椭圆化圆的初步研究
椭圆(单元教学设计)高中数学选择性必修第一册

椭圆(单元教学设计)一内容和及其解析(一)内容椭圆的概念、椭圆的标准方程、椭圆的简单几何性质本单元内容结构图如下:(二)内容解析1.内容本质:椭圆是圆锥曲线(几何图形)最基础的、最重要的研究对象。
椭圆的概念与性质是圆锥曲线的代表性内容,双曲线、抛物线的内容与它同构。
本单元本主要是通过建立椭圆方程的标准方程,研究椭圆的几何性质,并运用几何性质解决简单的实际问题。
2.蕴含的思想方法:本单元最重要、最根本的数学思想方法是坐标法.另外,在解决问题的过程中,数形结合、类比、特殊化与一般化、转化与化归等也发挥着重要作用.3.知识的上下位关系:从本章知识的内部结构看,椭圆这个知识单元的学习在全章的学习中具有基础地位.椭圆是高中阶段学习的第一种全新曲线,可以为学生利用直线的方程、圆的方程中积累的经验进行探索性学习,独立发现和提出数学问题,自主归纳和概括数学结论,并学会有效地用于解决数学内外的问题等提供理想载体.椭圆的学习进一步对“曲线与方程”关系的理解提高认识度,深刻理解形与数的结合。
4.育人价值:本单元的学习有助于学生学会合乎逻辑地、有条理地、严谨精确地思考和解决问题,有助于发展学生数学抽象、数学建模、逻辑推理、数学运算、直观想象等方面的素养.5.教学重点:用椭圆方程研究椭圆的几何性质.二、单元目标及其解析(一)单元目标1.了解圆锥曲线的实际背景,例如,行星运行轨迹、抛物运动轨迹、探照灯的镜面,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义、标准方程及简单几何性质.3.了解椭圆的简单应用.(二)目标解析达成目标的标志1.能通过观察用平面截圆锥可以分别得到圆、椭圆、双曲线和抛物线,能通过实例知道,圆锥曲线在生产、生活中有广泛的应用.2. 能通过实验绘制椭圆的过程认识椭圆的几何特征,给出椭圆的定义.能通过(建立适当的坐标系,根据椭圆上的点满足的几何条件列出椭圆上的点的坐标满足的方程,化简所列出的方程)求曲线“三步曲”得到椭圆的标准方程.能在直观认识椭圆的图形特点的基础上,用椭圆的标准方程推导出椭圆的简单几何性质.能用椭圆的定义、标准方程及简单几何性质解决简单的问题.能通过椭圆与方程的学习,体会建立曲线的方程、用曲线的方程研究曲线的性质的方法,发展数学抽象、直观想象、数学运算、逻辑推理素养.3. 能类比直线与圆的位置关系的研究路径,研究直线与椭圆的位置关系,知道直线与椭圆的公共点的个数与直线的方程与椭圆的标准方程组成的方程组的解的个数的关系,进一步体会用方程研究曲线的方法,体会坐标法的重要作用.三、教学问题诊断分析学生对坐标法已有初步的认识,通过直线和圆的方程的学习,对用坐标法研究曲线的基本思路与方法已有了解,但还不善于主动运用坐标法,研究椭圆的代数方法一般套路可以遵循:背景--概念--方程--性质--应用,每个环节有一定的程序性。
素养导向的高中数学单元整体教学设计的实践研究

素养导向的高中数学单元整体教学设计的实践研究发布时间:2023-03-23T16:02:02.517Z 来源:《基础教育参考》2023年2月作者:林少臻[导读] 新课程标准强调教师要努力提升教学设计和实施能力,首先要把握数学知识的本质、理解其中的教育价值,把握教学中的难点,理解学生认知的特征;在此基础上,探索通过什么样的途径能够引发学生思考,让学生在掌握知识技能的同时,感悟知识的本质,实现教育价值。
基于此,本文对核心素养导向下的高中单元整体教学设计的实践进行了研究,并且提出了一些策略方式,以供参考。
林少臻泉州第十一中学【摘要】新课程标准强调教师要努力提升教学设计和实施能力,首先要把握数学知识的本质、理解其中的教育价值,把握教学中的难点,理解学生认知的特征;在此基础上,探索通过什么样的途径能够引发学生思考,让学生在掌握知识技能的同时,感悟知识的本质,实现教育价值。
基于此,本文对核心素养导向下的高中单元整体教学设计的实践进行了研究,并且提出了一些策略方式,以供参考。
【关键词】核心素养;高中数学;单元整体教学设计;实践研究中图分类号:G626.5 文献标识码:A 文章编号:ISSN1672-1128(2023)2-065-01引文:在高中教育阶段,教师应从高中数学教学结构进行整体改变以及创新,深入解读高中数学学科核心素养教育理念,对高中数学教学方法开展进行深层次研究活动,将数学单元设计模式融入整个数学教学过程中,从而有效解决诸多教学问题,培养高中学生养成良好的数学思维品质,引导学生通过自身的数学思考活动,有效处理相应数学学习问题,进而加深学生对不同数学单元的学习印象。
1、高中数学教师要重视掌握单元整体教学设计主线在高中数学教学中,要实现基于数学核心素养的高中数学单元教学目标,高中数学教师就必须做好单元的梳理工作,灵巧地串联单元知识点,培养学生的全局性思维和推理能力,而要把单元的数学知识点联系起来,这就需要教师抓住单元教学的主线,让学生更好的把握和理解数学知识。
2019人教A版数学新教材选择性必修第一册第三章的第一节 椭圆及其标准方程

《椭圆及其标准方程》教学设计【设计理念】以单元整体性作为新的设计理念,把三种圆锥曲线在第一节课全部展示,在教学过程中重点强调了坐标法对于研究圆锥曲线的重要作用。
充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从Internet上获取的各种教学信息等等),通过“情境创设”、“协作学习”、“小组研讨”,逐步体会椭圆及其标准方程的获得过程,培养学生的数学审美素养、数学运算素养和数形结合素养。
介绍坐标法和机械数学的发展历程和世界及中国的著名数学家吴文俊的“吴方法”,激励同学们学习的斗志,学习榜样的力量,了解数学历史和文化。
高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。
在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。
【教材分析】解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。
平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。
《椭圆及其标准方程》2019人教A版新教材选择性必修第一册第三章的第一节,是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.【学情分析】知识层面:在选择性必修第一册第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础;根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战;在初中阶段没有涉及过含两个字母、两个根式的方程化简问题;学习层面:椭圆与圆相似,在生活中常见,相比函数等抽象概念,学生更易理解,因此在学习中学生更易接受,学习兴趣也更加浓厚。
3.1.1椭圆及其标准方程说课稿

尊敬的各位老师,大家好:今天我说课的课题是《椭圆及其标准方程》。
对于本节课,我将以教什么,怎么教,为什么这样教为思路,从教材分析、学情分析、教学目标及核心素养、教学重难点、教法学法、教学过程和板书设计七个方面展开我的说课。
本节课是人教A版高中《数学》(选择性必修一)第三章第一节“椭圆及其标准方程”第一课时内容。
本节内容是在学生学习了直线与圆后,“坐标法”研究“曲线方程”的又一实例,是解析几何初步知识的深化和延续;从知识的前后联系来看,椭圆的学习是坐标法的进一步深入,同时它也是学习椭圆几何性质的基础;从方法上说,它为后续研究双曲线、抛物线提供基本模式和理论基础,是进一步学习圆锥曲线的重要模型.因此本节课有承前启后的作用。
从教材编排上讲,三种圆锥曲线独编一章,更突出了椭圆的重要地位。
将曲线及其方程结合起来,体现数形结合的思想方法。
学生已经学习了直线与圆的方程,对用坐标法研究几何问题已经有了初步认识。
对探究点的轨迹问题也有一定的基础知识和学习能力,这有利于学生实现从“旧知”向“新知”的迁移。
由于椭圆的几何特征比圆复杂,学生对于从哪个角度入手抽象椭圆的几何特征有一定的困难。
另外,在方程推导过程中,对于含两个根号的方程的化简,学生之前接触较少,完成起来有些困难,需要教师作适当的引导与小组合作讨论。
故本节课难度设置不应过高,设计问题时应多作铺垫,扫清学习障碍,保护学生学习积极性、主动性。
[确定依据] 根据以上对教材的分析和学情的把握,我确定了以下目标:1. 理解椭圆的定义,掌握椭圆的标准方程及推导,会利用待定系数法求椭圆的标准方程。
2. 通过动手画图的实践操作,感知、观察动点形成轨迹的过程,经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义,提升学生的直观想象、数学抽象的核心素养。
3.通过建立适当的坐标系,列出方程并化简变形,体会含有两个根式方程的化简过程,同时得到椭圆的标准方程,用以解决简单问题,培养数学建模、数学运算的核心素养。
《2.2.1-椭圆及其标准方程》优秀教学设计

《2.2.1-椭圆及其标准方程》教学设计一、教学内容解析教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对椭圆和方程即数形结合思想的理解,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线是平面解析几何研究的主要对象圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力二、教学目标设置:1.知识与技能目标(1)学生能掌握椭圆的定义焦点,焦距的概念.(2)学生能推导并掌握椭圆的标准方程.(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.2.过程与方法目标:(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.3.情感态度与价值观目标:(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、学生学情分析1.能力分析①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.2.认知分析①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,3.情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用”的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.五、教学过程:(一)复习引入1.给学生放视频天宫一号与神八的运行轨迹,说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.(2)、使学生更直观、形象地了解后面要学的内容;2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.同时演示在ppt上。
“化椭为圆”解决椭圆中的面积问题

龙源期刊网
“化椭为圆”解决椭圆中的面积问题
作者:王旭光
来源:《广东教学报·教育综合》2019年第46期
【摘要】在仿射变换下,图形的一些性质不会发生变化。
如,同素性、结合性、平行性、面积比等。
本文通过仿射变换“化椭为圆”来解决椭圆中的一些面积问题,在椭圆的教学和学习过程中,许多问题只能用解析幾何的方法来解决,计算量往往比较大,技巧也比较多。
而在解决圆的某些问题时,往往利用一些性质来处理,过程简明很多。
通过仿射变换正好可以“化椭为圆”,将椭圆中的面积问题转化到圆中来处理。
【关键词】仿射变换;椭圆;圆;面积
参考文献:
[1]吐尔洪艾尔米丁.仿射变换在椭圆面积中的应用[J].新疆师范大学大学学报(自然科学版),2009(1):44.。
1《椭圆第1,2课时》一等奖创新教学设计

1《椭圆第1,2课时》一等奖创新教学设计《椭圆第1,2课时》教学设计(一)教学内容章引言、椭圆的概念及椭圆的标准方程.(二)教学目标1.能通过观察平面截圆锥认识到:当平面与圆锥的轴所成的角不同时,可以分别得到圆、椭圆、双曲线和抛物线.能通过实例知道圆锥曲线在生产、生活中有广泛的应用.能通过章引言初步认识本章的学习内容、学习方法与学习价值.2.能通过实际绘制椭圆的过程认识椭圆的几何特征,给出椭圆的定义,并能用它解决简单的问题,发展数学抽象素养.3.能通过建立适当的坐标系,根据椭圆上的点满足的几何条件列出椭圆上的点的坐标满足的方程,化简所列出的方程,得到椭圆的标准方程,并能用它解决简单的问题.从中体会建立曲线的方程的方法,发展直观想象、数学运算素养.(三)教学重点与难点重点:椭圆的几何特征,椭圆的定义及椭圆的标准方程.难点:椭圆的标准方程的推导.(四)教学过程设计1.立足全章,建构“先行组织者”引导语:前面我们用坐标法研究了直线、圆及它们的位置关系.生产、生活中还有许多非常有用、有趣、我们还不大熟悉的曲线需要研究.问题1:如图1,用一个垂直于圆锥的轴的平面截圆锥,截口曲线(截面与圆锥侧面的交线是一个圆.如果改变截面与圆锥的轴所成的角,会得到怎样的截口曲线呢?师生活动:教师通过信息技术演示,引导学生认识截面与圆锥的轴所成的角不同时得到的不同的截口曲线,并指出它们分别是椭圆、双曲线、抛物线(图).教师可以介绍圆锥曲线的研究历史,指出圆锥曲线在生产、生活中的应用,并指出圆锥曲线有如此广泛的应用与它们的几何特征和几何性质有关,而这些几何特征和几何性质都是本章要研究的内容.设计意图:问题1重在引发学生思考,并不要求学生解决这个环节的教学目的是明确本章内容的意义与价值,促进学生形成积极探究的心理倾向.问题2:历史上,古希腊人曾用纯几何的方法研究圆锥曲线图117世纪后,人们开始用坐标法研究圆锥曲线,你能猜测这些变化的大致原因吗?如果本章我们用坐标法来研究圆锥曲线,大家能在回顾用坐标法研究直线与圆的基础上,猜想研究的大致思路与构架吗?师生活动:在学生回顾、讨论的基础上,明确采用坐标法研究圆锥曲线的最大好处是可以程序化地、精确地计算.本章研究的基本思路:现实背景—曲线的概念—曲线的方程—曲线的性质——实际应用.其中,现实背景揭示了研究的必要性,曲线的概念是建立曲线的方程的依据,曲线的方程是研究曲线的性质的工具,曲线的概念、曲线的方程、曲线的性质共同为曲线的实际应用奠定基础.设计意图:让学生从整体上把握本章的学习内容与基本框架,为后续学习提供先行组织者同时深化学生对坐标法研究问题的基本思路与基本方法的理解.2.归纳抽象,建构椭圆的概念问题3:(1)生活中,大家在哪些地方见到过椭圆?取一条定长的细绳,把它的两端都固定在图板的同一点套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两点,(图),套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?在这一过程中,移动的笔尖(动点)满足的几何条件是什么?师生活动:在学生讲述生活中遇到过的椭圆的基础上,同桌同学合作画椭圆.如图,取一根定长的细绳,固定其两端,套上铅笔,拉紧绳子,移动笔尖画图;变化定长与定点,发现所画的曲线具有共同的特点,然后用数学语言刻画这些曲线上点满足的几何条件.设计意图:由实际操作,强化学生对椭圆的几何特征的认识,并引导学生由此抽象出椭圆的定义.问题4:你能用精确的数学语言刻画椭圆吗?师生活动:学生尝试用精确的数学语言给出椭圆的定义.在此基础上,教师关注学生对定义中相关用语及符号表示:“平面内”“定点”“距离之和”“常数”“常数大于两定点间的距离”“点的轨迹”的使用是否准确.如果学生忽略了“这个常数大于两定点间的距离”这一条件过追问,启发、帮助学生完善.同时,让学生搞清楚:当常数等于两定点间的距离时,是线段;当常数小于两定点间的距离时,点的轨迹不存在.在给出椭圆的概念的基础上,教师再引导学生了解焦点、焦距、半焦距等概念.设计意图:通过强化椭圆概念的抽象与建立过程,提高学生思维的严谨性与语言表达能力同时让学生获得焦点、焦距等概念.3.建系推导,建立椭圆的标准方程问题5:遵循解析几何研究几何图形的内在逻辑,了解椭圆的概念后,应建立椭圆的方程你能猜想建立椭圆方程的大致步骤吗?请尝试建立椭圆的方程.师生活动:(1)通过生生、师生讨论,明确建立椭圆的方程的大致步骤:根据椭圆的几何特征建立适当的直角坐标系—明确椭圆上的点满足的几何条件—―将几何条件转化为代数表示列出方程——化简方程—检验方程.同时教师简要地说明缘由:建立适当的坐标系,用有序数对表示曲线上任意一点的坐标是用坐标法研究问题的前提与基础;分析点在曲线上的条件(记为),写出适合条件的点的集合是建立曲线的方程的依据;用坐标表示条件,列出方程,这是建立曲线的方程的关键;化方程为最简形式,这既符合数学知识发展的内在逻辑,也是为后面用方程研究曲线做好铺垫;说明以化简后的方程的解为坐标的点都在曲线上,反之也对,这是保证方程与曲线等价性的需要.由于在推导椭圆的标准方程前完整地得出这五个步骤难度太高,因而有些步骤可以在推导方程后以师生讨论的方式给出.(2)讨论、明确如何建立适当的直角坐标系.观察椭圆发现:它具有对称性,并且过两个焦点的直线是它的对称轴.受圆心在原点时圆的标准方程最简单启发,以经过椭圆两焦点的直线为轴,线段的垂直平分线为轴,建立直角坐标系.(3)化简方程时,先预测不同化简方案对后继推导的影响,在得到方程后,从简化、美化、寻找的几何意义人手,继续优化方程.(4)讨论以上方程的变形是不是同解变形,明确方程与所给椭圆是等价的,是椭圆的方程,并且称为椭圆的标准方程.(5)引导学生反思为什么要用而不是表示椭圆的定长与焦距.(6)感悟方程所蕴含的简洁美、对称性、和谐美,感悟“数”与“形”内在的一致性.设计意图:(1)明确求曲线的方程的大致步骤,避免推导过程中思维的盲目性;(2)明确如何建立适当的直角坐标系,引导学生学会建立适当的直角坐标系;(3)以椭圆标准方程的推导为载体,引导学生掌握推导圆锥曲线方程的一般思路与方法;(4)以椭圆标准方程的概念为载体,深化学生对曲线与方程的关系的理解.问题6:如果椭圆的焦点在轴上,且的坐标分别为,的意义同上,那么椭圆的方程又是什么师生活动:学生先猜想,并讨论猜想成立的依据,再由学生独立完成.设计意图:形成和完善椭圆标准方程的概念.4.及时固,熟练运用例1 已知椭圆的两个焦点坐标分别是,并且经过点,求它的标准方程.师生活动:用两种方法求解.方法1:根据椭圆的定义及之间的关系直接求.方法2:利用满足方程求解.设计意图:巩固椭圆及其标准方程的概念.课堂练习:教科书第109页练习第1,2题.师生活动:学生先独立完成,后相互交流.教师动学生错误情况进行点评、校正.例2 如图.在圆上任取一点,过点作轴的垂线段为垂足.当点在圆上运动时,线段的中点的轨迹是什么为什么师生活动:(1)明确求轨迹方程即是求轨迹上任意的点的坐标所满足的条件,因此必须先搞清楚点所满足的条件.(2)掌握求一类轨迹问题的基本思路与方法,即通过建立点与已知曲线上点的联系.利用已知曲线的方程求解(3)变式训练:求时点M的轨迹方程,并进一步思考椭圆与圆的关系.(4)明确圆与椭圆的联系,椭圆可看作是把圆“压扁”或“拉长”后,圆心一分为二所成的曲线.设计意图:提高思维的探究性与挑战性,理解椭圆与圆的关系.例3如图.设点的坐标分别为.直线相交于点,且它们的斜率之积是,求点的轨迹方程.师生活动:(1)在学生分析、讨论解题思路的基础上,由学生独立完成;(2)教师视情况讲解、点评;(3)注意检验方程与曲线之间是否等价.设计意图:深化学生对求曲线的方程的方法、椭圆的几何特征的认识.课堂练习:教科书第109页练习第3,4题.师生活动:学生运用圆的概念与椭圆的标准方程解决第题,运用求曲线的方程的方法解决第4题.教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程.5.回顾反思,提炼升华问题7:(1)椭圆的概念中的要点与需要注意的地方分别是什么(2)推导椭圆的标准方程时,建立直角坐标系的依据是什么?(3)椭圆标准方程的推导给了你怎样的启示?就一般情况而言,求曲线的方程有哪些步骤?为什么是这些步骤?师生活动:学生从椭圆的概念、建立适当的直角坐标系常用思路与方法、椭圆的标准方程的推导过程与方法、求曲线的方程的一般步骤四方面对所学内容进行回顾与反思设计意图:及时梳理、提炼与升华所学知识.6.布置作业教科书习题3.1第1,2,5,6,9,10题.(五)目标检测设计1.已知的周长为14,顶点的坐标分别为,则点的轨迹方程为()(A)(B)(C)(D)设计意图:考查学生对椭圆及其标准方程的理解水平以及思维的严谨性.2.求符合下列条件的椭圆的标准方程:(1)经过点;(2),一个焦点是.3.已知点是圆(为圆心)上一动点,线段的垂直平分线交于点,求动点的轨迹方程.设计意图:考查学生求轨迹方程的掌握情况.1 / 7。
中班数学活动:《认识椭圆形》

教学反思:1.我的设计思路是先复习记录表,然后通过游戏幼儿自己做记录,激发幼儿自己做记录的兴趣,游戏是由浅入深,由易到难来设计的。
在活动中,幼儿很轻松地融入到游戏里,并学会了用不同方式做记录。
2.在“小猫钓鱼”游戏环节中,教师钓鱼幼儿做记录,孩子意犹未尽,在区角活动中我投放了小猫钓鱼的游戏材料。
让幼儿自己来钓鱼,会更直观,同时也锻炼了幼儿的动手能力。
3.在整个活动中,我的语言简洁精练,通俗易懂,幼儿很有兴趣而且听得明白、理解透彻。
4.在本活动中利用不同的教学方法,引起幼儿的兴趣,并且我运用这些教学方法,有针对性地引导幼儿、启发幼儿,例如,游戏法,我设计的游戏“采蘑菇”,它们目的和规则都是为教学活动所服务的,而且与活动要求相吻合,激发了幼儿学习兴趣。
5.幼儿在用笔做记录画圆圈时,有些难度,他们对笔掌控得不是很灵活,在美工区我投放图画材料,来锻炼小手的灵活性。
活动设计设计思路:幼儿在小班已经对圆形有了一定的了解和认识,看到椭圆形能够说出名称,但对于其特征不是很了解;在生活中经常能够接触到椭圆形的物体;幼儿比较、观察的能力进一步提高,能够尝试用完整的语言进行讲述。
认识椭圆形是在与圆形对比的基础上进行的,通过动手操作、比较获得体验,感知到两者的区别。
在操作活动中找椭圆形,进一步巩固对椭圆形的认识,发展幼儿的观察、思维能力及动手操作能力。
活动目标:1.认识椭圆形,感知椭圆形特征,知道椭圆形在生活中的应用。
2.体验操作活动的乐趣。
活动准备:1.ppt课件。
2.圆形、椭圆形卡片每人各一份。
3.画有椭圆形的A4纸、蜡笔每人一份。
活动重点:认识椭圆形。
活动难点:知道椭圆形的特征。
中班数学活动:《认识椭圆形》王秀红(遵化市第二幼儿园,河北唐山064200)关键词:椭圆形;圆形;操作活动;生活中的应用中图分类号:G613.3文献标识码:B文章编号:1009-010X(2016)04-0064-03. All Rights Reserved.活动过程:一、欣赏故事《圆圆购物》小朋友们,今天我想给大家讲一个故事,在讲故事之后我想请小朋友回答几个问题,好吗?(一)提出问题好,请小朋友先听好我提出的问题:(1)故事中的圆圆是什么形状?(2)圆圆被压扁后变成了什么形状?(重复问题)听清楚了吗?好请小朋友一边看屏幕,一边听故事,同时在心里想着我提出的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆化圆的初步研究椭圆化圆就是通过“伸缩变换”将坐标空间伸缩,使椭圆转化成圆(有些题目须再化回椭圆),使问题的运算量下降、难度降低,毕竟圆的“数形结合”属性要比椭圆明显好用的多!这也是转化化归思想的体现。
并不是所有椭圆问题都可以化圆处理,必须保证转化前后的等价性。
目前我认为能够明确等价的是:“直线与椭圆的位置关系”伸缩后等价于“直线与圆的位置关系”; 直线平行关系等价;(直线的垂直关系及夹角大小一般会改变); 面积与伸缩成正比; 直线斜率与伸缩反比;坐标与完全伸缩同步。
平行或共线的线段长度比值不变!相互垂直的线段比值化其中一个关于y=x 对称点后不变(见后面08文)! (证明略,其他情况暂不可控!)目前为止,我尚不能确定长度、角度是否存在可实际操作的关系,暂认为“不可控”。
由于山东高考题11年来文理科均有一些题目必须依赖长度,因此能够用“椭圆化圆”处理的题目比例约为60%多一点(准确统计见后面的统计表),尽管“椭圆化圆”不是一种放之四海皆准的“通法”,但依然有很大的使用价值,从知识上看:近几年尖子生难以逾越140与解析几何关系最大,我们岂能因循守旧坐以待毙!11,,222222='+'=+='='y x by a x b x y a x x 可转化为则椭圆S ab S S abS m k bak m x ka y b m kx y '=='='⇒+'='+=即不变!纵截距可化为:直线,1,椭圆化圆在山东高考中的有效率统计:例题分析:(2015山东理20题)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b +=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q.(ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值.研究:(Ⅰ)椭圆C 的方程为2214x y +=.过程略。
(Ⅱ)(ⅰ)椭圆化圆:1,,222='+'='='y x C y y xx 可化为圆:则椭圆,椭圆422='+'y x E 可化为圆:,(Ⅱ)(ⅱ)1,,2=+=='y x C y y xx 可化为圆:则椭圆,椭圆422='+'y x E 可化为圆:, 104)(42216322222≤<'+-=•-•===∴'''∆∆∆d AB O d d d d d S S S O B A ABO ABQ 的距离,到直线为其中 364)(6222≤+-=∴∆d d S ABQ(2015山东文21题仅第(1)问与理科稍有不同,略)与常规法相比“椭圆化圆”充分利用了圆“数形结合”的属性,使此题此题大大降低运算量与运算能力!甚至可以乐观地估计,只要能够合理的转化过来,那么此题大部分“一本线上”的学生都能够得满分!(2014文22)圆2222:1(0)x y C a b a b +=>>的离心率为,直线y x =被椭圆C截得的线段长为.(I)求椭圆C 的方程;(II )过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点). 点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i )设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ii )求OMN ∆面积的最大值. 注:本题由课本经典结论改编而成!研究:(I)椭圆C 的方程:1422=+y x ,过程略。
(II )(i )1,,222='+'='='y x C y y xx 可化为圆:则椭圆.由题知:41-='•'⇒-=•AD AB AD AB k k k k11-='•AB k k ,11144,1k x y k k k k B B AB AD '=''⇒'='⇒-='•'∴,设直线)0,3()(4:B B BBB x M x x x y y y D B '-'⇒'-''='-''1212122212112-=⇒-=⇒'-='⇒'-=''-='∴λk k k k k x y k BB(ii )由(i )可求的:89216)(168921)43,0(22≤'=∴='+'≤''=''''='⇒''∆∆∆OMN OMN B B BB OMN B S S y x y x N O M O S y N此题“椭圆化圆”的优势并不明显,因为此涉及斜率较多,即使在椭圆内运算量也不大,主要是量的代换问题!因此此题不是一道很典型适合“椭圆化圆”的题目,不过总体来看“椭圆化圆”还是使得此题稍变简单!直于x 轴的直线被椭圆C 截得的线段长为l.12=+y (Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线 PM 交C 的长轴于点M (m,0),求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点p 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点, 设直线PF 1,PF 2的斜率分研究:(Ⅱ)考吧!系难找到!请老师们思的角平分线了,等价关已经不再是伸缩后21PF F PM ∠(Ⅲ)1,,222='+'='='y x C y y xx 可化为圆:则椭圆. 8)11(411,,23,23212121-=''+''=+∴''-='-''='+''='k k k k kk kk y x k x y k x y kP PP P P P 太轻松了! 椭圆化圆与常规方式比较起来无论是思维难度还是运算难度大大降低,甚至相当于一道小题!(2013山东高考数学文科22题(2))A,B 为椭圆C :1222=+y x 上满足AOB ∆E 为线段AB的中点,射线OE 交椭圆C 与点P ,设OP tOE =,求实数t 的值 研究:1,,222='+'='='y x C y y x x 可化为圆:则椭圆,方式一:332214341431221222或,或==''''==∴=⇒=-='⇒'=∆∆∆d E O P O OE OP t d d d S S S AOB AOB AOB 方式二:33221233sin 216sin32343sin 2122或或或==''''==∴======⇒='''∠⇒='''∠='⇒'=∆∆∆d E O P O OE OPt r OE d r OE d B O A B O A r S S S AOB AOB AOB ππππ由于三角形面积公式太多,其他方式略。
椭圆化圆与常规方式比较起来无论是思维难度还是运算难度大大降低,甚至相当于一道小题!(2012文科21) 如图,椭圆2222:1(0)x y M a b a b+=>>的离心率为32,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.研究:虽然长度本身伸缩后的变换“不可控”,但是共线与平行线段的比值伸缩前后不变,因此可保证此题的等价性! 解析:m x y y x C y y x x +'='='+'='='21,,222,直线可化为:可化为圆:则椭圆当[)3,12-∈m 时,)12(263122m m STPQ -+-=,以下略。
当(]21,3--∈m 时,与[)3,12-∈m 时对称,结果相同!当[)1-2,2-1∈m 时,263122m ST PQ -=,以下略。
本题与常规方法相比椭圆化圆使得Q P 运算简化,但是ST 、||||PQ ST 等运算不仅未得到简化甚至略有增加。
当然不排除换一种处理方式会好一些,我暂时还未想到其他好的处理方式!2012理科考得是抛物线,无法转化!(2011理科22题)已知直线l 与椭圆C: 22132x y +=交于P ()1x y ⋅.Q ()1x y ⋅两不同点,且△OPQ 的面积S=62,其中Q 为坐标原点。
(Ⅰ)证明:2221x x +和2221y y +均为定值(Ⅱ)设线段PQ 的中点为M ,求PQ OM 的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得26===∆∆∆OEG ODG ODE S S S 若存在,判断△DEG 的形状;若不存在,请说明理由。
研究:(Ⅰ)POQ POQ S S y x C y y x x ∆∆'=='+'='='61,2,322,可化为圆:则椭圆 ,2)(2,3)(311)1)(1(1)1)(1()()(021sin sin 11212122212221222122212221222122212221221212121='+'=+='+'=+='+'⇒='-'-∴='+'⇒'-'-=''=''⇒=''+''∴''⊥''⇒='''∠⇒='''∠⇒'''∠•••=='∴∆y y y y x x x x y y y y x x x x y y x x y y x x Q O P O Q O P Q O P Q O P S POQ π(Ⅱ)不平行且不是比值问题等价关系难以找到!(Ⅲ)椭圆化圆会导致三角形形状改变且不可控(不好等价转化)!(2011山东文科22)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE , (i ) 求证:直线l 过定点;(ii ) 试问点B ,G 能否关于x 轴对称?若能,求出此时ABC ∆的外接圆方程;若不能,请说明理由.研究:(Ⅰ)由于伸缩变换对于坐标是等价变换,因此很适合椭圆化圆处理!1),3(,311:),3(,3,331,,322=⇒-'-=''-='⇒'⊥''-'='-='-=='+'='='''''km l m D x kx k y l l E O m D k k x x y x C y y x x E O E O 上,在直线可化为,直线可化为圆:则椭圆研究:(Ⅱ)线段共线且次数相同,本质仍未比值问题,因此可通过等价转化使用“椭圆化圆”利用圆的“形”避开椭圆“联立”!)恒过()恒过(上在直线又上,在直线又又,0,1-0,33-)33(3)31333(331)313(3:)313(331:)31,313(,313)1,3(),311,313(222222222222222222l l x k kk x k k kk k x k y l k k x k k k y l l E k kk k E l E k k x k D kk k G x x x E O D O G O E O E ED G ⇒'∴+=+++=++++=''∴++=+-''⇒''++-'⇒'+-='⇒-'++-'''='⇒''''='''' ,最后一问:由于三角形形状会改变,因此难以找到外接圆的等价状态!(2010山东文22)说明理由。