音乐频谱-电路图
led音乐频谱显示课程设计

led音乐频谱显示课程设计一、课程目标知识目标:1. 学生能理解LED音乐频谱显示的原理,掌握基础电子元件的功能和使用方法。
2. 学生能掌握编程控制LED灯亮灭的基本技巧,了解与音乐频谱显示相关的编程知识。
3. 学生能够解释简单电路的工作原理,并了解如何将其与音乐信号相结合。
技能目标:1. 学生能够设计并搭建简单的LED音乐频谱显示装置,进行功能测试和调试。
2. 学生通过实践操作,掌握使用编程软件对LED音乐频谱进行编程控制的能力。
3. 学生能够通过团队合作,解决在制作过程中遇到的技术难题。
情感态度价值观目标:1. 学生培养对电子技术和编程的兴趣,激发创新思维和探索精神。
2. 学生在团队协作中,学会相互尊重、支持和沟通,培养合作精神。
3. 学生能够认识到科技在音乐领域的应用,提高对科技与艺术融合的认识,培养审美情趣。
本课程针对初中年级学生,结合电子技术和编程知识,以实践性、趣味性和创新性为特点。
在教学过程中,注重培养学生的动手能力、逻辑思维和团队协作能力,使学生在实践中掌握知识,提高技能,培养良好的情感态度价值观。
通过分解课程目标为具体的学习成果,为教学设计和评估提供明确方向。
二、教学内容1. 电子元件基础知识:讲解电阻、电容、二极管、三极管等基础电子元件的功能和用途,结合教材相关章节,让学生了解电子元件在电路中的作用。
2. LED灯特性与应用:介绍LED灯的基本特性,如亮度、颜色、电压等,并讲解其在音乐频谱显示中的应用。
3. 电路原理与设计:教授简单电路的搭建方法,分析音乐频谱显示电路的原理,指导学生设计符合需求的电路图。
4. 编程知识:结合教材,教授Arduino编程基础知识,如变量、循环、条件语句等,并讲解如何利用编程控制LED灯的亮灭。
5. 音乐信号处理:介绍音乐信号的特点,如何从音频信号中提取频谱信息,以及如何将频谱信息与LED灯亮度对应起来。
6. 实践操作:安排学生进行分组实践,每组设计并搭建一个LED音乐频谱显示装置,通过编程和调试,实现音乐频谱的实时显示。
第5章-频谱的线性搬移电路

一、非线性函数的级数展开分析法
1、非线性函数的泰勒级数 非线性器件的伏安特性,可用下面的非线性函数来表示:
i f (u)
(5-1)
式中, u为加在非线性器件上的电压。一般情况下,
u=EQ+u1+u2, 其中EQ为静态工作点, u1和u2为两个输入电 压。用泰勒级数将式(5-1)展开, 可得
i a0 a1(u1 u2 ) a2 (u1 u2 )2 an (u1 u2 )n
3、正弦波振荡器
反馈式振荡器的平衡条件,三点式振荡器的起振判断条件,电路 结构,克拉泼,西勒电路的计算,晶体振荡器的特点等。
下面学习频率变换电路电路,包括频谱的线性搬移和非线 性搬移电路及其应用。
《高频电子线路》
1
第5章 频谱的线性搬移电路
第5章 频谱的线性搬移电路
5.1 非线性电路的分析方法 5.2 二极管电路 5.3 差分对电路 5.4 其它频谱线性搬移电路
即有
i I0(t) g(t)u1
(5-14)
可见,非线性器件的输出电流与输入电压的关系类似于线 性系统,但其系数却是时变的,故叫做线性时变电路。
2、线性时变参数分析法的应用
考虑u1和u2都是余弦信号, u1=U1cosω1t, u2=U2cosω2t, 故I0(t) 、g(t)也为周期性函数,可用傅里叶级数展开,得:
I0 (t) f (EQ U2 cos2t) I00 I01 cos2t I02 cos 22t (5-15) g(t) f (EQ U2 cos2t) g0 g1 cos2t g2 cos 22t (5-16)
《高频电子线路》
16
第5章 频谱的线性搬移电路
两个展开式的系数可直接由傅里叶系数公式求得
一种基于STM32F103C8T6单片机DSP库的音乐频谱

2020年软 件2020, V ol. 41, No. 4一种基于STM32F103C8T6单片机DSP 库的音乐频谱谢志平(广东省技师学院,广东 惠州 516100)摘 要: 利用STM32单片机内部的DSP 库功能,将外部输入的音乐信号放大后再送入单片机内部的A/D 转换器,运用STM32内部DSP 库功能进行FFT 运算,采用中断扫描技术,将音乐信号的频谱在32X64全彩点阵屏进行显示,能对音乐信号的频谱进行简单的分析,实现多种随音乐节奏舞动的视觉效果。
关键词: 单片机;DSP 库;FFT ;中断扫描技术中图分类号: TP3 文献标识码: A DOI :10.3969/j.issn.1003-6970.2020.04.042本文著录格式:谢志平. 一种基于STM32F103C8T6单片机DSP 库的音乐频谱[J]. 软件,2020,41(04):200 202+228A Music Spectrum Based on DSP Library of STM32F103C8T6 MicrocontrollerXIE Zhi-ping(Guangdong technician college, huizhou 516100, China )【Abstract 】: Use of STM32 MCU internal DSP library function, the music of external input signal amplification and then sent into single chip microcomputer internal A/D converter, use STM32 internal DSP library functions for FFT arithmetic, using interrupt scanning technology, the music signal spectrum in 32 x64 lattice screen for display, full-color to simple music signal spectrum analysis, realize the visual effect of A variety of dance with the music rhythm.【Key words 】: Single chip microcomputer; DSP library; FFT; Interrupt scanning technique0 引言任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。
基于单片机的音频频谱显示器的研究与开发

1
音频信号,这个音频信号再经功放模块由扬声器驱动播放音乐。
同时,音频信号又作为输入信号接到另外一个单片机系统,此单片机系统主要是完成音频信号的模数转换,并由内部软件通过快速傅里叶算法,实现音频信号在频域上的分析,最后量化输出,由LED点阵显示出频谱变化。
三、研究指向内容与过程
(一)研究指向
1. 降低设计、制作以及成品的成本;
2. 提高音频频谱与音乐的匹配度;
3. 开发电子产品专业课程的实训资源,使实训资源与生活相结合,便于电子专业学生的
学习与研究。
(二)研究内容
1、硬件设计
单片机我们选用STC12C5A60S2。
STC 公司的单片机不但和8051指令、管脚完全兼容,而且其片内的具有大容量程序存储器且是FLASH工艺的,其中STC12C5A60S2单片机内部就自带高达60K FLASHROM,这种工艺的存储器用户可以用电的方式瞬间擦除、改写。
而且STC 系列单片机支持串口程序烧写。
本设计系统由单片机模块、音频采集模块、滤波模块、按键模块、功放模块和显示模块六部分组成,如图1所示。
图1 音频频谱显示器的系统结构图
硬件电路图如图2所示,使用音频采集模块对输入的音频信号进行采样,经过FFT变换,然后取某些频率项的幅值,量化显示,驱动LED点阵,点亮相应的LED灯,其中显示模块即LED频谱显示电路。
图2左上方是滤波模块以及功放模块的设计,左下方是单片机模块的电路设计,右侧是LED频谱显示电路的设计。
其中,音频功放芯片选用8002,它是两个OTL电路桥式连接为BTL工作方式的音频功放。
2
3。
单片机实现音乐频谱

图二 MCU 部分的原理图
) ( 灯 吸呼 键摸触
色 : :: 颜
图三 点阵驱动电路图 (三) 编程思路
1) 在主函数中,单片机通过 AD 对音频数据采样,然后存放到数据缓存区进行预处理,完成 AD 滤波 处理,自动增益控制信息扫描以及其他信息处理。接着,将缓存区数据送入 快速傅立叶变换(FFT) 处理子函数进行运算。处理完后,从缓存区取出运算结果,根据得到幅值计算出点阵的显示数据, 并存储到显示缓存区。
a) 采用 USB 接口供电,并且对 USB 接口进行了扩展。在没有额外占用电脑主机 USB 接口情况下, 随时随地给系统供电;
b) 加入了触摸键设计,以及震动反馈。当触摸键响应时有震动反馈,及声光提示,如今很多触屏手 机也有这种时尚设计;
c) 加入 ThinkPad 笔记本上的经典呼吸灯指示设计。如夏日里的萤火虫,一闪一闪亮晶晶,不仅有趣 还能指示系统工作状态;
好的声音效果,其各段频率成分应该有一定的比例,录音的时候,录音师操作调音台就可以使各 段频率的成分得到调整。由于各种乐器的基频高低是不同的,所以,也可以使各种乐器之间的声音比 例得到调整,常见的是把频率由低至高分成 5 段或 7 段、10 段或 15 段,有经验的录音师或音乐家能听 出哪里(哪个频率段)“空”了,即这个频段弱。哪里“鼓了个包”,即这个频段过强。通过均衡器可 以把这些予以弥补。又因为每个人对音乐中频率分布的欣赏标准是不同的,因此,各位录音师掌握的 尺度也不同,显示出各自的风格。
小贴士(1): 根据 STC12A32S2 单片机的资源情况,最多只有 1280B RAM,我们取 64 点的 FFT 就可以满足要求,还
基于51单片机的LED点阵音乐频谱显示器

1 3 7
基于 5 1 单片机的 L E D点阵音乐频谱显示器
L E D Do t Ma t r i x Di s pl a y Mu s i c Sp e c t r u m B a s e d o n 51 Si n gl e Ch i p Mi c r o c o mp u t e r
pr o c e s s i n g u n i t s . s o u n d p r o c e s s i n g u n i t S T Cl 2 C 5 A 6 0 S 2 mi c r o c o n t r o l l e r F F . r p r o c e s s i n g .
实 现 音 乐频 谱 。
关键词 : S T C l 2 C 5 A 6 0 S 2 , 数 字信 号 处理 , 傅里叶变换 , 源程 序 , 仿 真 与调 试
Abs t r a c t
T h i s d e s i g n b y u s i n g s i n g l e - c h i p mi c r o c o mp u t e r a n d d i g i t a l s i g n a l p r o c e s s i n g t e c h n i q u e s t o a c h i e v e mu s i c a l s p e c t r u m
李逸 家 ( 华南农业大学珠江学院, 广东 广州 5 1 0 9 0 0 )
摘 要
.
通 过 使 用 单 片机 原 理 , 利 用数 字信 号 理 论 , 使 音 乐频 谱 分 析 在 单 片机 上 的 实现 。 系 统 包括 : 声 音 接 收模 块 , 声 音 转 换 模 块和 L E D 组 成 的点 阵显 示单 元 。 其 中声 音采 集模 块 , 是利用 S T C1 2 C5 A 6 0 S 2单 片机 中 的声 音 采 集 和 A / D转 换 。 音 频 的模 拟信号 通过声音采 集模块接 收到 , 经过 A / D转 换 系统 , 转换为数 字信号 , 送给 下一级 处理单元 处理 。声音转换模 块利 用 S T Cl 2 C5 A 6 0 S 2单 片机 内部 的 资 源 , 进行 F F T处 理 。显 示模 块接 收 AD转 换 后 的信 号 , 控 制 5组 , 总共 有 5 5个 L E D灯泡 , 分别完成显示。 L E D 灯 的 明 暗条 件 , 是 随 着 音 乐的 频 率 变化 所 决 定 的 , 随 时更 新 做 出相 应 的 变化 , 通过 视 觉 上 的 灯光 显 示 以
第5章__频谱的线性搬移电路

依此可以推断,输出电流i中将包含下列通式表示的无限 多个频率组合分量
p ,q p1 q2
(5―10)
第5章 频谱的线性搬移电路
p ,q p1 q2
(5―10)
式中,p,q=0、1、2 …,称p + q为组合分量的阶数。 综上所述,当多个信号作用于非线性器件时,其输出 端不仅包含了输入信号的频率分量,还有输入信号频率的 各次谐波分量(pω 1、qω 2、rω 3…)以及输入信号频率的 组合分量(± pω1 ± qω2 ± rω3 ± …)。
n 0
n 0
n为偶数
n为奇数
i bnU1n cos n1t
n 0
式中,bn为an和cosnω 1t的分解系数的乘积。
可见,当一个单一频率(ω 1)的信号作用于非线性器件时,在输 出电流中不仅有ω1成分,还有nω1(n=2,3,…)分量(新频率分量)。
第5章 频谱的线性搬移电路
(2) 当u1、u2都不为零时,输出电流中不仅有两个输入
第5章 频谱的线性搬移电路
第5章 频谱的线性搬移电路
5.1 非线性电路的分析方法 5.2 二极管电路 5.3 差分对电路 5.4 其它频谱线性搬移电路
第5章 频谱的线性搬移电路
频谱搬移:指对输入信号进行的频谱变换(产生新的 频率分量),以获得具有所需频谱的输出信号。 频谱的线性搬移:搬移前后各频率分量的比例关系不
第5章 频谱的线性搬移电路
5.1.1 非线性函数的级数展开分析法 非线性器件的伏安特性,可用下面的非线性函数来表示:
i f (u )
式中,u为加在非线性器件上的电压。一般情况下, u=EQ+u1+u2,其中EQ为静态工作点,u1和u2为两个输入电压。
42频谱搬移电路的基本工作原理2012421

Mα Ωt
Vm-----假设-uAM(t)= Vm cosωct= 2(1+ MαcosΩt)cosωct
00
900
1800
2700
3600
cosΩt
1
0
—1
0
1
Mα=1:
4
2
0
2
4
Mα>1—设 Mα=3 ; 8
2
-4
2
8
Mα<1,设 Mα=0.2 2.4
2
1.6
2
2.4
AM的三种情况(见下图): Mα>1:过调制,波形已失真(包络不能如实反映基带信号幅度),不用 Mα=1:临界调制(与失真仅一线之隔,参数略有变化就失真,也不用); Mα<1:正常调幅,最常用(实验时一般Mα:20%——40%)
从调幅波的频谱图可知,唯有它的上、下边带分量才实际地 包含调制信号的频谱结构,而载波分量仅是起到频谱搬移的作用, 不反映调制信号的变化规律。
2020/2/16
14
上、下边频的平均功率均为
P
边频
1 2 RL
( mUC 2
)2
m2 4
Pc
AM信号的平均功率
Pav
1
2
Pd t
Pc
100%
23
4.2.4 AM信号的实现模型----工作原理
调幅波的共同之处都是在调幅前后产生了新的频率分量,也 就是说都需要用非线性器件(电路)来完成频率变换。
这里将调制信号vΩ与载波信号vω0加入非线性器件,然后 通过中心频率为ω0的带通滤波器取出输出电压vo中的调幅波成 分。
具体原理与电路在第三节讲述
n
1 2