大学物理题库-振动与波动汇总

合集下载

《大学物理》期末考试复习题(振动与波)

《大学物理》期末考试复习题(振动与波)


(A) 2 ;
答案:(D)
(B)
m1 m2
2

(C)
m2 m1
2

(D) 2
m2 . m1
一物体作简谐振动,振动方程为
x
A cos(t
1 4
) 。在
t = T/4(T
为周期)时刻,物体的
加速度为 ( )
(A)
2 2
A 2

(B)
2 2
A 2 ;
(C)
3 2
A 2

(D)
3 2
A 2

一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判
一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的 1/4 时,其动能为振 动总能量的
(A) 7/16 ; (B) 9/16 ; (C) 11/16 ; (D) 15/16 。 []
答案:(D)
第十章 波动
10-1 机械波的几个概念
10-2 平面简谐波的波函数
如图所示,有一平面简谐波沿 x 轴负方向传播,
断下列情况正确的是
(A)竖直放置作简谐振动,在光滑斜面上不作简谐振动;
(B)竖直放置不作简谐振动,在光滑斜面上作简谐振动;
(C)两种情况都作简谐振动;
(D)两种情况都不作简谐振动。
[]
竖直放置 放在光滑斜面上
答案:(C)
同一弹簧振子悬挂相同的质量,分别按如图(a)、(b)、(c)所示的三种方式放置,摩擦力都
(A) 曲线 3,1,2 分别表示 x,v,a 曲线; (B) 曲线 2,1,3 分别表示 x,v,a 曲线; (C) 曲线 1,2,3 分别表示 x,v,a 曲线; (D) 曲线 2,3,1 分别表示 x,v,a 曲线.

大学物理复习题答案(振动与波动)

大学物理复习题答案(振动与波动)

大学物理1复习题答案一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内)1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为'T 1和'T 2。

则有 ( B )A .'T T >11且 'T T >22B .'T T =11且 'T T >22C .'T T <11且 'T T <22D .'T T =11且 'T T =222.一物体作简谐振动,振动方程为cos 4x A t ⎛⎫=+⎪⎝⎭πω,在4Tt =(T 为周期)时刻,物体的加速度为 ( B )A. 2ω B 。

2ω C 。

2ω D2ω3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D )AAAAAAC)AxxAAxA B C D4。

两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为)cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 ( B )A. )π21cos(2++=αωt A x B. )π21cos(2-+=αωt A x . C 。

)π23cos(2-+=αωt A x D. )cos(2π++=αωt A x . 5.波源作简谐运动,其运动方程为t y π240cos 100.43-⨯=,式中y 的单位为m ,t 的单位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A )A .m 25.0B .m 60.0C .m 50.0D .m 32.06.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: ( B )A .cos x t ππ⎛⎫=+ ⎪⎝⎭22233B .cos x t ππ⎛⎫=+ ⎪⎝⎭42233C .cos x t ππ⎛⎫=- ⎪⎝⎭22233D .cos x t ππ⎛⎫=- ⎪⎝⎭42233二. 填空题(每空2分)1. 简谐运动方程为)420cos(1.0ππ+=t y (t 以s 计,y 以m 计),则其振幅为 0.1 m ,周期为 0。

大学物理A-振动波动练习题

大学物理A-振动波动练习题
答案:[(A)]
8*、一平面简谐波,其振辐为A,频率为,沿X轴正向传播.设
t=t0时刻波形如所示.则X=0处质点振动方程为:
(A) y =Acos[2 (t +t0) + /2]; (B) y =Acos[2 (t -t0) + /2]; (C) y =Acos[2 (t -t0) - /2]; (D) y =Acos[2 (t -t0) + ]。
答案:[(C)]
4、图a为某质点振动图线,其初相记为1,图b为某列行波在
t=0时的波形曲线,0点处质点振动的初相记为2;图C为另一
行波在t=T/4时刻的波形曲线,0点处质点振动的初相为3,
则:
(A) 1 =2 =3 = / 2;
Y
(B) 1 =3 /2,2 =3 = / 2 ;
(C) 1 =2 =3 = 3 /2 ; (D) 1 =3 /2,2 = /2 ,3 =0 。
8m
6m
X
C
B
A
答案.:y =510 -2 cos( 4 t+0.2 x);
y =510 -2 cos( 4 t+0.2 x -1.2 ); y =510 -2 cos( 4 t-2.8 )。
11*、一平面简谐波在空中传播。己知波线上P点的振动规律为: y =Acos (t + );根据图中所示两种情况,分别列出以O点为 原点时的波动方程。对于图a是: 对于图b是:
3
Байду номын сангаас
(D)0 =- /2,2 = /2 ,3 = 。 0 1 2 4
u X(m)
答案:[(C)]
7*、一质点沿Y方向振动,振辐为A,周期为T,平衡位置在坐标原 点,己知t=0时刻质点向y轴负方向运动,由该点发出的波波长为, 则沿X轴正向传播的简谐波波动方程为:

大学物理 振动与波、波动光学练习题

大学物理 振动与波、波动光学练习题

06振动与波、波动光学练习题 一、选择题 1 一物体作简谐振动,振动方程为)4cos(πω+=t A y在4T t =(T 为周期)时刻,物体的加速度为 [ ]2222321)(,321)(,221)(,221)(ωωωωA D A C A B A A -- 2 两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为)cos(1αω+=t A y 。

当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为 [ ])cos()(),23cos()()2cos()(),2cos()(2222παωπαωπαωπαω++=-+=-+=++=t A y D t A y C t A y B t A y A 3一质点沿y 轴作简谐振动,振动方程为)SI (),32cos(1042παπ++⨯=-t y ,从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为[ ]s 61)(s,31)(s,21)(s,41)(s,81)(E D C B A 4 已知两个简谐振动曲线如图所示,1x 相位比2x 的相位 [ ]ππππ超前,落后,超前,落后)()(2)(2)(D C B A5题图 7题图5 一质点作简谐振动,周期为T 。

质点由平衡位置向X 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为 [ ],8)(6)(12)(4)(T D T C T B T A ,,, 6 在下面几种说法中,正确的说法是: [ ](A )波源不动时,波源的振动周期与波动的周期在数值上是不同的,(B )波源振动的速度与波速相同,(C) 在波传播方向上的任一质点的振动相位总是比波源的相位滞后,(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前。

7一平面简谐波,沿X 轴负方向传播,角频率为ω,波速为u 。

设4T t =时刻的波形如图所示,则该波的表达式为: [ ]])(cos[)(),(cos )(]21)(cos[)(),(cos )(πωωπωω++=+=+-=-=ux t A y D u x t A y G u x t A y B ux t A y A 8 当机械波在媒质中传播时,一媒质质元的最大变形量发生在 [ ](A)媒质质元离开其平衡位置最大位移处,(B )媒质质元离开其平衡位置)2/2(A 处,(C )媒质质元在其平衡位置处,(D )媒质质元离开其平衡位置A/2处(A 是振动振幅)。

大学物理知识总结习题答案(第八章)振动与波动

大学物理知识总结习题答案(第八章)振动与波动

第八章 振动与波动本章提要1. 简谐振动· 物体在一定位置附近所作的周期性往复运动称为机械振动。

· 简谐振动运动方程()cos x A t ωϕ=+其中A 为振幅,为角频率,(t+)称为谐振动的相位,t =0时的相位称为初相位。

· 简谐振动速度方程d ()d sin xv A t tωωϕ==-+ · 简谐振动加速度方程222d ()d cos xa A t tωωϕ==-+· 简谐振动可用旋转矢量法表示。

2. 简谐振动的能量· 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为212k E mv =· 弹簧的势能为212p E kx =· 振子总能量为P22222211()+()221=2sin cos k E E E m A t kA t kA ωωϕωϕ=+=++3. 阻尼振动· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。

· 阻尼振动的动力学方程为222d d 20d d x xx t tβω++= 其中,γ是阻尼系数,2mγβ=。

(1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。

(2) 当22ωβ=时,不再出现振荡,称临界阻尼。

(3) 当22ωβ<时,不出现振荡,称过阻尼。

4. 受迫振动· 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力· 受迫振动的运动方程为22P 2d d 2d d cos x x F x t t t mβωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。

· 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。

大学物理振动波动例题习题

大学物理振动波动例题习题

振动波动一、例题(一)振动1。

证明单摆是简谐振动,给出振动周期及圆频率.2. 一质点沿x 轴作简谐运动,振幅为12cm,周期为2s 。

当t = 0时, 位移为6cm ,且向x 轴正方向运动。

求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =—0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。

3。

已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0。

07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。

2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播.已知原点的振动曲线如图所示.求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差.3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+.S 1距P 点3个波长,S 2距P 点21/4个波长。

求:两波在P 点引起的合振动振幅。

4。

沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2。

25m ,反射波振幅无变化,反射处为固定端,求反射波的方程.二、习题课(一)振动1. 一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则O 2.25m Ax t O A/2 -A x 1 x 2 质点第二次通过x = -2 cm 处的时刻为[ ](A) 1 s (B) (2/3) s (C ) (4/3) s (D ) 2 s2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为(A ) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B ) ⎪⎭⎫ ⎝⎛-=332cos 2ππt x ;(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D ) ⎪⎭⎫ ⎝⎛-=334cos 2ππt x 。

大学物理题库-振动与波动

大学物理题库-振动与波动

振动与波动题库一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。

当0=t 时, 位移为cm 6,且向x 轴正方向运动。

则振动表达式为( ) (A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x (C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。

x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。

大学物理振动与波动总复习

大学物理振动与波动总复习

大学物理总复习1、 一物体作简谐振动,振动方程为 )41cos(π+=t A x ω .在 t = T /4(T 为周期)时刻,物体的加速度为( B )(A) 2221ωA -. (B) 2321ωA . D(C) 2321ωA -. (D) 2221ωA .2、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( B ) (A) T /4. (B) T /6. (C) T /8. (D) T /12.B3、在驻波中,两个相邻波节间各质点的振动 ( D ) (A) 振幅相同,相位不同. (B) 振幅不同,相位不同.D(C) 振幅相同,相位相同. (D) 振幅不同,相位相同.4、在简谐波传播过程中,沿传播方向相距为λ21(波长)的两点的振动速度必定( C )(A) 大小不同,方向相同. (B) 大小和方向均相同.C(C) 大小相同,而方向相反. (D) 大小和方向均相反.5、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为 ( A )(A)π . (B)π23 . A(C) π21. (D) 0.6、一物质系统从外界吸收一定的热量,则 ( D ) D(A) 系统的内能一定增加. (B) 系统的内能一定减少. (C) 系统的内能一定保持不变. (D) 系统的内能可能增加,也可能减少或保持不变.xt OA/2 -Ax 1x 27、两种不同的理想气体,若它们的最概然速率相等,则它们的 ( A ) A(A) 平均速率相等,方均根速率相等. (B) 平均速率相等,方均根速率不相等. (C)平均速率不相等,方均根速率相等. (D) 平均速率不相等,方均根速率不相等8、光波的衍射现象没有声波显著, 这是由于( D ) D(A) 光波是电磁波, 声波是机械波 (B) 光波传播速度比声波大 (C) 光是有颜色的(D) 光的波长比声波小得多9、牛顿环实验中, 透射光的干涉情况是( D ) D(A) 中心暗斑, 条纹为内密外疏的同心圆环 (B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环10、若用波长为的单色光照射迈克耳孙干涉仪, 并在迈克耳孙干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为( C )C(A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(- 2(n -1)l=k 入11、一平面简谐波沿Ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x ty (SI),该波在t = 0.5 s 时刻的波形图是 ( B )B-12、一束自然光由空气(折射率≈1)入射到某介质的表面上,当折射角为0γ时,反射光为线偏振光,则介质的折射率等于( B )A.01tanγB.0tanγC. 01sinγD. 0sinγB13、双缝试验,E上的P处为明条纹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动与波动题库一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。

当0=t 时, 位移为cm 6,且向x 轴正方向运动。

则振动表达式为( )(A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x(C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2×10-2cos (πt/2-π/2) (m)(B) y=2×10-2cos (πt + π) (m)(C) y=2×10-2cos(πt/2+π/2) (m)(D) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。

x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。

设小球的运动可看作筒谐振动,则该振动的周期为( )(A) 2π (B )32π(C )102π (D )52π9、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 [ ](A) kA 2 (B )kA 2 /2 (C )kA 2/4 (D )010、两个同方向的简谐振动曲线(如图所示) 则合振动的振动方程为( )(A))()(22cos 12ππ+-=t T A A x (B ))()(22cos 12ππ--=t T A A x(C ))()(22cos 12ππ++=t T A A x (D ))()(22cos 12ππ-+=t T A A x11、一平面简谐波在t=0时刻的波形图如图所示,波速为μ=200 m/s ,则图中p (100m) 点的振动速度表达式为( )(A) v=-0.2πcos (2πt -π)(B) v=-0.2πcos (πt -π) (C) v=0.2πcos (2πt -π/2) (D) v=0.2πcos (πt -3π/2)12、一物体做简谐振动,振动方程为x=Acos (ωt+π/4), 当时间t=T/4 (T 为周期)时,物体的加速度为( )(A) -Aω2×22 (B) Aω2×22 (C) -Aω2×23 (D) Aω2×2313、一弹簧振子,沿x 轴作振幅为A 的简谐振动,在平衡位置0=x 处,弹簧振子的势能为零,系统的机械能为J 50,问振子处于2/A x =处时;其势能的瞬时值为( )(A) 12.5J (B )25J (C )35.5J (D )50J14、两个同周期简谐运动曲线如图(a ) 所示,图(b)是其相应的旋转矢量图,则x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π(C )落后π (D )超前π15、图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为 ( )(A) 均为零 (B) 均为2π(C) 2π- (D) 2π 与2π-16.一平面简谐波,沿X 轴负方向 y传播,圆频率为ω,波速为μ,设t=T/4μ时刻的波形如图所示,则该波的波函数 A为( ) X (A )y=Acosω(t -x /μ) -A (B) y=Acos[ω(t -x /μ)+π /2](C )y=Acosω(t +x /μ)(D) y=Acos[ω(t +x /μ)+π]17.一平面简谐波,沿X 轴负方向传播,波长λ=8 m 。

已知x=2 m 处质点的振动方程为)610cos(4ππ+=t y 则该波的波动方程为( )(A ))125810cos(4πππ++=x t y ; (B ))61610cos(4πππ++=x t y(C ))32410cos(4πππ++=x t y ; (D ))31410cos(4πππ-+=x t y18.如图所示,两列波长为λ的相干波在p 点相遇,S 1点的初相位是φ1,S 1点到p 点距离是r 1;S 2点的初相位是φ2,S 2点到p 点距离是r 2,k=0,±1,±2,±3 ···· ,则p 点为干涉极大的条件为( ) (A ) r 2-r 1= kλ s 1 r 1 p (B) φ2-φ1-2π(r 2-r 1)/ λ=2kλ(C) φ2-φ1=2kπ r 2 (D) φ2-φ1-2π(r 2-r 1)/ λ=2kπ s 219.机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播20.在驻波中,两个相邻波节间各质点的振动( ) (A ) 振幅相同,相位相同 (B ) 振幅不同,相位相同 (C ) 振幅相同,相位不同 (D ) 振幅不同,相位不同 二、填空题(每题3分)1、一个弹簧振子和一个单摆,在地面上的固有振动周期分别为T 1和T 2,将它们拿到月球上去,相应的周期分别为'T 1和'T 2,则它们之间的关系为'T 1 T 1 且 'T 2 T 2 。

2、一弹簧振子的周期为T ,现将弹簧截去一半,下面仍挂原来的物体,则其振动的周期变为 。

3、一平面简谐波的波动方程为()()m 24cos 080πx πt y -=..则离波源0.80 m 及0.30 m 两处的相位差=Δϕ。

4、两个同方向、同频率的简谐振动,其合振动的振幅为20㎝,与第一个简谐振动的相位差为π/6,若第一个简谐振动的振幅为103=17.3 cm,则第二个简谐振动的振幅为 cm , 两个简谐振动相位差为 。

5、一质点沿X 轴作简谐振动,其圆频率ω= 10 rad/s ,其初始位移x 0= 7. 5 cm ,初始速度v 0= -75 cm/s 。

则振动方程为 。

6、一平面简谐波,沿X 轴正方向传播。

周期T=8s ,已知t=2s 时刻的波形如图所示,则该波的振幅A= m ,波长λ= m ,波速μ= m/s 。

7、一平面简谐波,沿X 轴负方向传播。

已知x=-1m 处,质点的振动方程为x=Acos (ωt+φ) ,若波速为μ,则该波的波函数为 。

8、已知一平面简谐波的波函数为y=Acos(at -bx) (a,b 为正值),则该波的周期为 。

9、传播速度为100m/s ,频率为50 H Z 的平面简谐波,在波线上相距为0.5m 的两点之间的相位差为 。

10、一平面简谐波的波动方程为y=0.05cos(10πt-4πx),式中x ,y 以米计,t 以秒计。

则该波的波速u= ;频率ν= ;波长λ= 。

11、一质点沿X 轴作简谐振动,其圆频率ω= 10 rad/s ,其初始位移x 0= 7. 5 cm ,初始速度v 0=75 cm/s ;则振动方程为 。

12. 两质点作同方向、同频率的简谐振动,振幅相等。

当质点1在 2/1A x =处,且向左运动时,另一个质点2在 2/2A x -= 处, 且向右运动。

则这两个质点的位相差为=∆ϕ 。

13、两个同方向的简谐振动曲线(如图所示) 则合振动的振幅为A= 。

14. 沿一平面简谐波的波线上,有相距m 0.2的两质点A 与B ,B 点振动相位比A 点落后6π,已知振动周期为s 0.2,则波长λ= ; 波速u= 。

15.一平面简谐波,其波动方程为)(2cosx t A y -=μλπ式中A = 0.01m ,λ = 0. 5 m ,μ = 25 m/s 。

则t = 0.1s 时,在x = 2 m 处质点振动的位移y = 、速度v = 、加速度a = 。

16、 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1,则振动的周期T = 。

17、一氢原子在分子中的振动可视为简谐运动.已知氢原子质量m =1.68 ×10-27 Kg ,振动频率υ=1.0 ×1014 Hz ,振幅A =1.0 ×10-11m.则此氢原子振动的最大速度为=max v 。

18.一个点波源位于O 点,以O 为圆心,做两个同心球面,它们的半径分别为R 1和R 2。

在这两个球面上分别取大小相等的面积△S 1和△S 2,则通过它们的平均能流之比21P P = 。

19.一个点波源发射功率为W= 4 w ,稳定地向各个方向均匀传播,则距离波源中心2 m 处的波强(能流密度)为 。

20.一质点做简谐振动,振动方程为x=Acos(ωt+φ),当时间t=T/2 (T 为周期)时,质点的速度为 。

三、简答题(每题3分)1、从运动学看什么是简谐振动?从动力学看什么是简谐振动?一个物体受到一个使它返回平衡位置的力,它是否一定作简谐振动?2、拍皮球时小球在地面上作完全弹性的上下跳动,试说明这种运动是不是简谐振动?为什么?3、如何理解波速和振动速度?4、用两种方法使某一弹簧振子作简谐振动。

方法1:使其从平衡位置压缩l ∆,由静止开始释放。

方法2:使其从平衡位置压缩2l ∆,由静止开始释放。

若两次振动的周期和总能量分别用21T T 、和21E E 、表示,则它们之间应满足什么关系?5、从能量的角度讨论振动和波动的联系和区别。

. 四、简算题1、若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,试求:当s 2=t 时的位移x ;速度v 和加速度a 。

相关文档
最新文档