优选第二章振动与波动理论基础
02.(简)振动波动 第二章 波动(2003)

第2章波动(Wave)前言:1.振动在空间的传播过程叫做波动。
波动是一种重要的运动形式。
2.常见的波有两大类:(1)机械波:机械振动在媒质中的传播。
(2)电磁波:变化电场和变化磁场在空间中的传播。
·此外,在微观中波动的概念也很重要。
3.各种波的本质不同,传播机理不同,但其基本传播规律相同。
本章讨论:机械波(Mechanical wave)的特征和有关规律,具体为,(1)波动的基本概念;(2)与波的传播特性有关的原理、现象和规律;(3)与波的叠加特性有关的原理、现象和规律。
§1 机械波的产生和传播一、机械波的产生1.产生条件:(1)波源;(2)介质(媒质)2.弹性波:机械振动在弹性介质中的传播(如弹性绳上的波)。
弹性介质的质元之间以弹性力(elastic force) 相联系。
3.简谐波:若媒质中的所有质元均按一定的相位传播规律做简谐振动,此种波称为简谐波(simple harmonic wave)。
以下我们主要讨论简谐波。
二、波的传播1.波是振动状态的传播以弹性绳上的横波为例,由图可见:由图可见:t = T/4t = T/2t = 3T/4t = T弹性绳上的横波(1)媒质中各质元都只在自己的平衡位置附近振动,并未“随波逐流”。
波的传播不是媒质质元的传播。
(2)“上游”的质元依次带动“下游”的质元振动(依靠质元间的弹性力)。
(3)某时刻某质元的振动状态将在较晚时刻于“下游”某处出现,这就是“波是振动状态的传播”的含义。
(4)有些质元的振动状态相同,它们称作同相点。
相邻的同相点间的距离叫做波长(wave- length)λ,它们的相位差是2π。
2.波是相位的传播·由于振动状态是由相位决定的,“振动状态的传播”也可说成是“相位的传播”,即某时刻某点的相位将在较晚时刻重现于“下游”某处。
·于是沿波的传播方向,各质元的相位依次落 后。
图中b 点比a 点的相位落后即a 点在t 时刻的相位(或振动状态)经∆t 的时间传给了与它相距为∆x 的b 点,或b 点 在t +∆t 时刻的相位(或振动状态)与a 点在t时刻的情况相同( 即波的传播速度)。
波动理论基础

请批评指正! 谢谢!
低应变理论基础
2014年11月16日
一、波动与振动
弹性动力学主要目标是在给定扰动源信息及边界条件、初始条件下求解弹性 物体的动力响应。解答的形式有两种:一种是波动解,一种是振动解。前者描 述行波在弹性介质中的传播过程,后者描述弹性体的振动。为了说明两者的联 系与差异,首先考察波动与振动两个物理现象。 一个原来处于静止状态的物体,当其局部受到突然的扰动,并不能立即引 起物体各部分的运动。如下图所示的一根半无限长杆端部受到打击时,远离杆 端的区域并不能立即感受到端部的打击信号,而要经过一定的时间后才能接受 到这个信号。这是动力问题和静力问题最根本的区别。实际上由于连续介质中 的各个质点由某种约束力而彼此联系起来,在末受到扰动之前,质点之间的相 互作用力处于平衡状态。当某一个质点受到扰动以后,它就要偏离
惯性两个基本性质所决定的。弹性性质有使发生了位移的 质点回复到原来平衡位置的作用,而运动质点的惯性有使 当前的运动状态持续下去的作用,或者说弹性是贮存势能 的要素,惯性是维持动能的表征。正是由于这两种特性的 存在,系统的能量才能得以保持和传递,外部的扰动才能 激发起弹性被和弹性体的振动。弹性波的传播和弹性体的 振动,实际上可以看作是同一物理问题的不同表现形式。
原来的平衡位置而进入运动状态。由于质点间相对位置的 变化,使得受扰动质点同其周围质点之间增加了附加的弹 性力,从而与受扰动质点相邻的质点也必然受到影响而进 入运动状态。这种作用依次传递下去,便形成一个由扰动 源开始的波动现象。这种扰动借质点间的弹性力而逐渐传 播的过程,称为弹性波。如果介质是无限大的,扰动将会 随时间的发展一直传播出去。然而一个实际的物体总是有 边界的,当扰动到达边界时,将要和边界发生相互作用而 产生反射。对一个有界的物体,由于扰动在其边界上来回 反射,从而使得整个物体就会呈现出在其平衡位置附近的 一种周期性的振荡现象,称之为弹性体的振动。弹性波和 弹性体的振动之间存在着本质的内在联系。这两种现象的 形成有着相同的机制,它们都是由介质的弹性和
第2章振动与波

6
第2章振动与波
与振动相关的概念
振荡 振荡是一种物理量在观测时间内,不断地 经过最大值和最小值而变化的过程。
振动 振动是指物理量是一个机械系统的运动参 量时的振荡。主要是指机械运动。
7
第2章振动与波
与振动相关的概念
弹簧振子
k
弹性力 f 与拉伸长度 x 的关系为 f kx
振子在获得这种外部来的能量后就开始振 动,将其转化为振动能。
cm
1 k
为力顺,它反映弹簧的柔顺程度
根据牛顿第二运动定律
所以
f= ma
d2x m dt 2 kx
质点自由振动方程
d2x dt 2
02
x
0
其中
02
k m
21
第2章振动与波
d2x dt 2
02
x
0
二阶齐次方程
22
第2章振动与波
声学基础
0T 2
第二章 振动与波
2π秒钟的振动次数
0 2 f
自由振动的一般规律
f0
1
2
1 mCm
数k越小,固有频率 越低。
25
第2章振动与波
思考
若需要降低动圈扬声器的固有频率,应采 取什么措施?
①增加系统的质量,即增加音圈与纸盆的 质量
②减小系统的弹性系数,即使纸盆边缘的 折环部分更为柔顺。
26
第2章振动与波
声学基础
第二章 振动与波
例:扬声器力学振动系统在低频时可视为集中参数系统,
3
第2章振动与波
声音是一种波动现象。当声源(机械振 动源)振动时,振动体对周围相邻媒质产 生扰动,而被扰动的媒质又会对它的外围 相邻媒质产生扰动,这种扰动的不断传递 就是声音产生与传播的基本机理。
大学物理知识点总结:振动及波动

利用超声波的能量作用于人体组织,产生热效应、机械效应等,达到治疗目的,如超声碎石、超声刀 等。
地震监测和预测中振动分析
地震波监测
通过监测地震波在地球内部的传播情况和变化特征,研究地震的发生机制和震源性质。
振动传感器应用
在地震易发区域布置振动传感器,实时监测地面振动情况,为地震预警和应急救援提供 数据支持。
图像
简谐振动的图像是正弦或余弦曲线,表示了物体的位移随时间的变化关系。
能量守恒原理在简谐振动中应用
能量守恒
在简谐振动中,系统的机械能(动能 和势能之和)保持不变。
应用
利用能量守恒原理可以求解简谐振动 的振幅、角频率等物理量。
阻尼振动、受迫振动和共振现象
阻尼振动
当物体受到阻力作用时,其振动会逐渐减弱,直至停止。 这种振动称为阻尼振动。
惠更斯原理在波动传播中应用
01
惠更斯原理指出,波在传播过程中,每一点都可以看作是新的 波源,发出子波。
02
惠更斯原理可以解释波的反射、折射等现象,并推导出斯涅尔
定律等波动传播规律。
在实际应用中,惠更斯原理被为波动现象的研究提供了重要的理论基础。
04
干涉、衍射和偏振现象
误差分析
分析实验过程中可能出现的误差来源,如仪 器误差、操作误差等;对误差进行定量评估 ,了解误差对实验结果的影响程度;提出减 小误差的方法和措施,提高实验精度和可靠
性。
感谢您的观看
THANKS
实例
钟摆的摆动、琴弦的振动、地震波的传播等 。
振动量描述参数
振幅
描述振动大小的物理量,表示物体离开平衡 位置的最大距离。
频率
描述振动快慢的物理量,表示单位时间内振 动的次数。
振动与波动的基本概念

振动与波动的基本概念在自然界中,我们可以经常发现物体或者现象会周期性的发生变化,例如钟表的走时、音乐的旋律等等。
这样的周期性变化常常被称作“振动”和“波动”,它们是物理学中非常基础和重要的概念。
一、振动的基本概念振动指的是一个物体或者物体系统在固定位置周围做周期性的来回运动。
通常我们所说的振动,不仅仅指的是单一物体自身的运动,也可能指的是物体系统集体的运动。
振动的特点包括以下几个方面:1. 振幅:指物体或者物体系统运动最大偏离平衡位置的距离,也可以理解为能量的大小;2. 周期:指振动过程中完成一次完整运动所需要的所用时间,单位是秒;3. 频率:指在单位时间内振动发生的次数,单位是赫兹(Hz);4. 相位:指某一个特定的时刻,振动的状态;5. 响度:指振动产生的声响大小;6. 谐振:指当外力频率与振动频率相等时,振动呈现最大振幅的情况。
振动在生活和实践中有着广泛的应用,例如可调节灯光的调节、交替电流的产生等等。
二、波动的基本概念波动指的是一种物质或者能量的传播现象,它会在空间中形成一种波动。
波动的特点包括以下几个方面:1. 波长:指相邻波峰之间的距离;2. 振幅:指波动的最大偏离强度;3. 周期:指两个连续的相同状态之间的时间间隔;4. 速度:波传播的速度,可以是声速、光速等等;5. 频率:波动在单位时间内经过固定点的次数;6. 相速度:指定相位点在沿波传播方向上运动的速度。
波动包含很多种不同的类型,例如声波、光波、机械波、电磁波等等,在不同的领域都有着广泛应用。
例如声波被用于声音的传输、电磁波被用于电视、通讯等等。
三、振动与波动之间的关系振动和波动虽然是两种不同的物理现象,但是它们之间也存在着密切的联系。
事实上,大多数波动都可以看做是连续不断地发生振动所产生的结果。
在简单谐振的情况下,我们可以得到一个周期性运动的单个物体产生的振动波。
此外,振动对于产生波动的介质也有着重要的影响。
当一个振动波在介质中传播时,介质受到“弹性”的影响,从而产生一系列周期性的收缩和扩张,从而形成波动。
大学物理振动和波动第二章波动学基础

x
t
x u
y( x,t )
A cos[ ( t
x u
)
]
9
x ♠ 沿 轴正向传播的简谐波的波函数:
(已知平衡位置在 x 0 处质点振动方程 yx0 Acos(t ) )
y(x,t)
A cos[ ( t
x)]
u
Acos[2 ( t x ) ] T
Acos[(t kx) ]
波数:k 2
2
( c)驻波各点相位由 A' 的正负决定
43
驻波特点:
A. 有的点始终不动(干涉减弱)称波节;
有的点振幅最大(干涉加强)称波腹;
其余的点振幅在0与最大值之间。
B. 波形只变化不向前传
故称驻波。
驻波能量: 波形无走动、能量无流动
振动状态(位相)特点 同一段同相位 相邻段反相位
作业:2.15 2.16 2.17 2.18
2
2
o
y
A
t , 3
2
tt ,
作业:P108~109 2.2 2.3 2.5 2.6
23
练习.一沿X轴负向传播的平面简谐波在
t=2s时的波形曲线如图所示,写出质
点O的振动方程和平面简谐波的波动
方程。
y
u=1.00m/s
0.5
0
X
-1
1
2
3
y( x0)
0.5cos(
2
t
) 2
y 0.5cos[ (t x) ]
坐标 t
横轴为质点平
x 衡位置坐标
17
x( y)
振动曲线
y t
t t0
x
波形曲线(波形图)
第振动和波动波动PPT课件

kx)
wp
1 2
2 A2
si n2(t
kx)
w = wk+wp = 2A2sin2 (t-x/u)
wk、wp 均随 t 周期性变化,两者同相同大 。
怎么动能和势能之和不等于常数,也不相互转化 ?
第22页/共49页
2. 波的强度 单位时间内通过垂直于波的传播方向的
单位面积的平均能量,称为平均能流密度,
第30页/共49页
【例7】相干波源 A、B 位置如图所示,频率 =100Hz, 波速 u =10 m/s,A-B=,求:P 点振动情况。
【解】 rA 15m
P
rB 152 202 u 0.1m
15m
A
20 m
B
B
A
2
rB
rA
200
201
P点干涉减弱
第31页/共49页
【例8】两相干波源分别在 PQ 两点处,初相相同,
横波的波形图与实际的波形是相同的,但是对于纵波, 波形图表示的是各质点位移的分布情况。
y
u
o
x
第4页/共49页
4. 描述波特性的几个物理量
周期T : 传播一个完整的波形所用的时间,或一个完整的波通过波线上某一点所需 要的时间。
频率 :单位时间内传播完整波形的个数。
周期、频率与介质无关,波在不同介质中频率不变。
2纵波横轴x表示波的传播方向坐标x表示质点的平衡位置纵轴y表示质点的振动方向坐标y表示质点偏离平衡位置的位移表示某一时刻波中各质点位移的图横波的波形图与实际的波形是相同的但是对于纵波波形图表示的是各质点位移的分布情况
5.4.1 机械波的产生与描述
1. 产生机械波的条件
产生波的条件——存在弹性介质和波源
振动和波动的基本知识

振动和波动的基本知识振动和波动是物理学中非常重要的两个概念,它们在自然界和日常生活中处处可见。
本文将为您介绍振动和波动的基本知识,包括定义、特征以及其应用领域等内容。
一、振动的基本概念和特征振动是物体在围绕平衡位置周围作往复运动的现象。
当物体受到外界扰动时,它会围绕平衡位置做周期性的往复运动。
振动的基本特征包括振幅、周期、频率和相位。
1. 振幅:振幅是指振动过程中物体偏离平衡位置的最大距离。
振幅越大,说明物体的振动幅度越大。
2. 周期:周期是指振动中,物体完成一次往复运动所需的时间。
用T表示,单位为秒。
周期与振动的频率有关,两者满足T=1/f。
3. 频率:频率是指单位时间内振动的次数。
用f表示,单位为赫兹(Hz)。
频率与周期相反,频率越高,则周期越短。
4. 相位:相位是指在一定时间内物体相对于某个参考点的位置。
可以用角度或时间表示。
相位差可以用来描述两个或多个振动之间的关系。
振动现象广泛存在于自然界和科学技术领域。
例如,机械振动的研究可以帮助我们设计更加稳定和高效的机械结构;电子设备中的振荡器可以产生稳定的电信号等。
二、波动的基本概念和分类波动是指能量在空间中传播的过程。
波动的主要特征包括振幅、波长、频率和波速等。
1. 振幅:波动中振幅表示波峰和波谷之间的最大偏移距离。
2. 波长:波长是指波动传播一个完整波周期所需要的距离。
用λ表示,单位为米。
波动的波长与频率成反比,满足λ=速度/频率。
3. 频率:波动的频率是指波动中单位时间内通过某个点的波的个数。
频率用f表示,单位为赫兹(Hz)。
4. 波速:波速是指波动在介质中传播的速度。
波速与波长和频率有关,满足v=λf。
根据波动的性质和传播介质的不同,波动可以分为机械波和电磁波两大类。
机械波需要介质来传播,例如水波、地震波等;而电磁波可以在真空中传播,包括光波、无线电波等。
三、振动和波动的应用领域振动和波动在科学技术的各个领域都有着重要的应用。
以下是一些具体的应用领域:1. 声波的应用:声波是一种机械波,在通信、音乐、医学等领域中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、简谐振动
在一切振动中,最简单和最基本的振动称为简谐运 动。任何复杂的运动都可以看成是若干简谐运动的 合成。
例:弹簧振子
简谐振动的动力学公式
例:弹簧振子
O点:弹簧处于自由状态,m受力平衡。平衡位置
弹簧振子的运动
物体受到一个始终指向平衡位置的弹性力 f ,称为恢复力。 在物体经过平衡位置时,恢复力为零,但是物体由于惯性 而继续运动。
2-1 简 谐 振 动
什么是振动 从狭义上说,通常把具有时间周期性的运动称为 振动。从广义上说,任何一个物理量在某一数值 附近作周期性的往复变化,都称为振动。 该物理量称为“振动量”。
振动量可以是力学量(位移,角位移),也可以是 电磁学量(电量、电流、场强),也可以是其它物 理量。 从数学上来描述,振动量应该是随时间变化的周期 函数。
Asin( t 0)
振幅A ——振动量在振动过程中所能达到的最大值
Ψ 在 [–A, A] 之间变化,A 恒为正值
2 周期、频率、圆频率
周期T :物体作一次完全振动所经历的时间
Asin( t 0 2 ) Asin[ (t T ) 0]
T 2
弹簧振子 T 2 m
k
Asin( t 0)
1 2
k m
k
m
3 相位 ( t +)
Acos(t )
在一个周期内,振动量的振动状态(、d /dt)与其相位是
一一对应的。振动状态的变化完全可以由相位的变化生动地 反映出来。因此,相位是标示和决定振动状态的重要特征量。
初相位 决定初始时刻振动物体的运动状态
2-2 振动的分类
1、按产生振动的原因分: 1)自由振动 2)强迫振动。
1)单向振动:仅用一个位移量或转角就可表示质点在某一个 方向的瞬时位置(一个自由度),如图2-4所示的竖向振动和扭 转振动。
2)耦合振动:需用两个或两个以上的位移量或转角才能表示 刚体在某一个方向的瞬时位置(多自由度),其振动特点是刚体 在一个方向的运动必将引起另一方向的运动,如图2-5所示刚体。
频率f :单位时间内物体所作的完全振动的次数
f 1 T
单位:赫兹(Hz)
圆频率ω:物体在 2π 秒时间内所作的完全振动次
数(又叫角频率)
2 2
T
单位:弧度每秒(rad/s)
T、v、ω反映了振动的快慢,由简谐振动系统的物理
性质决定,故称们为固有周期、固有频率、固有
圆频率
弹簧振子:
T 2
m k
d 2
dt 2
2
0
1
Asin( t 0)
2
注 • A 和 是积分常数,由初始条件决定。
意 • (2) 式是一个通解,但并不是唯一形式的解, 余弦函数和复指数函数也是 (1) 式的解
可见: Ψ与 A、 ω 、 0 有关 A、 ω 、 0是 描述简谐振动的特征量
二 简谐振动的特征量
1 振幅A
2-2 振动的分类
阻尼振动 如果振动系统中还存在阻尼力,那么振子在运
动中所受到的作用力就是回复力与阻尼力的叠加。 而阻尼力总是减小回复力,因此使得振动的振幅随 时间而减小。
从能量的角度来看,阻尼的发生有两种形式, • 振动系统的能量变成热运动的能量,摩擦阻尼 • 振动系统的能量变成波动形式的能量,辐射阻尼
A→O:弹性力向右,加速度向右,加速;
O→B:
向左,
向左,减速;
B→O:
向左,
向左,加速;
O→A:
向右, 向右,减速。
物体在A、B之间来回往复运动
由虎克定律: F=-k x (负号表示弹性 力的方向与位移方向相反)
由牛顿第二定律
F ma
令
2 k
m
k
x
m
d2 dt
x
2
则
d2x dt 2
2 x
位移 x 所遵从的运动微分方程
在振动学中定义:如果描述系统运动的物理 量Ψ 遵从微分方程:
d 2
dt 2
2
0
(1)
(简谐振动的动力学方程)
则该系统的运动就是简谐振动。
由数学知识可以得到该微分方程的通解:
Asin( t 0) (2)
描述了振动量随时间的变化规律,因此 (2) 式也可以 称为简谐振动的运动学方程。
强迫振动
实际的振动系统总是阻尼振动,那么系统要把 振动维持下去必须从外边获得能量,也就是说有外 部力的作用。
外部作用力有两种作用形式,即单方向的力和 周期作用力。
一个振动系统如果受到周期性的外部驱动力, 就称为强迫振动。它在运动中所受到的力,就是在 阻尼振动的方程中再加一项周期驱动力,如果外部 的周期驱动力也是按照简谐振动的规律变化,则得 到受迫振动就会稳定为简谐振动。
优选第二章振动与波动理论基础
2007-3-8
1
道路桥梁工程动态无损检测:
1)桩基高低应变动力检测; 2)桥梁上部结构动力检测; 3)FWD落锤式弯沉仪检测等。
振动是物质的一种运动形式,是自然界十分广 泛的运动形式之一,波动是振动的传播过程。
美妙的音乐
五颜六色的光 无线电传输各信息
与振动波动 相关
………………..
共振
在周期性外力作用下的强迫振动中,会发生一 种特别的现象,就是共振。
共振最重要的特征就 是振幅和外力的频率有关, 而且当外力频率满足一定 条件时,振幅存在一个最 大值,这就是说外力与振 动系统发生了共振。 在外力不大的情况下,也 能导致振子产生很大的振 幅。
2-2 振动的分类
2、按振动的振型分: