数据仓库与数据中心知识培训
数据仓库培训课件

将相似的数据聚集成不同的群体, 如客户分群、市场细分等。
数据展现技术
报表
通过报表展示数据的汇总和分析 结果,如销售报表、财务报告等
。
图表
通过图表展示数据的趋势和关系 ,如折线图、柱状图、饼图等。
可视化大屏
通过可视化大屏展示数据的实时 动态和全局信息,如监控大屏、
指挥中心等。
03
CATALOGUE
案例二:亚马逊的数据仓库实践
背景介绍:亚马逊作为全球最大的在线零售商之一,需要处理海量的销售数据和客户评价数据,为了更好地进行数据分析和 决策,亚马逊建立了自己的数据仓库。
亚马逊的数据仓库实践采用了分布式计算平台,基于Hadoop平台进行构建,处理海量的销售数据和客户评价数据,同时采 用了ETL工具进行数据清洗和整合,建立了自己的数据仓库模型,并进行了数据分析和挖掘,为公司的决策提供了有力的支持 。此外,亚马逊还利用数据仓库进行了客户行为分析,为个性化推荐和精准营销提供了支持。
采用星型模型设计数据仓库,将数据分为事实表和维度表,适用 于快速查询和报表生成。
雪花模型设计
采用雪花模型设计数据仓库,将数据按照层级进行划分,适用于需 要高度扩展和稳定性的系统。
ETL工具的使用
采用ETL工具进行数据抽取、转换和加载,提高数据处理效率和准 确性。
04
CATALOGUE
数据仓库实施
实施步骤
案例四:银行的数据仓库设计
背景介绍:银行作为金融行业的重要机构之 一,需要处理大量的金融交易数据和客户信 息数据,为了更好地进行风险管理和业务决 策,银行进行了数据仓库设计。
银行的数据仓库设计采用了分布式计算平台 ,基于Hadoop平台进行构建,处理大量的 金融交易数据和客户信息数据,同时采用了 ETL工具进行数据清洗和整合,建立了自己 的数据仓库模型,并进行了数据分析和挖掘 ,为风险管理和业务决策提供了有力的支持 。此外,银行还利用数据仓库进行了客户行 为分析,为个性化服务和精准营销提供了支
大数据管理培训复习材料

⼤数据管理培训复习材料第⼀篇⼤数据概论1.传感器采集的数据主要包括温度、压⼒、转速、声⾳、光线、位置、⽓味、磁场等物理量2.埋点技术的⽬的埋点技术通过在代码的关键部位植⼊统计代码,追踪⽤户的点击⾏为3.Hadoop是处理⼤数据有效技术有效技术4.第三次信息化浪潮的标志是“⼤云物移”5.⼤数据发展的萌芽期是上世纪90年代6.数据的产⽣⽅式经历了从“被动”、“主动”、到“⾃动”的转变7.麦肯锡对⼤数据定义是⼀种规模⼤到在获取、存储、管理、分析⽅⾯⼤⼤超出了传统数据库软件⼯具能⼒范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四⼤特征8.⼤数据的4V特征是体量⼤、多样性、价值密度低、速度快9.1PB=1024*1024GB10.互联⽹的数据以⾮结构化数据为主11.办公⽂档、⽂本、图⽚、⾳频这些都是⾮结构化的数据第⼆篇数据采集1.传感器数据处理的第⼀步是将电压信号转化为对应的物理量2.企业⾃⾝的APP产品可以通过埋点技术采集⽤户⾏为的数据3.数据采集与业务功能的开发会产⽣冲突4.互联⽹数据的采集依赖爬⾍技术5.互联⽹数据采集后可以应⽤于舆情管理、客户分析、⾏业分析、对⼿分析6.企业采集互联⽹数据不⼀定⾃⼰开发爬⾍程序,可以利⽤第三⽅采集⼯具第三篇数据仓库1.数据仓库的ETL过程包括数据抽取、转换、装载2.数据仓库是⾯向管理的系统,⽽普通数据库是⾯向业务的系统3.数据仓库对数据的访问时只读式的访问4.数据仓库是⾯向主题设计的,⽽普通数据库是⾯向应⽤设计的5.数据仓库的四个特征是⾯向主题的、集成的、随时间变化的、⾮易失的6.数据仓库虽然会⽐普通数据库保留更多的历史数据,但是它也需要根据时间变化删去旧的数据内容7.下⾯两个图中,图2是多维数据库的表现⽅式,更适合于数据仓库的OLAP操作图1 图2产品名称地区销售量冰箱东北 50冰箱西北 60彩电东北 70彩电西北 80空调东北 90空调西北 100 东北西北冰箱 50 60 彩电 70 80 空调 90 1008. 数据仓库的OLAP 操作包括上卷、下钻、切⽚、旋转等操作9. 数据仓库常⽤的模型包括雪花型和星型10. 下图表现的是雪花型的模型设计11. 数据仓库的表会引⼊冗余,也会对源表进⾏物理分割12. 数据仓库元数据的作⽤是描述了数据的结构、内容、键、索引等项内容13. 静态元数据包含名称、描述、格式、数据类型、关系、⽣成时间、来源、索引、类别、域、业务规则等14.动态元数据包含⼊库时间、更新周期、数据质量、统计信息、状态、处理、存储位置、存储⼤⼩、引⽤处等15.数据仓库的运维包含以下⼏部分数据安全管理、数据质量管理、数据备份和恢复16.数据仓库的数据量不断增长,针对增长数据的管理有哪些⽅法利⽤概括技术、对细剖数据的控制、对历史数据的限制、对数据使⽤范围的进⾏限制、将睡眠数据移出。
数据仓库与数据挖掘第一章 数据仓库和数据挖掘概述

③ 采用事件驱动和主动推送的方式为业务系统提供分析能力,例如银行的信 贷风险管理员,当审批某人的贷款请求时,关于该申请人的相关风险评级 等信息就会被主动推送过来。
1.1.2 发展历程4——数据中心
通过数据中心的构建,企业从 传统的交易系统(记录系统) 和各种差分系统(Different System)逐渐转向构建创新系 统,通过使用分析技术创造独 特的竞争优势,将分析技术慢 慢融入到企业的核心战略制定 和日常运营管理中。
1.1.1 数据仓库和数据挖掘的目标
构建数据仓库和应用数据挖掘的共同目标:
(7)构建数据治理体系,保证数据的一致性,消除信息的冗余、冲突和缺失等问题;
(8)提供高效、实时和准确的多维数据分析、报表统计、即时查询、广告版、多媒体分析、流 分析和内容分析等功能,为企业运营分析提供全面支持;
(9)提供简洁易用的数据挖掘和预测分析支撑,为企业分析提供全面支持;
。。。。。。
1.1.2 发展历程1——报表查询系统
• 随着时间的推移,这些报表查询系统越来越不能满足企业的需求。 • 例如:
① 查询访问性能比较慢 ② 报表统计相对固定难以满足企业灵活的业务需求 ③ 无法进行多维分析等
1.1.2 发展历程2——传统数据仓库技术
• 使用ETL(Extract,Transform,Load )或ETCL(Extract, Transform,Clean,Load )工具实现数据的导出、转换、清洗和装 入工具,使用操作型数据存储(Operational Data Store,ODS)存储 明细数据,使用数据集市和数据仓库技术实现面向主题的历史数据存 储,使用多维分析工具进行前端展现,以及使用数据仓库工具提供的 挖掘引擎或基于单独的数据挖掘工具进行预测分析等。相比之前的报 表查询系统。
数据仓库与数据挖掘培训课件.pptx

OLAP的基本思想是决策者从多方面和多角度以多维 的形式来观察企业的状态和了解企业的变化。
3.OLTP与OLAP的对比
OLTP 细节性数据 当前数据 经常更新 一次性处理的数据量小 对响应时间要求高 面向应用,事务驱动
关系数据库是二维数据(平面),多维数据库是空间 立体数据。 新的挑战:如何不被淹没在信息的海洋里
OLAP专门用于支持复杂的决策分析操作,侧重对分 析人员和高层管理人员的决策支持,
OLAP可以应分析人员的要求快速、灵活地进行大数 据量的复杂处理,并且以一种直观易懂地形式将查询 结果提供给决策制定人。
1993年,国家自然科学基金首次资助复旦大 学对该领域的研究项目。
Why?数据挖掘的社会需求
数据库越来越大
数据挖掘
可怕的数据
有价值的知识
所有企业面临的一个共同问题是:企业数 据量非常大,而其中真正有价值的信息却很少, 因此需要从大量的数据中经过深层分析,获得 有利于商业运作、提高竞争力的信息,就像从 矿石中淘金一样,数据挖掘也由此而得名。
矿山(数 据)
挖掘工具(算 法)
二十世纪末以来,全球信息量以惊人的速度 急剧增长—据估计,每二十个月将增加一倍。许 多组织机构的IT系统中都收集了大量的数据(信 息)。目前的数据库系统虽然可以高效地实现数 据的录入、查询、统计等功能,但无法发现数据 中存在的关系和规则,无法根据现有的数据预测 未来的发展趋势。为了充分利用现有信息资源, 从海量数据中找出隐藏的知识,数据挖掘技术应 运而生并显示出强大的生命力。
商业角度的定义
数据挖掘是一种新的商业信息处理技术,其 主要特点是对商业数据库中的大量业务数据进行 抽取、转换、分析和其他模型化处理,从中提取 辅助商业决策的关键性信息。
数据仓库 的名词解释

数据仓库的名词解释数据仓库的名词解释数据仓库(Data Warehouse)是指一个用于存储、整合和管理企业各个部门产生的大规模数据的集中式数据库系统。
它主要用于支持企业决策制定、战略规划以及业务分析。
数据仓库的设计和构建需要考虑数据的采集、转换、加载以及存储等多个方面,以确保数据的准确性和可用性。
一、数据仓库的基本概念数据仓库是一个面向主题的、集成的、时间一致的、非易失的数据集合,用于支持企业决策制定和业务分析。
它将来自不同数据源的数据进行抽取、转换和加载,形成一个统一的、易于查询和分析的数据源。
数据仓库的特点:1. 面向主题:数据仓库以主题为中心,将数据按照主题进行组织和存储,以满足不同部门和用户的信息需求。
2. 集成:数据仓库将来自不同数据源的数据进行整合,消除了数据冗余和不一致性。
3. 时间一致性:数据仓库中的数据是按照一致的时间标准进行存储和管理的,以支持历史数据分析和趋势预测。
4. 非易失性:数据仓库中的数据一旦存储,不会轻易被删除或修改,以确保数据的可追溯性和可靠性。
二、数据仓库的架构和组成部分数据仓库的架构通常包括数据采集、数据转换、数据加载、数据存储和数据查询等几个关键组成部分。
1. 数据采集:数据仓库的数据采集涉及到从各个数据源中提取和抽取数据的过程。
这些数据源可以是企业内部的关系型数据库、操作型数据源,也可以是外部的数据源,如Web数据、日志数据等。
数据采集可以通过ETL(Extract、Transform、Load)工具进行,在此过程中可以对数据进行清洗、转换和加工。
2. 数据转换:数据采集后,需要进行数据转换的操作,将采集到的数据进行整合和规范化。
这包括数据清洗、数据集成、数据变换等一系列处理,以确保数据的一致性和质量。
3. 数据加载:数据加载是将经过转换的数据加载到数据仓库中的过程。
数据加载可以是全量加载,也可以是增量加载。
在加载过程中,还可以对数据进行校验和验证,以确保数据的准确性和完整性。
数据库OCM认证培训大纲(oracle认证大师)

数据库OCM认证培训大纲(oracle认证大师)Oracle DBA大师班(10g OCM方向)1. 超过90%的Oracle认证专家认为Oracle认证增加了他们的专业可信度2. 超过90%的认证专家认为Oracle认证提高了他们的工作效率3. 89%的认证专家认为Oracle认证使他们有能力提供更高水准的客户服务4. 超过88%的认证专家认为Oracle认证使他们更有实力承担复杂的IT任务5. 92%的认证专家认为Oracle认证使他们的事业得到了更好的发展OCM培训介绍Oracle Certified Master (OCM) -Oracle认证大师,是Oracle认证的最高级别,是对数据库从业人员的技术、知识和操作技能的最高级别的认可。
Oracle OCM是解决最困难的技术难题和最复杂的系统故障的最佳Oracle专家人选,也是IT行业衡量IT专家和经理人的最高专业程度及经验的基准。
OCM不但有能力处理关键业务数据库系统和应用,还能帮助客户解决所有的Oracle技术困难,将成为企业内的资深专家和顾问。
通过这个课程使ORACLE数据库专家掌握了大型Oracle数据库在Linux/Unix平台上的网格、集群、灾备、调优、数据仓库、安全等高级维护技术,有资格成为大型数据中心行业权威。
OCM培训适合对象欲挑入年薪在15万-25万行业的在职者欲从事的Oracle 技术专家职位在校大学生(计算机相关专业)欲转行为企业ERP顾问的软件开发人员欲进入外企、银行、软件公司、国企从事IT信息技术职位的某职者OCM培训学习时间&培训班型OCM培训课程内容课程一:Oracle10g 服务器配置课程简介:通过本课程使的数据库工程技术人员能够了解OCM认证的考试形式、时间安排和注意事项,帮助学员掌握手工创建数据库和表空间,配置数据库监听器等任务。
课程内容:1. OCM考试简介2. 运用脚本创建数据库2. 确定和设置有关数据库架构的参数3. 条带化数据文件4. 创建与管理复用控制文件5. 大文件表空间管理6. 创建与管理多网络配置文件7. 监听器配置8. 共享数据库服务器的监听器配置9. 网络跟踪配置10. 管理Oracle 网络进程11.优化数据访问性能12. 临时、永久、UNDO表空间管理工具软件:Oracle 10g/11g Database 、Listener、SQL/PLUS课程二:Oracle10g网格计算与控制课程简介:Oracle网格计算使多组联网计算机能够组织到一起并按需进行共享,以满足不断变化的业务需求。
数据挖掘知识点归纳

知识点一数据仓库1.数据仓库是一个从多个数据源收集的信息存储库,存放在一致的模式下,并且通常驻留在单个站点上。
2.数据仓库通过数据清理、数据变换、数据集成、数据装入和定期数据刷新来构造。
3.数据仓库围绕主题组织4.数据仓库基于历史数据提供消息,是汇总的。
5.数据仓库用称作数据立方体的多维数据结构建模,每一个维对应于模式中的一个或者一组属性,每一个单元存放某种聚集的度量值6.数据立方体提供数据的多维视图,并允许预计算和快速访问汇总数据7.提供提供多维数据视图和汇总数据的预计算,数据仓库非常适合联机分析处理,允许在不同的抽象层提供数据,这种操作适合不同的用户角度8.OLAP例子包括下钻和上卷,允许用户在不同的汇总级别上观察数据9.多维数据挖掘又叫做探索式多维数据挖掘OLAP 风格在多维空间进行数据挖掘,允许在各种粒度进行多维组合探查,因此更有可能代表知识的有趣模式。
知识点二可以挖掘什么数据1.大量的数据挖掘功能,包括特征化和区分、频繁模式、关联和相关性分析挖掘、分类和回归、聚类分析、离群点分析2.数据挖掘功能用于指定数据挖掘任务发现的模式,分为描述性和预测性3.描述性挖掘任务刻画目标数据中数据的一般性质4.预测性挖掘任务在当前数据上进行归纳,以便做出预测5.数据可以与类或概念相关联6.用汇总、简洁、精确的表达描述类和概念,称为类/ 概念描述7.描述的方法有数据特征化(针对目标类)、数据区分(针对对比类)、数据特征化和区分8.数据特征化用来查询用户指定的数据,上卷操作用来执行用户控制的、沿着指定维的数据汇总。
面向属性的归纳技术可以用来进行数据的泛化和特征化,而不必与用户交互。
形式有饼图、条图、曲线、多维数据立方体和包括交叉表在内的多维表。
结果描述可以用广义关系或者规则(也叫特征规则)提供。
9.用规则表示的区分描述叫做区分规则。
10.数据频繁出现的模式叫做频繁模式,类型包括频繁项集、频繁子项集(又叫频繁序列)、频繁子结构。
大数据基础复习题与答案

大数据基础复习题与答案1.常见的数据的类型包括().A. 文本(正确答案)B. 图片(正确答案)C. 模型D .音频(正确答案)E. 视频(正确答案)2.更适应大数据时代的数据库类型是().A. 层次数据库B. 网状数据库C. 关系型数据库D. NoSQL数据库(正确答案)3.目前主流的数据库是()A. 层次数据库B. 网状数据库C. 关系型数据库(正确答案)D. NoSQL数据库3.关于数据的使用和管理,下面正确的是()A. 想要使用数据,必须先进行数据清洗,将数据变成一个可用的状态(正确答案)B. 有些初始数据的质量不高,比如数据缺失、语意模糊,因此需要数据清洗(正确答案)C. 进行数据管理时,关系型数据库更擅长存储非结构化数据D. 现代社会产生的大部分数据实际上是非结构化数据。
(正确答案)4.关于数据分析,下面说法正确的是()A. 数据分析需要借助数据挖掘和机器学习的相关算法(正确答案)B. 数据分析不需要用到大数据处理技术C. 数据分析需要构建统计模型(正确答案)D. 利用数据可视化技术可以将数据分析的结果更清晰地展示(正确答案)5.数据爆炸的时代对科学研究提出的挑战包括下面哪些()。
A. 需要更低成本的、能更快响应的大规模分布式存储(正确答案)B. 需要更加及时的大数据处理能力(正确答案)C. 需要更多的数据用于数据价值的挖掘D. 需要更加高效的数据分析工具(正确答案)6. 数据增速越来越快的原因在于?()A. 接入网络的设备越来越多(正确答案)B. 单条数据的所携带的信息也越来越多C. 用户越来越积极地参与到主动生产内容和数据的环节(正确答案)D. 物联网中的设备源源不断产生数据(正确答案)7第三次信息化浪潮的到来的标志是()。
A. 个人计算机的普及B. 互联网的普及和发展C. 人工智能时代的到来D. 云计算、大数据、物联网的快速发展(正确答案)8.华大基因公司2017年产出的数据达到1EB(艾字节)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
获取更新频度等元数据信息
规则 如:县上网电量
操作数据区(ODS)
提取基础数据项的元数据信息
=∑110KV及以下电厂上网电量
市上网电量
=∑110KV及以下电厂上网电量
省上网电量(不含500KV网损) =∑220KV及以下电厂上网电量
根据数据加工规则产生
的基础的事实表、维度
表,数据的粒度由维度
的层次决定
• 数据中心的定位
数据仓库与数据中心概述
数据中心是企业一体化信息平台的基础,它可以为应用系统的整 合与数据共享提供有效的解决方案,保障企业数据的一致性、及 时性、完整性、安全性、有效性和准确性,提高企业信息系统的 统一性,消除企业普遍存在的信息孤岛,解决信息系统沟通不畅 的问题。
数据仓库与数和更新新的数据
通过删除丢弃一些过时的数据
数据仓库与数据中心概述
• 特征四 随时间不断变化
数据仓库中的信息并不只是关于企业当时或某一时点的信息,而是 系统记录了企业从过去某一时点到目前的各个阶段的信息,通过这 些信息可以对企业的发展历程和未来趋势作出定量分析和预测。
获取相关报表、指标等元数据信息
提取数据访问地址、数据字典等 元数据信息
基础数据项 如:计量点计量数据
属性:计量点名称 计量点位置 正向有功 反向有功 周期(月)
基础指标 如:上网电量
属性:地区 时间 资产属性
数据抽取规则 临时数据区
存放明细业务数据项 只做适度的编码转换
业务特性决定更新频率 业务特性决定数据归档
时间属性 数据仓库中的数据通常都带有时间属性 数据统一更新以时间段为单位
• 什么是数据中心
数据仓库与数据中心概述
数据中心是公司一体化信息平台的重要 组成部分。
广义 企业业务应用与数据资源进行集中、集成、共享、分析的场所、 工具、流程等的有机组合
狭义 应用层面的数据中心,具体包括数据仓库和建立在数据仓库之上 的决策分析应用、数据ETL、ODS数据库、数据仓库、商务智能应用和 元数据管理等
传统数据库中的数据是原始、基础数据,而特定分析领域数据则是需要对它们作必要的 抽取、加工与总结而形成
数据仓库中的主题有时会因用户主观要求的变化而变化
数据仓库与数据中心概述
• 特征二 集成
数据仓库中的数据是为分析服务的,而分析需要多种广泛的不同数据 源以便进行比较、鉴别,因此数据仓库中的数据必须从多个数据源中 获取,这些数据源包括多种类型数据库、文件系统以及Internet网上 数据等,它们通过数据集成而形成数据仓库中的数据。
• 数据中心的逻辑架构(广义)
数据仓库执行架构
应用架构 数据架构
财务(资金)管理 安全生产管理
业务系统 营销管理
人力资源管理
项目管理
综合管理
协同办公 物资管理
应用层
数据分析及商业智能应用
报表统计 数据挖掘
联机分析 平衡计分卡
企业
内容
...
管理
...
...
安
全 架
...
数据层
... ...
构
各类业务数据
数据集市
财务(资金) 营销 协同办公 项目管理
ODS
数据仓库
数据集市
资源 数据
元数据
安全生产管理 人力资源 物资
综合管理
数据集市
基础架构
主机
运维架构
服务管理
基础架构层
存贮
网络
机房
系统管理
运维支持层
系统监控
用户和桌面管理
机房管理
• 数据中心的功能单元
数据仓库与数据中心概述
营销系统
财务系统
业务系统
生产系统
OLTP : On-Line Transaction Processing 特点 1、通常仅仅是对一个或一组记录的查询或修改
2、执行频率高 3、关心处理的响应时间、数据安全性和完整性等指标
OLTP与OLAP
• 分析型处理 也叫做信息型处理,主要用于企业管理人员的决策分析,为制订 企业的未来经营管理计划提供辅助决策信息。也叫做联机分析处 理(OLAP)。
企业数据仓库
获得基础指标等元数据信息
指标 如:供电量
属性:地区 时间 资产属性
规则 如:供电量(统计口径)
=上网电量+输入电量-输出电量
报表 如:供电量明细表
供售损综合情况表
ETL抽取
对数据仓库中的数据进行深度加 工,形成报表、指标、主题等所 涉及的事实表、维度表,以更贴 近特定的应用需求(口径),并
数据仓库与数据中心 内部知识培训
数据仓库与数据中心概述 OLTP 与 OLAP 多维数据分析模型 数据整合 应用介绍
• 数据仓库的起因
数据仓库与数据中心概述
数据仓库方式
20世 纪90 年代之 后
以支持经营管理过程中 的决策制定为目的(DSS,
OLAP, DM)
数据库方式
20世纪 90年代 之前
数据与应用分离,以实现数据高 度共享、支持日常业务处理过程
为目的(OLTP)
• 什么是数据仓库
数据仓库与数据中心概述
数据仓库就是一个面向主题的、集成的、不 可更新的、随时间不断变化的数据集合,用 于支持经营管理过程中的决策制定。
—— W.H.Inmon
• 数据仓库的四个特征
数据仓库与数据中心概述
数据仓库就是一个面向主题的、集成的、不 可更新的、随时间不断变化的数据集合,用 于支持经营管理过程中的决策制定。
统一 消除不同数据源之间的数据不一致的现象
综合 对原有数据进行综合和计算
• 特征三 不可更新
数据仓库与数据中心概述
数据仓库中的数据是经过抽取而形成的分析型数据,不具有原始性, 主要供企业决策分析之用,执行的主要是‘查询’操作,一般情况 下不执行‘更新’操作。同时,一个稳定的数据环境也有利于数据 分析操作和决策的制订。
—— W.H.Inmon
数据仓库与数据中心概述
• 特征一 面向主题
主题是用户使用数据仓库进行决策时所关心的重点方面,每一个主题基 本对应一个宏观的分析领域。
如:> CRM >>优质客户的挖掘 >>潜在大客户的发现
>>……
> ERP >>合同管理 >>物资库存的管理
>>……
面向主题是指数据仓库内的信息是按主题进行组织的,为按主题进行决 策的过程提供信息。
获得更高的效率
数据集市
获得基础指标、指标、报表等元 数据信息
元 数 据 资 源 库
报表
前端应用展现
统计
查询
分析
获得展现形式定义 等元数据信息
数据仓库与数据中心概述 OLTP 与 OLAP 多维数据分析模型 数据整合 应用介绍
OLTP与OLAP
• 操作型处理 也叫事务处理,是指对数据库的日常联机访问操作,通常是对一 个或一组记录的查询和修改,主要是为企业特定的应用服务的。 也叫联机事务处理(OLTP)。