晶闸管的保护研究
第1章 晶闸管的串并联和保护

2021/7/12
电力电子技术
29
(四)用非线性元件抑制过电压
硒堆正向为二极管特性,使用时将两组硒堆 反向对接,使双向具有稳压管特性。
2021/7/12
电力电子技术
30
压敏电阻:
2021/7/12
电力电子技术
31
(五)用RC抑制过电压
➢ 外因过电压抑制措施中,RC过电压抑制电路最 为常见,典型联结方式见图。
(2) 关断过电压:全控型器件关断时,正向 电流迅速降低而由线路电感在器件两端感应出 的过电压。
2021/7/12
电力电子技术
21
(二)过电压保护概述
抑制过电压的方法: (1)用非线性元件限制过电压的幅度; (2)用电阻消耗过电压的能量; (3)用储能元件吸收过电压的能量。
2021/7/12
电力电子技术
2021/7/12
➢外因过电压 主要来自雷击和系统中的操作过程等外因。
(1) 操作过电压:由分闸、合闸等开关操作 引起。
(2) 雷击过电压:由雷击引起。
2021/7/12
电力电子技术
20
➢ 内因过电压
主要来自电力电子装置内部器件的开关过程
(1) 换相过电压:晶闸管或与全控型器件反 并联的二极管在换相结束后不能立刻恢复阻断, 因而有较大的反向电流流过,当恢复了阻断能 力时,该反向电流急剧减小,会由线路电感在 器件两端感应出过电压。
2021/7/12
电力电子技术
12
(一)快速熔断器(快熔)的过载特性与晶闸管的 配合
➢ 快速熔断器是电力电子装置中最有效、应用最 广的一种过电流保护措施
➢ 曲线1是300A快熔的保 护特性,表明流过快 熔的电流越大,其熔 断时间越短。当短路 电流通过时,熔断时 间可缩短到5ms以下。 在额定电流下工作时, 熔断时间为无穷大, 可长期工作。
晶闸管整流装置的换相过电压保护技术研究

吸收电阻R与电阻损耗Wr的关系曲线
NARI
晶闸管整流装置的换相过电压保护技术研究
晶闸管RC吸收回路的仿真研究
单个晶闸管吸收回路的仿真
吸收电容的设计原则
随着C的增大, 相应降低, 随着 C的增大 , K相应降低 , 增大到一定程度时, 当 C 增大到一定程度时 , K 的变化趋于平缓。 的变化趋于平缓。 随着C 的增大 , 电阻损耗 随着 C 的增大, Wr线性增大 线性增大。 Wr线性增大。 设计原则: 设计原则 : 在过电压倍数 符合设计要求的前提下, 符合设计要求的前提下 , 使得电阻损耗尽量小 。
NARI
晶闸管整流装置的换相过电压保护技术研究
晶闸管反向恢复特性的建模
典型的换相过电压保护方案
分别并联保护方案
集中阻断保护方案
NARI
晶闸管整流装置的换相过电压保护技术研究
晶闸管反向恢复特性的建模
模型的测试
测量条件为: di/dt=7.9A/us, Ur=800v,Rs=10 ,Cs=1uf ;
晶闸管反向恢复特性的建模
理论基础
反向恢复电流的数学模型 突然截止模型 指数函数模型 双曲函数模型
突然截止模型虽然常用,但存在着较大的误差; 突然截止模型虽然常用,但存在着较大的误差; 指数函数模型可以获得比较精确的计算结果,但不便于常规计算; 指数函数模型可以获得比较精确的计算结果,但不便于常规计算; 双曲函数模型虽然能够得到与实验更加相符的电流电压波形, 双曲函数模型虽然能够得到与实验更加相符的电流电压波形,但是其 参数确定比较困难,实际中较少采用。 参数确定比较困难,实际中较少采用。
晶闸管RC吸收回路的仿真研究
集中阻断吸收回路的仿真
吸收电阻的损耗
晶闸管电路的保护与其他控制电路

晶闸管电路的保护与其他控制电路一、晶闸管保护电路1、主电路中的晶闸管保护电路晶闸管阳极、阴极两端或晶闸管电源输入端、输出端经常加设相关保护电路,以对晶闸管提供过电压、过电流等相关保护。
1)过电流保护产生过载的主要原因:负荷过载、线路短路、电源缺相、晶闸管本身击穿损坏或误触发等,因晶闸管元件体积小,过载时会造成结温过高而烧毁,所以必须严格限制过载电流,除控制(电子)电路实施的保护外,在主电路中经常采用在电源串入快速熔断器,对晶闸管的过载进行保护,在发生6倍晶闸管额定电流时,一个周波可以熔断。
此外,还可采用过电流继电器、直流快速断路器等用于过载和短路保护,但保护速度和效果不如快速熔断器。
快速熔断器的额定电流值为晶闸管电流平均值的1.25~1.5倍。
下图以直流调压电路为例,说明快速熔断器在主电路中的接法。
图1 快速熔断器在晶闸管主电路中的接法2)过电压保护产生过电压的原因一般因感性负载电路的开闭、电源电压波动、快速熔断器熔断、电源侧侵入的浪涌电压等,针对形成过电压的不同原因,可采取不同的抑制方法,如抑制过电压能量的上升速率、增加其能量的耗散等,目前最常用的是中主电路回路中接入吸收能量的元件,使能量得以耗散,称之为吸收回路或缓冲电路。
通常过电压具有较高的频率,因此常采用电容作为吸收元件,但为防止振荡,增加阻尼电阻,构成R、C吸收回路。
阻容吸收回路可以接在电源输入侧(交流侧)、输出侧(直流侧)和晶闸管的阳极和阴极之间。
但R、C阻容吸收回路的时间常数是固定的,对时间短、峰值高、能量大的过电压吸收能力有限,因而在输入侧,通常还并有硒堆、压敏电阻等非线性元件,用以对晶闸管的过电压进行吸收。
硒堆由多片硒片叠合而成,硒堆涌流容量大,对过电压抵制效果好,有自恢复特性等优点,但因体积大,价格高,在中、小容量的晶闸管装置中,已经很少应用。
压敏电阻的电压与电流呈非线性关系,当其两端所加电压低于压敏电压值时,压敏电阻的电阻值接近无穷大,为高阻状态,对连接电路没有影响;当压敏电阻两端电压高于压敏电压值时,迅速击穿导通(变为低阻状态),形成较大的泄放电流。
晶闸管的保护

晶闸管的保护晶闸管在使用时,因电路中电感的存在而导致换相过程中产生Ldi/dt ,又因容性的存在或设备自身运行中出现短路、过载等故障,所以其过电压、过电流保护显得尤为重要。
1、 晶闸管的过电压保护晶闸管使用过程中随所应用电路形式的不同,其可承受的最高峰值电压也有所不同,所以应保证晶闸管两端的电压小于其额定电压,常见的过电压有交流侧过电压和直流侧过电压。
对这些过电压的处理措施如下图所示:1) 交流侧过电压的保护a) 采用阻容保护:下图给出了阻容保护的常用接线图,其中电阻)F (C )(μ、ΩR )可用下列关系式近似计算)/(6/)/(3.2220022V S I C I v S V R z ≥≥式中:●z v --整流变压器的阻抗电压,以额定电压的百分数来表示,对于10~1000kV A 的变压器%10~%4=z v●0I --变压器空载电流,以额定电流的百分数来表示,对于10~560kV A 的三相变压器%10~%40=I● 2V --变压器二次相电压有效值(V )●S --变压器每相的平均视在容量(V A )随着变压器联接的不同,上式计算出来的R 、C 值还应按下表进行响应的系数调整联接时,电容器的电容量要大,但耐压要求低、电阻值也小。
通常增大C 能降低作用到晶闸管上的过电压Ldi/di 和dv/dt ,但过大的C 值不仅增加体积,而且使R 的功耗增大,并使晶闸管导通时的di/dt 上升;增大电阻R 有利于抑制振荡,但过大的R 不仅使抑制振荡的作用不大,反而降低了电容抑制Ldi/dt 的效果,并使R 的功率增大,所以一般希望R 小一些(约5~100Ω)。
为降低电阻的温度,电阻功率应选电阻上可消耗功率值的2倍左右。
电阻R 的功率近似计算为:222122212])()2)[(2~1()()2)(3~2(CV K CR K f P CV CR K f R +<<ππ式中: C 、R --选用的交流侧保护电容(F )和电阻值(Ω) f --电源频率2V --变压器二次相电压有效值系数(2~3)和(1~2):考虑降低电阻温度和电网电压升压等因素时取大的数值,考虑缺口电压作用下电阻和线路其他部分分担损耗时取小的值K1:对于单相电路:K1=1,对于三相电路,K1=3K2:对于单相电路:K2=200,对于三相电路在阻容保护Δ联接时K2=450,在阻容保护Y联接时K2=150。
晶闸管的保护方法电子元器件

晶闸管的爱护方法 - 电子元器件晶闸管在工业中的应用越来越广泛,随着行业的应用范围增大。
晶闸管的功能也越来越全面。
但是有时候,晶闸管在使用过程中会造成一些损害。
为了保证晶闸管的寿命,我们该如何更好地区爱护晶闸管呢?在使用过程中,晶闸管对过电压是很敏感的。
过电流同样对晶闸管有极大的损坏作用。
下面电工学习网我给大家介绍晶闸管的爱护方法,具体如下:1、过电压爱护晶闸管对过电压很敏感,当正向电压超过其断态重复峰值电压UDRM肯定值时晶闸管就会误导通,引发电路故障;当外加反向电压超过其反向重复峰值电压URRM肯定值时,晶闸管就会马上损坏。
因此,必需争辩过电压的产生缘由及抑制过电压的方法。
过电压产生的缘由主要是供应的电功率或系统的储能发生了激烈的变化,使得系统来不及转换,或者系统中原来积聚的电磁能量来不及消散而造成的。
主要发觉为雷击等外来冲击引起的过电压和开关的开闭引起的冲击电压两种类型。
由雷击或高压断路器动作等产生的过电压是几微秒至几毫秒的电压尖峰,对晶闸管是很危急的。
由开关的开闭引起的冲击电压又分为如下几类:(1)沟通电源接通、断开产生的过电压例如,沟通开关的开闭、沟通侧熔断器的熔断等引起的过电压,这些过电压由于变压器绕组的分布电容、漏抗造成的谐振回路、电容分压等使过电压数值为正常值的 2至10多倍。
一般地,开闭速度越快过电压越高,在空载状况下断开回路将会有更高的过电压。
(2)直流侧产生的过电压如切断回路的电感较大或者切断时的电流值较大,都会产生比较大的过电压。
这种状况常消灭于切除负载、正在导通的晶闸管开路或是快速熔断器熔体烧断等缘由引起电流突变等场合。
(3)换相冲击电压包括换相过电压和换相振荡过电压。
换相过电压是由于晶闸管的电流降为0时器件内部各结层残存载流子复合所产生的,所以又叫载流子积蓄效应引起的过电压。
换相过电压之后,消灭换相振荡过电压,它是由于电感、电容形成共振产生的振荡电压,其值与换相结束后的反向电压有关。
晶闸管保护电路反向极化 rc 缓冲电路

晶闸管保护电路反向极化 rc 缓冲电路导言在电力系统中,晶闸管保护电路是一项非常重要的技术。
晶闸管作为一种常用的功率器件,具备控制电流的能力。
然而,在电力系统中,晶闸管可能会面临反向电压的情况,这就需要采取措施来保护它们免受损坏。
本文将探讨一种常见的晶闸管保护电路,即反向极化 RC 缓冲电路。
反向极化 RC 缓冲电路的基本原理反向极化 RC 缓冲电路是一种常见且有效的晶闸管保护电路。
它采用了简单的电路结构和原理来保护晶闸管。
原理1:使用二极管防止反向电压在反向极化 RC 缓冲电路中,一个二极管被用于防止反向电压。
当晶闸管正常工作时,正向电流将通过晶闸管流动,二极管处于导通状态。
然而,当出现反向电压时,二极管就会截止,有效地将反向电压阻断,保护晶闸管免受损坏。
原理2:使用电容缓冲反向电压在反向极化 RC 缓冲电路中,一个电容被用于缓冲反向电压。
当晶闸管正常工作时,电容将充电,储存电能。
一旦出现反向电压,电容将释放储存的电能,起到缓冲反向电压的作用,保护晶闸管。
反向极化 RC 缓冲电路的设计与实施反向极化 RC 缓冲电路的设计与实施需要考虑多个因素。
下面将对其中的关键要点进行分析。
设计流程1.确定晶闸管的额定电压和电流。
这是设计缓冲电路的基础,因为缓冲电路必须能够承受晶闸管的额定电压和电流。
2.选择适当的二极管。
二极管必须能够承受晶闸管的额定电压和电流,并具备低反向电流的特性。
3.选择适当的电容。
电容必须具备足够的容量来存储电能,同时也要能够承受晶闸管的额定电压。
4.进行电路连接。
将选定的二极管和电容连接在晶闸管的反向电压端,确保电路连接正确并可靠。
5.进行电路测试和调试。
通过实际测试和调试,验证反向极化 RC 缓冲电路的效果。
设计注意事项1.确保二极管具备足够的额定电流和额定反向电压,以确保其正常工作和保护晶闸管。
2.选择合适的电容容量,过小的容量可能无法有效缓冲反向电压,而过大的容量可能导致电路响应时间过长。
晶闸管研究报告

晶闸管研究报告晶闸管是一种半导体器件,具有可控性强、速度快、效率高等优点,在电力电子领域的应用越来越广泛。
本文将从晶闸管的基本原理、结构和特点、应用领域和未来发展等方面进行详细阐述。
一、晶闸管的基本原理晶闸管是由四层半导体材料构成的器件,其中包括一个PNPN结构,由P型半导体、N型半导体和P型半导体组成,形成四层结构。
在晶闸管中,当控制极施加正向电压时,PNPN结会形成正向电压,此时器件处于导通状态;而当控制极施加反向电压时,PNPN结会形成反向电压,此时器件处于截止状态。
二、晶闸管的结构和特点晶闸管的结构包括控制极、阳极、阴极和门极四个部分。
其中,控制极和门极通过控制电路控制晶闸管的导通和截止状态。
阳极和阴极则是晶闸管的主要电路部分,通过阳极和阴极之间的电流流动实现电路的控制和调节。
晶闸管具有可控性强、速度快、效率高等优点。
首先,晶闸管具有可控性强的特点,可以通过控制电路实现对电路的精确控制和调节。
其次,晶闸管具有速度快的特点,可以实现高频率的开关操作,适用于高速开关电路。
最后,晶闸管具有效率高的特点,能够实现高效率的电能转换,提高电路的能量利用率。
三、晶闸管的应用领域晶闸管在电力电子领域的应用越来越广泛,主要应用于电力电子开关电路、变频器、逆变器、直流电源和交流调压器等领域。
其中,电力电子开关电路是晶闸管最常见的应用领域之一,可以实现电路的可控开关和调节;变频器和逆变器则可以实现交流电的变频和逆变,适用于电机驱动和电力调节等领域;直流电源则可以实现直流电的稳定输出,适用于电子设备和通讯系统等领域;交流调压器则可以实现交流电的调压和调节,适用于电力系统和工业自动化等领域。
四、晶闸管的未来发展随着电力电子技术的不断发展和晶闸管技术的不断提高,晶闸管在未来的应用领域和发展方向也将更加广泛和多样化。
首先,晶闸管的应用领域将不断拓展,包括新能源发电、高速列车、电动汽车、智能电网等领域。
其次,晶闸管技术将不断提高,包括新材料、新工艺、新结构等方面的研究和应用。
晶闸管的基本保护措施

晶闸管的基本保护措施晶闸管是一种电子器件,常用于控制大功率电流的开关。
为了确保晶闸管的正常工作和延长其寿命,需要采取一系列的基本保护措施。
本文将详细介绍晶闸管的基本保护措施,包括过电流保护、过压保护、过温保护和防射频干扰等方面。
1. 过电流保护过电流是指晶闸管工作时电流超过其额定值的情况。
过电流可能导致晶闸管损坏甚至烧毁。
为了保护晶闸管免受过电流的损害,可以采用以下措施:•使用电流保险丝或电流限制电阻:在电路中串联一个电流保险丝或电流限制电阻,当电流超过额定值时,保险丝会熔断或电流限制电阻会限制电流,从而保护晶闸管。
•使用过电流保护电路:设计一个过电流保护电路,当电流超过设定值时,保护电路会迅速切断电源,保护晶闸管不受损害。
2. 过压保护过压是指晶闸管工作时电压超过其额定值的情况。
过压可能导致晶闸管击穿或损坏。
为了保护晶闸管免受过压的损害,可以采用以下措施:•使用过压保护二极管:在晶闸管的控制端口并联一个过压保护二极管,当电压超过晶闸管的额定值时,过压保护二极管会导通,将过压电流引到地,保护晶闸管。
•使用过压保护电路:设计一个过压保护电路,当电压超过设定值时,保护电路会迅速切断电源,保护晶闸管不受损害。
3. 过温保护过温是指晶闸管工作时温度超过其额定值的情况。
过温可能导致晶闸管烧毁。
为了保护晶闸管免受过温的损害,可以采用以下措施:•安装散热器:在晶闸管上安装散热器,增加散热面积,提高散热效果,减少晶闸管的工作温度。
•使用温度传感器:在晶闸管上安装温度传感器,监测晶闸管的温度,当温度超过设定值时,触发过温保护电路,切断电源,保护晶闸管。
4. 防射频干扰晶闸管在工作时会产生射频干扰,可能影响到其他电子设备的正常工作。
为了防止射频干扰,可以采取以下措施:•使用抗干扰滤波器:在晶闸管的输入和输出端口安装抗干扰滤波器,滤除射频干扰信号,减少对其他设备的干扰。
•使用屏蔽壳体:将晶闸管放入屏蔽壳体中,阻挡射频干扰信号的辐射,减少对其他设备的干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网
晶闸管的保护研究
作者:王逍遥
来源:《速读·下旬》2019年第10期
摘; 要:分析了几种常见的过电压、过电流现象,提供了几种简便、实用、有效的保护方法。
该电路结构简单、可靠性高。
关键词:过电压;过电流;保护
一、晶闸管过电压保护
(一)产生过电压的原因
在电路中出现过电压,其值超过晶闸管的阻断电压时,将会使其PN结损坏。
过电压是造成晶闸管电路故障的重要原因之一,产生过电压的原因有如下几种:
1.雷击浪涌电压
直击雷和感应雷将在输电线上产生浪涌电压,尽管电网中装有阀形避雷器,但是残余电压仍有可能涌入控制电路并损坏晶闸管。
2.线路谐振产生高压
由于变压器漏电抗和二次侧线圈分布电容的存在,当变压器一次侧接通时,二次侧会产生谐振高电压,其值最大可达额定电压峰值的两倍甚至更高。