正弦函数图像.ppt课件.ppt

合集下载

正弦型函数的图像ppt课件

正弦型函数的图像ppt课件

y
y=sin 1 x
2
1
O
2
3
4
x
1
y=sin2x
y=sinx
y=sin
1 2
x的图象可以看作是把
y=sinx的图象上所
有点的横坐标伸长到原来的2倍(纵坐标不变)。
y=sin 2x的图象可以看作是把 y=sinx的图象上所
有点的横坐标缩短到原来的1 2 Nhomakorabea倍(纵坐标不变)。
10
函数y=sinx ( >0且≠1)的图象可以看作是 把 y=sinx 的图象上所有点的横坐标缩短(当>1
4 1
3
8
8
2
1
0
2
y=sin2x
5
7
8
8
3 2
2
-1
0
x
15
四、函数y=sinωx与 y=sin(ωx+φ)图象的关系
y
1
8
2
y sin(2x )
3
x
O
y sin( 2x )
6
4 1
y=sin2x
函数y=sin ( x +)( >0且≠1)的图象可以看
作(当是把﹤y0=时sin)平移x 的图| 象个|向单左位(而当得到>0的时。)或向右
7
例2 1.
作函数 列表:
y
sin
2x

y
sin
1 2
x
的图象。
x
0
4
2
3
4
2x
0
2
3
2
2
sin 2x
0
1
0
1

正弦函数的图像PPT课件

正弦函数的图像PPT课件
伸长为原来的2倍 图象上各点纵坐标 缩短为原来的一半
缩短为原来的一半
图象上各点横坐标 伸长为原来的2倍
y
1
2 O
3
4 x
1
例3 作函数

的图象。
x
0
1 O 1 y
1
0
-1
0
2
x
三、函数y=sin(x+φ)图象
y
1 O 1 2 x
三、函数y=sin(x+φ)图象
1
2
伸长为原来的多少倍?
例5 作函数
1 O 1

的图象。

2
x
函数y=sin(x +φ) ( >0且≠1)的图象可以看作
是把 y=sin(x +φ) 的图象上所有点的横坐标缩短(当 >1时)或伸长(当0<<1时) 到原来的 变) 而得到的。 倍(纵坐标不
y=sinx 的图象上所有点的横坐标缩短(当>1时)或伸 长(当0<<1时) 到原来的 倍(纵坐标不变) 而得到 的。
练习:作下列函数在长度为一个周期的闭区间上的简图:
法一:
图象上各点纵坐标
图象上各点横坐标
伸长为原来的2倍
缩短为原来的一半
1
2
O

3
4 x
法一: 法二:
图象上各点纵坐标
图象上各点横坐标
y
2 1 2 O 1 2 y=2sinx的图象可以看作是把 y=sinx的图象上所有点 的纵坐标伸长到原来的2倍。 y= sinx的图象可以看作是把 y=sinx的图象上所有点的 纵坐标缩短到原来的 倍。 x
一、函数y=Asinx(A>0)的图象

正弦函数的图像ppt课件

正弦函数的图像ppt课件

思考 “五点法”作图有何优、缺点?
提示: “五点法”就是列表描点法中的一种.它的优点
是抓住关键点、迅速画出图像的主要特征;缺点是图
像的精度不高.
例1.用五点法画出y=-sinx在区间[0,2π ]上的简图. 解:列表
x 0 y=sin 0 x y=0 sinx
π 2
π
3π 2
2Leabharlann 1 -10 0-1 1
§5 正弦函数的图像
前面我们借助单位圆学习了正
弦函数y=sin x的基本性质,下面
画出正弦函数的图像,然后借助正
弦函数的图像,进一步研究它的性 质.
探究: 正弦函数y=sinx的图像
1.用描点法作出函数图像的主要步骤是怎样的?
(1) 列表. y sin x , x 0 , 2
x
3 2 2 3 5 6

P 1

/ p1
6
o1
M1
A
6
7 6
4 3
3 2
5 11 2 3 6
3.正弦曲线
y 1
2
2

o -1

3 2
2
x
y=sinx x[0,2] y y=sinx xR
1 -4 -3 -2 -
正弦曲线
2
o
-1
3
4
5
2 y 1. O -1
.
π 2
y 1 s i n x ,x [ 0 , 2 π ]
.
.

. 3π
2
2
x
y sinx, x [0,2π]
例3
利用五点法画出函数y=sinx-1的简图
解:列表:

正弦函数图像课件

正弦函数图像课件

y=sinx
终边相同角的同一三角函数值相等
即: sin(x+2k)=sinx, kZ
x[0,2]
y=sinx
f (x 2k ) f (x) 利用图象平移
xR
y=sinx x[0,2]
y
y=sinx xR
1
-4 -3
-2
- o
-1
函数y=sinx, xR的图象
2
3
4
正弦曲线
5 6 x
3)作正弦函数的简图(在精确度要求不太高时)
y 1
(0,0)o
2
-1
( 2 ,1)
2
五点画图法
( ,0)
3 2
3
( 2 ,-1)
( 2 ,0)
2
x
五点法
x
3
0
2
2
2
0
1
0
-1
0
y=sinx
4)函数的图象变换
y x2
向右平移 一个单位
y
(x
1)2
向下平移 一个单位
y (x 1)2 1
y
o1
x
-1
四. 解题示范
例1:用五点法作函数y=1+sinx, [0,2]的图象
x
0
2
y=sinx 0
1
3
2
2
0
-1
0
1
2
1
y=1+sin
0
1
x
. 2
y=1+sinx, x[0,2]
1.
.
.

.
o
/2
3/2
作函数 y sin x , x [0,2 ] 的图象

7.3.2正弦型函数图像和性质课件高一下学期数学人教B版

7.3.2正弦型函数图像和性质课件高一下学期数学人教B版

则a=________,b=________.
[解] 当 a>0 时,由题意得
[答案] 32或-32
1 2
a+b=2 -a+b=-1
,解得ab= =3212
.
当 a<0 时,由题意,得- a+a+ b=b= -21 ,
解得ab= =- 12 32
.
正弦函数的奇偶性
由公式 sin(-x)=-sin x
在闭区间
π 2
2π2k,π,332π2π
2kyπ,
k
Z
上,是减函数.
1
-3 5π -2 3π
2
2
-
π o
2
-1
x
π 2
3π 2
2
5π 2
3
7π 2
4
[例] 求 y=sin3x-π3的单调区间.
• 复合函数y=f[g(x)] • 由函数y=f(t)和函数t=g(x)复合而成 • 单调性的判定方法是:
正弦函数是奇函数.
图象关于原点成中心对称 .
y
1
-3 5π -2 3π - π o
2
2
2
-1
x
π 2
3π 2
2 5π
2
3 7π 4 2
正弦函数的单调性
观察正弦函数图象
x
π 2

sinx -1
0… 0
π…
2
1

3π 2
0
-1
在闭区间 π22π2k,π,π2π2 2kπ, k Z 上, 是增函数;
42
y A sin(x ) T 2
例 :求使函数 y=2+sin x 取最大值、最小值
的 x 的集合,并求出这个函数的最大值,

《正弦函数图象》课件

《正弦函数图象》课件
2023
《正弦函数图象》 ppt课件
REPORTING
2023
目录
• 正弦函数的定义与性质 • 正弦函数的图象 • 正弦函数在实际生活中的应用 • 正弦函数的拓展知识
2023
PART 01
正弦函数的定义与性质
REPORTING
正弦函数的定义
总结词
正弦函数是三角函数的一种,它 描述了直角三角形中锐角的对边 与斜边的比值。
sin(2π+α)=sinα
诱Байду номын сангаас公式三
sin(π/2+α)=cosα
诱导公式四
sin(3π/2+α)=-cosα
诱导公式五
sin(π/2-α)=cosα
诱导公式六
sin(3π/2-α)=-cosα
和差化积公式
01
sin α+sin β=2 sin((α+β)/2) cos((αβ)/2)
02
sin α-sin β=2 cos((α+β)/2) sin((αβ)/2)
总结词
正弦函数是奇函数,因为对于任何x,都有sin(-x) = -sin(x)。
详细描述
奇函数的定义为对于所有x,都有f(-x) = -f(x)。对于正弦函数,当我们将x替换 为-x时,得到sin(-x) = -sin(x),满足奇函数的定义。
2023
PART 02
正弦函数的图象
REPORTING
与线性函数的比较
线性函数是一条直线,其图像单 调增加或单调减少,与正弦函数 的周期性和波动性有显著差异。
2023
PART 03
正弦函数在实际生活中的 应用
REPORTING

正弦函数的图像课件

正弦函数的图像课件
解决实际问题
通过掌握正弦函数的性质和图像, 可以解决许多实际问题,提高解决 实际问题的能力和素养。
未来研究方向和挑战
深入研究和探索
随着科学技术的发展,正弦函数的应用领域也在 不断扩大和深化,需要进一步研究和探索其性质 和应用。
数值分析和计算物理
随着计算机技术的发展,如何利用正弦函数进行 数值分析和计算物理的研究也是未来的一个重要 方向。
数学建模和算法设计
如何利用正弦函数建立数学模型和设计算法,是 未来研究的一个重要方向。
跨学科应用
正弦函数作为数学中的基础函数,可以与其他学 科进行交叉融合,例如与物理学、工程学、经济 学等学科的结合,需要进一步探索其跨学科应用 的价值和可能性。
THANKS
感谢观看
图像形状
正弦函数和对数函数的图像形状也不同。正弦函数的图像呈现波形,而对数函数的图像 呈现向上或向下凸出的趋势。
05
总结与展望
正弦函数的重要性和应用价值
数学基础
正弦函数是数学中的基本函数之 一,是学习三角函数、复数、微
积分等数学领域的基础。
应用广泛
正弦函数在物理学、工程学、经济 学等多个领域都有广泛的应用,例 如振动分析、交流电、信号处理等 。
振幅和相位
通过调整正弦函数中的振幅和相位参 数,可以改变图像的高度和位置。了 解这些参数对理解正弦函数图像的影 响非常重要。
03
正弦函数的应用
在物理中的应用
简谐振动
正弦函数描述了许多物理现象, 如简谐振动。在物理中,简谐振 动是一种基本的振动类型,其位 移与时间的关系通常可以用正弦
函数表示。
交流电
操作步骤
在软件中选择相应的函数图像绘制工具,输入正弦函数公式(例如y=sin(x)), 然后选择x的取值范围(例如-π到π),最后点击“绘制”按钮即可生成正弦函数 的图像。

三角函数正弦函数的图像与性质正弦函数的图像课件ppt

三角函数正弦函数的图像与性质正弦函数的图像课件ppt

波形
正弦函数的图像呈现出典 型的波形,即一个连续的 、重复的曲线。
图像的周期性与振幅
周期性
正弦函数的周期性意味着我们可以使用一个常数(通常称为相位偏移量)来移动 函数的图像,而不改变其形状或特性。这个常数被称为相位偏移量,通常用希腊 字母表示。
振幅
正弦函数的振幅是指函数值可以变化的范围。振幅的大小可以用数学公式表示, 也可以在图像上直观地看到。
要点二
控制系统
正弦函数经常用于分析和设计控制系统,如反馈控制系 统和自动控制系统。在控制工程中,正弦函数被用于描 述和建模系统的动态行为。
在数学与其他领域中的应用
微积分
正弦函数是微积分中重要的函数之一。它在求解微分方 程、最优控制和最优化问题等数学问题中具有广泛的应 用。
统计学
正弦函数在统计学中也有应用,如在描述正态分布的尾 部概率密度函数时。此外,正弦函数还被用于信号处理 和图像处理等领域。
图像的极值与零点
极值
正弦函数在某些点上达到最大或最小值。这些点称为极值点 。在图像上,极值点通常表现为曲线向上或向下突然转折的 点。
零点
正弦函数在某些点上为零。这些点称为零点。在图像上,零 点通常表现为水平线段,即函数值为零的点。
03
正弦函数的性质
函数的单调性
递增区间
正弦函数在$\lbrack - \frac{\pi}{2} + 2k\pi,\frac{\pi}{2} + 2k\pi\rbrack(k \in \mathbf{Z})$上单调 递增。
正弦函数与反正弦函数的关系
反正弦函数(asin)是正弦函数的反函数。 它的定义域和值域与正弦函数相反。
反正弦函数和正弦函数在图像上呈现对称性 ,且具有相同的频率但相位不同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
描点得y=-sin x的图象y
1

0
y=sin x x∈[0,2π]

.π
. . 3
2
2
2
πx
-y1=-sin x x∈[0,2π]
(2) 列表:

x
0
2
y=sinx
0
1
y=1+sinx
1
2

3
2
2
0
-1
0
1
0
1
描点得y=1+sin x的图象 y
y=1+sin x x∈[0,2π]
1
..
o
x

2
3
4
-1
y = cos x, x∈R
思考与交流:图中,起着关键作用的点是哪些?找
到它们有什么作用呢?
y
1
x
o1
o
6
3
2
2 5 36
7 6
4 3 5 11 2
3
23
6
-1
y=sinx, x [ 0 2 ]
0,0


2
,1

一、利用正弦线作正弦函数图象
y
1
x
o1
o

2 5
7
4
3 5 11 2
6
3
2
36
6
3
2
3
6
-1
y=sinx, x [ 0, 2 ]
一、利用正弦线作正弦函数的图象
y
1
x
o1
o
632
2 5
7
4
3 5 11 2
36
6
3
23
6
-1
y=sinx, x [ 0, 2 ]
0
2
-1
. . . 3
π
2
2
πx
y=sin x x∈[0,2π]
练习
用“五点法”画出下列函数在区间[0,2π]的简图. (1)y=sin x-1;(2)y=-cosx; (3)y=3cosx.
本节课学习了什么?
1.学习了利用正弦线画正弦曲线. 2.掌握正弦曲线和余弦曲线的五点作图法.
作业. 课本习题1.4A组1题.
正弦函数、余弦函数的图像
班级:高一(3)班y sin x,
y cosx是函数吗?若是,它们的图象是
什么样子的?
正弦函数的图像
三角函数
三角函数线
正弦函数 sin=MP 正弦线MP
y
P
sin=PM

-1
O M A(1,0)x
***作正弦函数的图象
y
1
-4 -3
-2
- o
-1
正弦函数的图象
y=cosx=sin(x+ ),
2
x R
y
余弦函数的图象
1
-4 -3
-2
- o
-1

2
3
4
5 6 x
正弦曲线
形状完全一样 只是位置不同
余弦曲线

2
3
4
5 6 x
正弦、余弦曲线
y 1
y = sin x, x∈R
-2
-
的图象,与函数 y sin x, x 0,2
的图象的形状完全一样.
如何由函数 y sin x, x 0,2 的图象
得到函数 y sin x, x R 的图象?
我们只要将函数y sin x, x 0,2 的图象向左
向右平行移动(每次移动2 个单位长度),
就可以得到正弦函数y sin x, x R
的图象.
y 1
2


2
O

1 2

3 2
2
3
y 1
4 x
y 1
正弦曲线
y=sinx
x[0,2]
终边相同角的三角函数值相等 即: sin(x+2k)=sinx, kZ
f (x 2k ) f (x) 利用图像平移
y
y=sinx xR
-4 -3
-2
1
- o
-1

2
3
4
5 6 x
函数y=sinx, xR的图象 正弦曲线
探究题: 你能根据诱导公式
y cos x sin x

以正弦函数的图象为基础,通过适 当的2 图 象
变换得到余弦函数的图象吗?
由人教正版弦高中曲数学线必修作4 三出角余函数弦第1曲0课线时
0,1 ,0
2
,1
3,0
2
2 ,1
例题分析
例 用“五点法”画出下列函数在区间[0,2π]的简图. (1)y=-sin x; (2)y=1+sin x.
解: (1)列表:

x
0
2

3
2
2
y=sinx
0
1
0
-1
0
y=-sin x 0
-1
0
1
,0

3 2
,1
2 ,0
五点:最高点、最低点、与 x 轴的交点
找到这五个关键点,就可以画出正弦曲线了!
x y=sinx

0
2
0
1
y.
1
..
0
2
-1

3
2
0
-1
. . . 3
π
2
2
. πx
2 0
五点法
类似于正弦函数的五个关键点,你能找出余弦 函数的五个关键点吗?请将它们的坐标写下来.
一、利用正弦线作正弦函数的图象
y
1
x
o1
o
632
2 5
7
4
3 5 11 2
36
6
3
23
6
-1
y=sinx, x [ 0, 2 ]
由诱导公式 sinx 2k sin x 可知,函数
y sin x, x 2k ,2k 1 , k Z且k 0
相关文档
最新文档