数学必修四知识点总结

合集下载

数学必修四第一章知识点总结

数学必修四第一章知识点总结

数学必修四第一章知识点总结第一章矩阵与行列式1.矩阵的定义:矩阵是由m∙n个数按照m行n列排列起来的一个数表。

2.矩阵的运算:(1)矩阵的加法:对应位置上的元素进行相加。

(2)矩阵的乘法:满足矩阵乘法规则的两个矩阵相乘,结果矩阵的元素等于第一个矩阵的相应行和第二个矩阵的相应列元素的乘积之和。

(3)数字与矩阵的乘法:数乘矩阵中的每一个元素。

3.矩阵的性质:(1)矩阵的加法满足交换律和结合律。

(2)矩阵的数乘满足结合律和分配律。

4.单位矩阵:n阶单位矩阵是一个n∙n的矩阵,主对角线上元素为1,其他元素为0。

5.方阵和对角阵:(1)方阵是行数和列数相等的矩阵。

(2)主对角线外的元素全为零的方阵是对角阵。

6.转置矩阵:矩阵的转置是指将矩阵的行与列互换得到的新矩阵。

7.矩阵的乘积:(1)若矩阵A的列数等于矩阵B的行数,则可以计算矩阵A与矩阵B 的乘积,得到一个新的矩阵C,其中矩阵C的行数等于矩阵A的行数,列数等于矩阵B的列数。

(2)矩阵乘积的运算性质:结合律,分配律,但一般不满足交换律。

8.克拉默法则:若n元线性方程组的系数矩阵的行列式不等于0,则n元线性方程组有唯一解,且解可以用各个未知量的系数作为分子和系数矩阵的行列式作为通分式的分母来表示。

9.行列式的定义:(1)一阶行列式:行列式的元素就是该元素本身。

(2)二阶行列式:行列式元素按主对角线方向相乘,再减去次对角线方向的元素相乘。

(3)三阶行列式:每个元素与与其所在行行标和列标分别相同、不相同的元素构成的二阶行列式之差相乘,最后再按正负号相加。

(4)多阶行列式:利用拉普拉斯定理进行计算。

10.行列式的性质:(1)行列式的转置等于行列式本身。

(2)若行列式有两行或两列完全相同,则行列式的值等于零。

(3)互换行列式的两行(两列),行列式值不变。

(4)行列式的其中一行(列)的元素都乘以一个数k,等于用数k乘以此行列式的值。

(5)行列式中有两行(两列)元素对应成比例,则行列式的值等于零。

高中数学必修四三角函数知识点总结

高中数学必修四三角函数知识点总结

高中数学必修四三角函数知识点总结三角函数是高中数学考试必考的一个内容, 也是很多同学遇到的一个难点, 下面是给大家带来的高中数学必修四三角函数知识点总结, 希望对你有帮助。

高中数学三角函数找知识点总结(一)高中数学三角函数知识点总结:锐角三角函数公式sin =的对边/ 斜边cos =的邻边/ 斜边tan =的对边/ 的邻边cot =的邻边/ 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t), 其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t), tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa高中数学三角函数知识点总结(二)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)点击下一页分享更多高中数学必修四三角函数知识点总结。

数学必修四公式总结

数学必修四公式总结

数学必修四公式总结数学必修四公式总结数学作为一门理科学科,往往被认为是让人头痛的学科之一。

但是,学好数学离不开掌握一定的基本公式,公式的掌握是数学学习的基础,也是解决数学问题的关键。

下面就为大家总结一下数学必修四的公式。

一、代数部分1. 两点间距离公式:设A(x1,y1)、B(x2,y2)是平面直角坐标系中的两点,则它们之间的距离为:d = √[(x2 - x1)² + (y2 - y1)²]2. 根据两点求斜率公式:设A(x1,y1)、B(x2,y2)是平面直角坐标系中的两点,则它们连线的斜率为:k = (y2 - y1) / (x2 - x1)3. 一元一次方程的一般形式:ax + by + c = 04. 解一元一次方程的方法:(1) 消元法(2) 代入法(3) 相等法5. 二元一次方程组的解法:(1) 代入法(2) 消元法(3) 相减法(4) 加减消元法6. 一元二次方程的一般形式:ax² + bx + c = 07. 一元二次方程求解公式:对于ax² + bx + c = 0,它的根为:x = (-b ± √(b² - 4ac)) / 2a8. 因式分解公式:(1) 平方差公式:a² - b² = (a + b)(a - b)(2) 完全平方式:a² + 2ab + b² = (a + b)²(3) 完全立方式:a³ + 3a²b + 3ab² + b³ = (a + b)³(4) 完全立式:a³ - 3a²b + 3ab² - b³ = (a - b)³(5) 差的平方:a³ + b³ = (a + b)(a² - ab + b²)二、函数部分1. 幂函数:y = x^a (a是常数,a≠0)2. 二次函数的顶点坐标:对于二次函数y = ax² + bx + c,顶点的横坐标为:x = -b / (2a)顶点的纵坐标为:y = -(b² - 4ac) / (4a)3. 指数函数:y = a^x (a > 0,且a≠1)4. 对数函数:y = logₐ(x) (a > 0,a≠1)5. 三角函数公式:(1) 正弦定理:a / sinA = b / sinB = c / sinC(2) 余弦定理:c² = a² + b² - 2abcosC(3) 正弦余弦关系:sin²A + cos²A = 1三、立体几何部分1. 直角三角形勾股定理:设直角三角形的两直角边长度分别为a、b,斜边长度为c,则有:c² = a² + b²2. 圆周角公式:对于圆的圆心角O,其所对圆弧的弧长为L,半径为R,则有:L = Rθ (θ为圆心角的度数)3. 圆锥体的面积公式:(1) 圆锥的侧面积:S = πrl (r为底面半径,l为斜高)(2) 圆锥的全面积:S = πr(l + r) (r为底面半径,l为斜高)(3) 圆锥的体积:V = (1/3)πr²h (r为底面半径,h为高)4. 圆柱体的面积公式:(1) 圆柱的侧面积:S = 2πrh (r为底面半径,h为高)(2) 圆柱的全面积:S = 2πr(r + h) (r为底面半径,h为高)(3) 圆柱的体积:V = πr²h (r为底面半径,h为高)以上只是数学必修四中部分重要的公式总结,掌握并熟练运用这些公式,将会在解题过程中提高效率,更好地应对数学学习及考试。

高中数学必修四知识点

高中数学必修四知识点

高中数学必修四知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中数学必修四知识点不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。

数学必修四知识点(15篇)

数学必修四知识点(15篇)

数学必修四知识点(15篇)数学必修四知识点1平面向量戴氏航天学校老师总结加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。

戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得=e1+e2 高考数学必修四学习方法养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。

虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。

学生们不得不预习课本。

我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。

在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。

同时,在课堂上安排笔记也是必要的。

在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。

这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

高考数学必修四学习技巧养成良好的学习数学习惯多质疑、勤思考、好动手、重归纳、注意应用。

学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的'脑海中。

良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

及时了解、掌握常用的数学思想和方法中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。

数学必修四第一章知识点总结

数学必修四第一章知识点总结

数学必修四第一章知识点总结第一章初等数论与数论方法一、整数研究了整数及其运算性质,引导学生辨识和解决在初中学习过程中遇到的有关整数的复杂问题。

1. 整数的概念整数是正整数、负整数和零的统称。

整数的绝对值是指它离原点的距离,是非负的整数。

2. 整数的四则运算(1)加法运算:正数相加、负数相加应用法则,可以化为正数相加或正负数相减的运算问题来解决。

(2)减法运算:整数减法法则就是整数加法法则的推广。

(3)乘法运算:两个数相乘的积的符号与它们的积的因数的符号有关。

(4)除法运算:零不能作为除数,有理数的除法也要遵循约分原则。

3. 整数的应用整数是在数轴上有序排列的,整数运算也是数轴上大小关系的推算。

在温度、债务、货币、海拔高度、海拔深度等相关实际生活中,需要使用整数。

二、整数的乘方及开方1. 乘方概念以数 a 为底 n 为指数的乘方运算通常记作aⁿ (a ≠ 0, n > 0), 它表示连续相同乘数 a 用 n-1个乘号与自己相乘的乘积。

2. 乘方的运算性质(1)乘方的运算性质: 同底数乘方相乘,指数相加;(2)乘方运算的简便法则:同一底数不同指数相乘可以利用指数运算法则;(3)指数运算法则:①乘方的运算法则:同底数的几个数的乘方, 底数相同, 指数相加;②除法可以转换为乘方;(4)零的乘方等于 1: 0 的任何正整数次幂都等于 1。

3. 开方的概念一个数的平方根就是对应的平方的运算过程,一个数的 n 次方根是对应的 n 次方的运算过程。

4. 定义(1)二次方程的解法:①因式分解法;②公式法;③配方法;(2)含一个未知数的方程;(3)一元二次方程:我国古代代数的发展,以求一元二次方程的解为目标;(4)一次方程:秦九韶二次方程的解法是把一次方程的求根问题化成二次方程的求根问题。

5. 一元二次方程(1)一元二次方程的定义:① 它是一元的;② 它的最高次项是二次项③ 它与一元二次函数有相联系的地方;一元二次方程及根的关系:一元二次方程的单解和两解,它对应的一元二次函数的图象几何方程的根与几何意义的关系;(2)整数系数的一元二次方程;(3)一元二次方程及根的关系;(4)一元二次方程数学题。

高一数学必修四必背知识点

高一数学必修四必背知识点

高一数学必修四必背知识点第一章二次函数与图像变换1. 顶点式和一般式的相互转换:二次函数的顶点式为:y = a(x - h)² + k二次函数的一般式为:y = ax² + bx + c2. 二次函数的图像变换:a) 向上、向下平移:顶点的纵坐标加减常数k,若k > 0向上平移,若k < 0向下平移。

b) 左右平移:顶点的横坐标加减常数h,若h > 0向左平移,若h < 0向右平移。

c) 上下翻折:纵坐标乘以-1。

d) 左右翻折:横坐标乘以-1。

3. 二次函数的最值与零点:a) 最值:当a > 0时,二次函数的最小值为k,无最大值;当a < 0时,二次函数的最大值为k,无最小值。

b) 零点:二次函数与x轴交点的横坐标。

第二章数列与数列的运算1. 等差数列的通项公式:a) 通项公式:an = a₁ + (n - 1)d,其中an为第n个数,a₁为首项,d为公差,n为项数。

b) 前n项和公式:Sn = (a₁ + an)n/2,其中Sn为前n项和。

2. 等比数列的通项公式:a) 通项公式:an = a₁q^(n - 1),其中an为第n个数,a₁为首项,q为公比,n为项数。

b) 前n项和公式:Sn = a₁(1 - q^n)/(1 - q),其中Sn为前n项和。

3. 递推数列的通项公式:a) 递推公式:an = f(an₋₁, an₋₂, ...),其中f为递推函数,an 为第n个数。

b) 已知初始项求通项公式:根据已知的前几项,通过观察求得递推函数。

第三章三角函数1. 基本三角函数:a) 正弦函数:y = sin(x)b) 余弦函数:y = cos(x)c) 正切函数:y = tan(x)d) 余切函数:y = cot(x)2. 三角函数的性质:a) 周期性:正弦函数和余弦函数的周期都为2π;正切函数和余切函数的周期为π。

b) 奇偶性:正弦函数和正切函数为奇函数,余弦函数和余切函数为偶函数。

高中数学必修4知识总结(完整版)

高中数学必修4知识总结(完整版)

高中数学必修四知识点总结⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度的角.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+, 21122S lr r α==.9、(一)设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=;(2)x 叫做α的余弦,记做cos α,即cos x α=;(3)yx叫做α的正切,记做tan α,即tan (0)yx xα=≠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修4数学知识点 第一章、三角函数
§1.1.1、任意角
1、 正角、负角、零角、象限角的概念.
2、 与角α终边相同的角的集合: {}Z k k ∈+=,2παββ. §1.1.2、弧度制
1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.
2、 r
l
=α.
3、弧长公式:R R n l απ==
180
. 4、扇形面积公式:.lR R n S 213602
==π §1.2.1、任意角的三角函数
1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:
x
y
x y =
==αααtan ,cos ,sin . 2、 设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=)
r
y 0
sin =
α,r x 0cos =α,00tan x y =α.
3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.
4、 诱导公式一:
()()().
tan 2tan ,cos 2cos ,
sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈) 5、 特殊角0°,30°,45°,60°,90°,180°,270°的三角函数值.
§1.2.2、同角三角函数的基本关系式
1、平方关系:1cos sin 22=+αα.
2、 商数关系:α
α
αcos sin tan =. §1.3、三角函数的诱导公式
1、 诱导公式二:
2、诱导公式三:
()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+ ()()().
tan tan ,cos cos ,sin sin αααααα-=-=--=-
3、诱导公式四:
4、诱导公式五:
5、诱导公式六:
()()().
tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- .sin 2
cos ,cos 2sin ααπααπ=⎪⎭
⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛- .sin 2
cos ,
cos 2sin ααπααπ-=⎪⎭
⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+ §1.4.1、正弦、余弦函数的图象 1、记住正弦、余弦函数图象:
2、 能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.
3、 会用五点法作图.(0,
2
π
,π,23π,2π)
§1.4.2、正弦、余弦函数的性质
1、 周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有
()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫
做这个函数的周期.
§1.4.3、正切函数的图象与性质
1、记住正切函数的图象:
2、 能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. §1.5、函数()ϕω+=x A y sin 的图象
1、 能够讲出函数x y sin =的图象和函数()b x A y ++=ϕωsin 的图象之间的平移伸缩变换关系.
2、 对于函数:
()()0,0sin >>++=ωϕωA b x A y 有:振幅A ,周期ω
π
2=
T ,初相ϕ,相位ϕω+x ,频率π
ω
21=
=
T
f .
第二章、平面向量
§2.1.1、向量的物理背景与概念
1、 了解四种常见向量:力、位移、速度、加速度.
2、 既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示
1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.
2、 向量AB 的大小,也就是向量AB 的长度(或称模),记作;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.
3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. §2.1.3、相等向量与共线向量
1、 长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义
1、 三角形法则和平行四边形法则.
2、 ++. §2.2.2、向量减法运算及其几何意义
1、 与a 长度相等方向相反的向量叫做a 的相反向量. §2.2.3、向量数乘运算及其几何意义
1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下:
⑴= ⑵当0>λ时, λ的方向与的方向相同;当0<λ时, λ的方向与的方向相反. 2.平面向量共线定理:向量()
0≠a a 与b 共线,当且仅当有唯一一个实数λ,使a b λ=. §2.3.1、平面向量基本定理
1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数21,λλ,使2211e e λλ+=. §2.3.
2、平面向量的正交分解及坐标表示
1、 ()y x j y i x a ,=+=. §2.3.3、平面向量的坐标运算
1、 设()()2211,,,y x b y x a ==,则: ⑴()2121,y y x x b a ++=+,
⑵()2121,y y x x b a --=-, ⑶()11,y x a λλλ=, ⑷1221//y x y x b a =⇔. 2、 设()()2211,,,y x B y x A ,则:()1212,y y x x --=. §2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则 ⑴线段AB 中点坐标为
(
)2
22
121,y y x x ++,⑵△ABC 的重心坐标为(
)
333213
21,y y y x x x ++++.
§2.4.1、平面向量数量积的物理背景及其含义
1、 θb a =⋅.
2、 a 在b θ.
3、 2
a =. 4、 =. 5、 0=⋅⇔⊥. §2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设()()2211,,,y x y x ==,则:
⑴2121y y x x +=⋅ ⑵2121y x += ⑶02121=+⇔⊥y y x x
2、 设()()2211,,,y x B y x A ()()2
12212y y x x -+-=.
第三章、三角恒等变换 §3.1.1、两角差的余弦公式
1、()βαβαβαsin sin cos cos cos +=-
2、记住15°的三角函数值:
§3.1.2、两角和与差的正弦、余弦、正切公式
1、()βαβαβαsin sin cos cos cos -=+
2、()βαβαβαsin cos cos sin sin -=-
3、()βαβαβαsin cos cos sin sin +=+
4、()β
αβ
αβαtan tan 1tan tan tan -+=+.
5、()βαβ
αβαtan tan 1tan tan tan
+-=
-.
§3.1.3、二倍角的正弦、余弦、正切公式
1、αααcos sin 22sin =, 变形:ααα2sin cos sin 21=.
2、ααα22sin cos 2cos -=1cos 22-=αα2sin 21-=,
变形1:22cos 1cos 2αα+=, 变形2:22cos 1sin 2αα-=.
3、α
αα2tan 1tan 22tan -=
. §3.2、简单的三角恒等变换
注意正切化弦、平方降次.
1、。

相关文档
最新文档