
此外,化学发光还可以用于分析细胞和细胞表面分子的表达和功能。
3.2. 环境分析化学发光技术还可以被用于环境污染分析领域。
例如,可以用化学发光技术测量水中的有机化合物或毒素等有害物质的浓度,这对于环保监测十分重要。
3.3. 工业生产化学发光技术还可以被用于工业生产中。
例如,可以用化学发光检测药品、化妆品、食品等中的活性成分、对照剂以及仪器的操作效果等。
3.4. 安防领域化学发光技术还可以被用于安防领域。
例如,在防伪荧光材料、消防、安全出口灯光等方面有着广泛的应用。
4. 化学发光的展望随着科学技术的不断发展,化学发光技术在各个领域的应用越来越广泛。
尤其是随着生物医学和环保监测等领域的快速发展,对化学发光技术的需求也在不断增加。
展望未来,化学发光技术的应用前景将会更为广阔。
例如,近年来,部分科学家已经开始探索利用化学发光技术研发便携式的光学传感器,这种传感器可以快速、高效地响应环境污染和安全监测等需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 激发态的寿命期
激发态存在一个有限的时间 (通常是1-10x10-9秒)。在这时 间,荧光体经历构象的改变和容易 受到分子环境的相互作用的影响。 这些过程有两个重要的结果。第 一, S1’的能量部分被消耗,形成一 个衰减的单峰激发态( S1 )即荧光 发射的初始。第二,不是最初被激 发的所有分子都通过荧光发射回到 基态。其他的过程,象振动淬灭, 荧光能量传递也在S1’衰减。荧光量 子的产生量,取决于激发的荧光光 子数量与吸收的光子数量的比率, 是衡量荧光效率的参数。
荧光量子产率(ϕ):
ϕ
=
发射的光量子数 吸收的光量子数
荧光量子产率与激发态能量释放各过程的 速率常数有关。
2.化合物的结构与荧光
(1)跃迁类型:π* → π的荧光效率高,系间跨越过程的速率 常数小,有利于荧光的产生; (2)共轭效应:提高共轭度有利于增加荧光效率并产生红移 (3)刚性平面结构:可降低分子振动,减少与溶剂的相互作 用,故具有很强的荧光。如荧光素和酚酞有相似结构,荧光 素有很强的荧光,酚酞却没有。 (4)取代基效应:芳环 上有供电基,使荧光增 强。
¾发射光谱是指固定激发波长,在不同波长下记录 的样品发射荧光的强度。 ¾激发光谱是指固定检测发射波长,用不同波长的 激发光激发样品记录的相应的荧光发射强度。
荧光光谱
荧光寿命
¾定义:荧光物质被激发后所产生的荧光衰减到一 定程度时所用的时间。 ¾各种荧光物质的荧光寿命不同。
荧光淬灭
定义:荧光物质在某些理化因素作用下,发射荧光减弱 甚至消退称为荧光淬灭。如紫外线照射、高 (≥20℃)、苯胺、酚、硝基苯、I-等 。
光 6. 磷光(phosphorescence)-因光激发而发光,但光源切断后仍会
持续发光 7. 化学发光(chemiluminescence>-非生物体把多余的化学能转变
为光能 8. 生物发光(bioluminescence)-生物体利用化学能发光
什么是荧光?
荧光物质吸收激发光的能量后,电 子从基态跃迁到激发态,当其回复至基 态时,以发射光形式释放出能量,称为 荧光。
③ 荧光发射
能量(hvEM)光子被激发,荧 光体回到基态S0。由于能量在激发 态寿命期的部分消耗,这些光子的 能量较低,因此比激发光子hvEX有 更长的波长。这种由于(hvEM - hvEX) 呈现的能量或波长的差异称作 Stokes漂移。Stokes 漂移奠定了荧光 技术灵敏性的基础,因为它可以与 激发光子在光谱上分离,而在一个 较低的背景下检测发射光子。相比 较而言,吸收光分光测定法在透射 光检测时相对于较高水平的同一波 长的光。
595~600nm(橙红色) FITC的衬比染色或双标 记FAT
四甲基异硫氰酸罗丹 明 (TRITC)
藻红蛋白(PE)
550nm 490-560nm
7-氨基-4-甲基香豆素 354nm
Eu3+螯合物
340nm
620nm(橙红色)
595nm(红色) 430nm(蓝色) 613nm
FITC的衬比染色或双标 记FAT 双标记FAT、流式细胞术
三、荧光的性质
• 吸收光 • 保持固有的荧光特性 • 荧光波长>激发波长(STOKES 法则) • 荧光强度极小于激发光的强度 • 有不同程度的衰减 • 荧光强度取决于激发光强度、被检物浓
度、荧光效率
四、荧光的产生与分子结构的关系
1.分子产生荧光必须具备的条件
(1)具有合适的结构;
(2)具有一定的荧光量子产率。
5.溶液荧光的猝灭
碰撞猝灭; 氧的熄灭作用等。
六、荧光物质
荧光物质是一类能吸收激发光的光能而发射荧光的物质。
常用的荧光物质
荧光物质
异硫氰酸荧光素 (FITC)
最大吸收光谱
最大发射光谱
应用
490~495ቤተ መጻሕፍቲ ባይዱm 520~530nm (黄绿色) FAT、荧光偏振免疫测定
四乙基罗丹明 (RB200) 570~575nm
一、荧光发生过程
荧光产生于某些分子(通常是含多聚芳香烃的碳 水化合物或杂环化合物)称为荧光体或荧光染料。
荧光探针是一个荧光体设计用于定位生物样品的 特异性区域或对特异性刺激因子发生反应。
荧光发生是一个3阶段的过程。
① 激发
外源的白炽灯或激光提供的能 量(hvEX)的光子被荧光体吸收, 产生被激发的电子单峰态(S1’ )。 这个过程是荧光和化学发光的区 别,化学发光的激发态是由化学反 应产生的。
双标记或多标记FAT 时间分辨荧光免疫测定
七、荧光检测
荧光检测仪器
荧光检测系统的4个基本要素是:⑴激发光源,⑵荧光体,⑶将激发光 子与发射光子分离的特定波长的滤光片,⑷检测器记录发射光子并输出, 通常是电子信号或图像。
五、影响荧光强度的因素
影响荧光强度的外部因素
1.溶剂的影响
除一般溶剂效应外,溶剂的极性、氢键、配位键的形成 都将使化合物的荧光发生变化;
2.温度的影响
荧光强度对温度变化敏感,温度增加,外转换去活的几 率增加。
3. 溶液pH
对酸碱化合物,溶液pH的影响较大,需要严格控制;
4.内滤光作用和自吸现象
内滤光作用:溶液中含有能吸收激发光或荧光物质发射的荧光,如色胺 酸中的重铬酸钾; 自吸现象:化合物的荧光发射光谱的短波长端与其吸收光谱的长波长端 重叠,产生自吸收;如蒽化合物。
荧光分子受到激发后释放能量的3种方式:发光
Excitation Emission
F
荧光分子受到激发后释放能量的3种方式:传递
Excitation
Transfer
F1
F2
Emission
荧光分子受到激发后释放能量的3种方式:发热
Excitation
Transfer
F BH
二、荧光发射光谱和激发光谱
荧光和化学发光的基本知识
光的基本知识
按光谱分类: 狭义:可见光(400-700nm) 广义:紫外光( 10-400nm)
可见光(400-700nm) 红外光(700-40000nm)
发光物质
1. 炽热光或白炽光(incandescence)-因热而发光 2. 气体激发(gas excitation>-因电子或热的激发而发光 3. 摩擦发光(triboluminescence) 4. 电激發光(electroluminescence) 5. 荧光(fluorescence)-因光激发而发光,但光源切断后即不再发