3计算下列对弧长曲线积分
同济六版高数练习册答案第十章曲线积分与曲面积分

第十章曲线积分与曲面积分§ 1对弧长地曲线积分计算公式:无论是对弧长还是对坐标地曲线积分重要地是写出曲线地参数方程x =x t L :y =y tx = x(t ) L:<y = y(t )"z(t )Lf x,y,z ds - 注意:上限一定要大于下限1.计算下列对弧长地曲线积分<1) \(x 2y 2)2ds ,其中 L 为圆周 x 2y 2=a 2; 解:法一:Q|jx2+y 2)2ds = |J L (a 2)2ds二玄仁 ds =a 4(2二a) =2二a 5法二:_L x =acosv L: 0 心::2二,匸(x 2 y 2)2ds2二 2 2 2 2 2[a cos : a si n ] -asi na cos d :2二 5 . 5ad^ - 2「a<2) \e x yds ,其中L 为圆周x 2■ y 2=a 2,直线y=x 及x 轴在第一象限内所围成地扇形ba 兰t 兰b ,则(f (x, y ps= f a f(x (t ), y(tddbafxt ,y t ,zt解:忆e 拧%s = ( & +廟+ J BO 卅“ ds ,其中故口 e^iyds=e a(2+ — a) -2匕 4<3) L xds ,其中L 为抛物线y =2x 2-1上介于x =0与x=1之间地一段弧;「X =x解:由 L:20<x<1,得、y=2x -1l xds 二 ° x 1亠〔4x 2dx2 3_2(1+16x)2o_17用-1 -32-48<4) L y 2ds ,其中 L 为摆线地一拱 x =a(t - si nt), y =a(1 - cost)(0 — t — 2二); 解: .L y 2ds = :0〔a(1-cost)『」a 1-cost ]2a si nt^dt2TI 5=V2a 3「(1 —cost)2dtx = x x = a cos—— x = x 、2 OA: ,0_x_a ,AB:,0, BO: 0_x a y =0 y =as in 4 y = x 2f e x 旳 ds =『少尺 J 12 +02 dxoA-0aoa二ABey ds 二ABe ds二 e ABds4<或]e x 七ds■AB=[4 e ' 严"巧塔“巧 J (一 a sin 盯 + (acos日 j d 日JI4 e a ad ) 4a 二 BO-a-2-2匸2a 一2 2 -------- ■ 2 e x 2 x 2,12 12dx 0-1 a二5二 迈a 3 : (2sin 2*)2dt =8a 3J6a 3siJI353= 32a 2sin 如-32a」0x 2+y 2+z 2=22 2]x = cosT解:由」 丫,得2X 2+Z2=2,令 < 厂 0兰日兰2兀y = xz = \ 2 sin 71x= cos 日sin 5 -dt <令—-v4 2 256 3a5 3 15<5) “L xyds ,其中L 为圆周x 2 y 2 =a 2 ; 解:利用对称性J |xyds = 4jJxyds ,其中 Lix = a cos 日 0<6y = a sinJI< 一2[xy ds = 4『xy ds = 4 fxyds迟,=4 02 (acos R(asin v) (-asin v)2 (acosv)2dv"a 3jcosrsin=2a 3sin =-2a 3<6)-x 2y 22ds ,其中-为曲线 z 2X =e t cost ,y =e t si nt ,z =e t 上相应于 t 从 0 变到 2 地------ 2 -- 1 ---- 2 ---- cost )]2 +[(£ sin t )]2 +e 2t dte tcost ]亠[d sin t ]亠[d =—fe^dt =^(1 —e‘) 2 02<7)广yds ,其中-为空间圆周:x 2 + y 2 + z 2 =2』=x弧段; 解:故丫: * y = cos日0兰日乞2兀.故z = J2s in。
对弧长的曲线积分的计算法

思考: 例5中 改为
, 如何
计算
X x 1 解: 令 Y y 1 ,
Z z
则
:
X
2
Y2 Z2 X Y Z
a2 0
(X 1)2 ds
利用形心公式
2 X ds
2 πa3 2 X 2πa 3
圆 的形心
在原点, 故
X 0
例6. 计算
其中 为球面
x2
y2
z2
9 2
与平面 x
z
1的交线.
基本思路: 求曲线积分 转 化 计算定积分
定理:
是定义在光滑曲线弧
上的连续函数, 则曲线积分
且
f (x, y)ds f [ (t ) , (t )] 2(t ) 2(t ) d t
L
证: 根据定义
n
lim
0 k 1
f
(k
,k
)sk
设各分点对应参数为
点 (k ,k ) 对应参数为
sk
解: 建立坐标系如图, 则
y
I y2 ds L
L
:
x
y
R cos R sin
( )
O
L Rx
R2 sin2 (R sin )2 (R cos )2 d
R3 sin2
d
2R3
2
sin 2
4
0
R3( sin cos )
例3. 计算
其中L为双纽线
(x2 y2) 2 a2(x2 y2) (a 0)
(2) 注意到
ds (d x)2 (d y)2
y
2 (t ) 2 (t ) d t
ds dy dx
因此上述计算公式相当于“换元法”. O x x
《高数》下册第十一章练习题

第十一章 曲线积分与曲面积分习题 11-11.设在xOy 面内有一分布着质量的曲线弧L ,在点(x,y )处它的线密度为μ(x,y )。
用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴,对y 轴的转动惯量x I ,y I(2)这曲线弧的质心坐标x ,y2.利用对弧长的曲线积分的定义证明性质33.计算下列对弧长的曲线积分: (1)22(x y )nLds +⎰,其中L 为圆周x cos t,y sin (0t 2)a a t π==≤≤(2)(x y)ds L+⎰,其中L 为连接(1,0)及(0,1)两点的直线段(3)x Lds ⎰,其中L 为由直线y=x 及抛物线2y x =所围成的区域的整个边界 (4)22x y Leds +⎰,其中L 为圆周222x y a +=,直线y=x 及x 轴在第一象限内所围成的扇形的整个边界(5)2221ds x y z Γ++⎰,其中Γ为曲线cos ,sin ,t t tx e t y e t z e ===上相应于t 从0变到2的这段弧 (6)2x yzds Γ⎰,其中Γ为折线ABCD ,这里A,B,C,D 依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2) (7)2Ly ds ⎰,,其中L 为摆线的一拱(t sin ),y (1cos )(0t 2)x a t a t π=-=-≤≤(8)22(x )ds Ly +⎰,其中L 为曲线(cos sin ),y (sin cos )(0t 2)x a t t t a t t t π=+=-≤≤4.求半径为a,中心角为2ϕ的均匀圆弧(线密度1μ=)的质心5.设螺旋形弹簧一圈的方程为cos ,sin ,x a t y a t z kt ===,其中02t π≤≤,它的线密度222(x,y,z)x y z ρ=++.求: (1)它关于z轴的转动惯量z I(2)它的质心。
习题 11-21.设L 为xOy 面内直线x a =上的一段,证明:(x,y)dx 0LP =⎰2.设L 为xOy 面内x 轴上从点(a,0)到点(b,0)的一段直线,证明:(x,y)dx (x,0)dxbLaP P =⎰⎰3.计算下列对坐标的积分: (1)22(xy )Ldx-⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧(2)Lxydx⎰,其中L 为圆周222(x )a a y a -+=(>0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行) (3)Lydx xdy+⎰,其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到2π的一段弧(4)22(x y)dx (x y)dy L x y +--+⎰,其中L 为圆周222+y x a =(按逆时针方向绕行) (5)2x dx zdy ydzΓ+-⎰,其中Γ为曲线cos ,sin x k y a z a θ,θθ===上对应θ从0到π的一段弧 (6)(x y 1)dz xdx ydy Γ+++-⎰,其中Γ是从点(1,1,1)到点(2,3,4)的一段直线(7)+y dx dy dzΓ-⎰,其中Γ为有向闭折线ABCD ,这里的A,B,C 依次为点(1,0,0),(0,1,0),(0,0,1) (8)22(x2xy)dx (y 2xy)dyL-+-⎰,其中L 是抛物线2y x =上从点(-1,1)到点(1,1)的一段弧 4.计算(x y)dx (y x)dy L++-⎰,其中L 是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧(2)从点(1,1)到点(4,2)的直线段(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线(4)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧 5.一力场由沿横轴正方向的恒力F 所构成,试求当一质量为m 的质点沿圆周222x y R +=按逆时针方向移过位于第一象限的那一段弧时场力所做的功6.设z 轴与动力的方向一致,求质量为m 的质点从位置(x,y,z )沿直线移到(x,y,z )时重力所做的功7.把对坐标的曲线积分(x,y)dx Q(x,y)dyLP +⎰化成对弧长的积分曲线,其中L 为:(1)在xOy 面内沿直线从点(0,0)到点(1,1)(2)沿抛物线2y x =从点(0,0)到点(1,1)(3)沿上半圆周222x y x +=从点(0,0)到点(1,1) 8.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧,把对坐标的曲线积分Pdx Qdy RdzΓ++⎰化成对弧长的曲线积分习题 11-31.计算下列曲线积分,并验证格林公式的正确性: (1)22(2xy x )dx (x y )dyL-++⎰,其中L 是由抛物线2y x =和2y x =所围成的区域的正向边界曲线 (2)222(x xy )dx (y 2xy)dyL-+-⎰,其中L 是四个顶点分别为(0,0),(2,0),(2,2),(0,2)的正方形区域的正想边界2.利用曲线积分,求下列曲线所围成的图形的面积 (1)星形线33cos ,sin x a t y a t ==(2)椭圆229+16y 144x = (3)圆222x y ax +=3.计算曲线积分22ydx 2(x y )L xdy -+⎰,其中L 为圆周22(x 1)2y -+=,L 的方向为逆时针方向4.证明下列曲线积分在整个xOy 面内与路径无关,并计算积分值(1)(2,3)(1,1)(x y)dx (x y)dy++-⎰(2)(3,4)2322(1,2)(6xy y )dx (63)dy x y xy -+-⎰(3)(2,1)423(1,0)(2xy y 3)dx (x 4xy )dy-++-⎰5.利用格林公式,计算下列曲线积分: (1)(2x y 4)dx (5y 3x 6)dyL-+++-⎰,其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;(2)222(cos 2sin )(x sinx 2ye )dyx x Lx y x xy x y e dx +-+-⎰,其中L 为正向星形线222333(a 0)x y a +=>(3)3222(2xy y cosx)(12ysinx 3x y )dyLdx -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到(2π,1)的一段弧(4)22(xy)dx (x sin y)dyL--+⎰,其中L 是在圆周22y x x =-上由点(0,0)到点(1,1)的一段弧6.验证下列(x,y)dx (x,y)dy P Q +在整个xOy 平面内是某一函数u(x,y)的全微分,并求这样的一个u(x,y):(1)(2)(2)x y dx x y dy +++(2)22xydx x dy + (3)4sin sin3cos 3cos3cos 2x y xdx y xdy -(4)2232(38)(812)y x y xy dx x x y ye dy ++++ (5)22(2cos cos )(2sin sin )x y y x dx y x x y dy ++- 7.设有一变力在坐标轴上的投影为2,28X x y Y xy =+=-,这变力确定了一个力场。
第四章 曲线积分与曲面积分 习题课(一)

2 [ a cos t ( a sin t ) b sin t ( b cos t )] dt 0
- 12 -
a b
2
2
2
习 题 课(一)
三 格林公式及其应用 设区域 D 是由分段光滑正向曲线 L 围成, 函数
第 十 章
在 D 上具有连续一阶偏导数, 则有
Q P x y d xd y D
y dx
L
2
2
2
-8-
习 题 课(一)
(3) L ( y z ) dx ( z x ) dy ( x y ) dz , 其中
2 2 2 2 2 2
L
为球面的一部分
x y z 1, x 0 , y 0 , z 0
2 2 2
第 的围线,其方向从 z 正向看去是逆时针的。 十 y2 z2 1 章 z 解 L L1 L 2 L 3 x 0 曲 L2 x2 z2 1 x cos t 线 积 L y 0 L3 t :0 1 y sin t 分 2 o 与 z 0 L1 曲 x x2 y2 1 面 积 z 0 分 y cos t z cos t t :0 L 3 x sin t L 2 z sin t t :0 2 2 x 0 y 0
Pd x Qd y
L
曲 在D 内具有一 线 设D 是单连通域 , 函数 积 分 阶连续偏导数, 则以下四个条件等价: 与 P Q . 曲 (1) 在 D 内每一点都有 y x 面 积 Pd x Qd y 0 . 分 (2) 沿D 中任意光滑闭曲线 L , 有 L
微积分练习题

一、单项选择题(1)函数()f x 在0x x =处连续是()f x 在0x x =处可微的( )条件.A.充分B.必要C.充分必要D.无关的 (2)当0x →时,()21x e -是关于x 的( )A.同阶无穷小B.低阶无穷小C.高阶无穷小D.等价无穷小(3)2x =是函数()222x xf x x -=-的( ).A.连续点B.可去间断点C.跳跃间断点D.无穷间断点 (4)函数()2f x x=及其图形在区间()1,+∞上( ). A.单调减少上凹 B.单调增加上凹 C.单调减少上凸 D.单调增加上凸(5)设函数()2; 1;1x x f x ax b x ⎧≤=⎨+>⎩在1x =处可导,则( )A. 0,1a b ==B. 2,1a b ==-C. 3,2a b ==-D.1,2a b =-=(6)设()f x 为可微函数,则在点x 处,当0x ∆→时,y dy ∆-是关于x ∆的( )A. 同阶无穷小B. 低阶无穷小C. 高阶无穷小D. 等价无穷小 (7)设()1;012;12x x f x x x -<≤⎧=⎨-<≤⎩在1x =处为( )A. 连续点B. 可去型间断点C. 跳跃型间断点D. 无穷型间断点 二、填空题(1)()12lim 1sin x x →+=(2)已知xy xe =,n 为自然数,则()n y=(3)曲线ln y x =上经过点(1,0)的切线方程是:y =(4)2x f dx ⎛⎫'= ⎪⎝⎭⎰(5)已知()2xt G x e dt -=⎰,则()0G '=(6)曲线22sin y x x =+上点(0,0)处的法线方程为 (7)已知()32f '=,则()()33lim2x f x f x→--=(8)()=+∞→1!sin lim 32n n n n (9)已知()f x 的一个原函数为cos x ,则()f x '=(10)() 122 1sin 5x x x dx -+=⎰三、计算题1. 011lim 1x x x e →⎛⎫- ⎪-⎝⎭2. 231lim 2x x x x +→∞+⎛⎫⎪+⎝⎭3. 设ln tan 2x y ⎛⎫= ⎪⎝⎭,求dy 4. 设()()sin ln xy y x x +-=确定y 是x 的函数,求0x y ='5. ()sin y f x =,其中f 具有二阶导数,求22d ydx6. 23225x dx x x --+⎰7. 18.22ππ-⎰9.1 ln eex x dx ⎰10. ()011lim ln 1x x x →⎡⎤-⎢⎥+⎣⎦11. arctan x xdx ⎰12.13.4⎰14.求0,8y x y ===所围成的图形分别绕y 轴及直线4x =旋转所得的旋转体体积.15. 222x y a +=绕直线x a =旋转的旋转体的体积.四、应用题(1)已知销售量Q 与价格P 的函数关系Q = 10000-P ,求销售量Q 关于价格P 的弹性函数. (2)设某工厂生产某产品的产量为Q 件时的总成本()21500081000C Q Q Q =+-元,产品销售后的收益()2120500R Q Q Q =-元,国家对每件产品征税2元,问该工厂生产该产品的产量为多少件时才能获得最大利润?最大利润是多少? 五、证明题1.设()f x 在区间[0,1]上可微,且满足条件()()1212f xf x dx =⎰,试证:存在()0,1ξ∈,使得()()0f f ξξξ'+=§8.1向量及其线性运算(1)、(2)、(3)、(4)一、设2,2u a b c v a b c =-+=++,试用,,a b c 表示24u v -.二、,,a b c 为三个模为1的单位向量,且有0a b c ++=成立,证明:,,a b c 可构成一个等边三角形.三、把△ABC 的BC 边四等分,设分点依次为123D D D 、、,再把各分点与点A 连接,试以AB c BC a ==、表示向量12D A D A 、和3D A .四、已知两点()11,2,3M 和()21,2,1M --,试用坐标表示式表示向量12M M 及123M M -.五、在空间直角坐标系中,指出下列各点在哪个卦限?并画出前两个:()1,1,1A ,()2,1,1B -,()2,3,4C ---,()3,4,5D --.六、指出下列各点的位置,观察其所具有的特征,并总结出一般规律:)0,4,3(A ,)3,0,4(B ,)0,0,1(-C ,)0,8,0(D .七、求点(),,x y z 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.§8.1向量及其线性运算(5) §8.2数量积 向量积一、 试证明以三点()()()10,1,64,1,92,4,3A B C -、、为顶点的三角形是等腰直角三角形.二、设已知两点()()124,0,3M M 和,计算向量12M M 的模、方向余弦和方向角,并求与12M M 方向一致的单位向量.三、 设234,4223m i j k n i j k p i j k =++=-+=-++及,求232a m n p =+-在x 轴上的投影及在z 轴上的分向量. 四、 已知,,a b c 为三个模为1的单位向量,且0a b c ++=,求a b b c c a ++之值.五、已知23,a i j k b i j k c i j =++=--=+和,计算:()()()1a b c a c b -; ()()()2a b b c +⨯+; ()()3a b c ⨯.六、 设()()2,1,3,1,2,1a b =-=--,问λμ和满足何关系时,可使a b λμ+与z 轴垂直?七、 已知()1,2,3OA =,()2,1,1OB =-,求△AOB 的面积.§8.3曲面及其方程一、 一动点与两定点()()1,2,33,0,7和等距离,求这动点的轨迹方程.二、 方程2222460x y z x y z ++-+-=表示什么曲面?三、 将xoz 平面上的双曲线224936x z -=分别绕x 轴及z 轴旋转一周,求所生成的旋转曲面的方程.四、 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形? 1.24y x =+; 222.326x y -=.五、 说明下列旋转曲面是怎样形成的?2221.226x y z ++=; ()2222.z a x y +=+.六、指出下列方程所表示的曲面:2221.22x y z+-=;2222.33x y z--=;223.345x y z+=.§8.4空间曲线及其方程 §8.5平面及其方程(1)一、填空题:1.曲面22x y +-209z =与平面3z =的交线圆的方程是 ,其圆心坐标是 ,圆的半径为 .2.曲线222221(1)(1)1x y x y z ⎧+=⎪⎨+-+-=⎪⎩在yoz 面上的投影曲线为 . 3.螺旋线cos x a θ=,sin y a θ=,z b θ=在yoz 面上的投影曲线为 .4.上半锥面z =(01z ≤≤)在xoy 面上的投影为 ,在xoz 面上的投影为 ,在面上的投影为 .二、选择题:1.方程22149x y y z ⎧+=⎪⎨⎪=⎩在空间解析几何中表示 . (A)、椭圆柱面 (B)、椭圆曲线 (C)、两个平行平面 (D)、两条平行直线2.参数方程cos sin x a y a z b θθθ=⎧⎪=⎨⎪=⎩的一般方程是 .(A)、222x y a += (B)、cos z x a b = (C)、sin z y a b = (D)、cos sin z x a b zy a b ⎧=⎪⎪⎨⎪=⎪⎩3.平面20x z -=的位置是 . (A)、平行xoz 坐标面。
南华大学第十一章 曲线积分与曲面积答案

的方向角. 二.选择题:
1.对坐标的曲线积分与曲线的方向(2) (1)无关, (2)有关; 2.若 P ( x, y ) , Q( x, y ) 在有向光滑曲线 L 上连续,则(1) (1) (2)
∫ ∫
L−
P ( x, y )dx + Q( x, y )dy = − ∫ P( x, y )dx + Q( x, y )dy ,
2. 设光滑曲线 L 的弧长为 π ,则 6ds = (2)
L
∫
(1) π , (2) 6π , (3) 12π . 二.计算下列对弧长的曲线积分: 1. ( x + y ) ds ,其中 L 为
L
∫
(1) 以 O(0,0),A(1,0), B(1,1) 为顶点的三角形的边界; (2) 上半圆周 x + y = R ;
L
L−
P ( x, y )dx + Q( x, y )dy =
2
∫ P( x, y)dx + Q( x, y)dy .
L
2 2
三.计算下列对坐标的曲线积分: 1. ( x + y )dx , 其中 L 为从点 A(0,0) 经上半圆周 ( x − 1) + y = 1 ( y > 0) 到点 B(1,1) 的
8 2 (1 − cos t ) 2 + 8 2 sin 2 t = 16 sin
设质心坐标为 ( x, y ) ,则
x=
1 M
∫
π
0
ρ ⋅ 8(t − sin t ) ⋅ 16 sin dt =
t 2
32 1 ,y= 3 M
∫
π
0
ρ ⋅ 8(1 − cos t ) ⋅ 16 sin dt =
3计算下列对弧长的曲线积分

解: ds = xt 2 + yt 2 + zt 2 dt = 1 + 4 x 2 + 9 y 2 dt
∴ cosα = dx =
1
ds 1 + 4 x 2 + 9 y 2
cos β = dy =
2x
ds 1 + 4 x 2 + 9 y 2
cosγ = dz =
3y
ds 1 + 4 x 2 + 9 y 2
(2) 沿抛物线 y = x 2 从点(0,0)到点(1,1)
(3) 沿上半圆周 x 2 + y 2 = 2 x 从点(0,0)到点(1,1)
解:(1) L1 的方向余弦: cosα = cos β = cos 45o = 1 2
∫ ∫ P( x, y)dx + Q( x, y)dy = 1 [P( x, y) + Q( x, y)]ds
y
L ε L1
−ε
D11
x
在
L
与
L1Leabharlann 包围的区域上,由∂P ∂y
=
x2 − y2 (x2 + y2 )2
=
∂Q ∂x
和格林公式,有
∫ ∫∫ ydx − xdy = ( ∂Q − ∂P )dxdy = 0
L1 + L2 2( x 2 + y 2 ) D1 ∂x ∂y
∫ ∫ ∫ ydx − xdy = ydx − xdy = 2π − ε 2 sin2 θ − ε 2 cos2 θ dθ = −π
2
0dt +
1
0dt +
312 ⋅ t ⋅ 2dt = 9
0
(整理)高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答

第十章曲线积分与曲面积分习题简答习题10—11 计算下列对弧长的曲线积分: (1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A到B 之间的一段劣弧; 解:(1+.(2)(1)L x y ds ++⎰,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解:(1)3Lx y ds -+=+⎰.(3)22Lx y ds +⎰,其中L 为圆周22x y x +=;解:222Lx y ds +=⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解: 2Lx y z d =⎰2 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥度1ρ=。
解 故所求重心坐标为444,,333πππ⎛⎫⎪⎝⎭.习题10—21 设L 为xOy 面内一直线y b =(b 为常数),证明xyoABC(,)0LQ x y dy =⎰。
证明:略.2 计算下列对坐标的曲线积分: (1)Lxydx ⎰,其中L 为抛物线2y x =上从点(1,1)A -到点(1,1)B 的一段弧。
解 :45Lxydx =⎰。
(2)⎰-++Ldy y x dx y x 2222)()(,其中L 是曲线x y --=11从对应于0=x 时的点到2=x 时的点的一段弧;解34)()( 2222=-++⎰Ldy y x dx y x .(3),Lydx xdy +⎰L 是从点(,0)A a -沿上半圆周222x y a +=到点(,0)B a 的一段弧;解 0.Lydx xdy +=⎰(4)22Lxy dy x ydx -⎰,其中L 沿右半圆222x y a +=以点(0,)A a 为起点,经过点(,0)C a 到终点(0,)B a -的路径;解 22Lxy dy x ydx -⎰44a π=-。
(5)3223Lx dx zy dy x ydz +-⎰,其中L 为从点(3,2,1)A 到点(0,0,0)B 的直线段AB ;解 3223Lx dx zy dy x ydz +-⎰3187874t dt ==-⎰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在第一象限内所围成的扇形的整个边界。 解:
y = x与x 2 + y 2 = a 2的交点为(
2 2 a, a) 2 2
2 );
记: L1 : y = 0 ( 0 ≤ x ≤ a )
L2 : y = x (0 ≤ x ≤ a
2 ≤ x ≤ a)
x2 + y2
L3 : y = a 2 − x 2 ( a
(−
π
2
≤θ ≤
π
2
)
1 A = ∫ 2π ( 2a cos 2 θ ⋅ 2a cos 2θ + a sin 2θ ⋅ 4a cosθ sin θ )dθ 2 −2
= 4a
2
π
∫
π
2 0
(cos θ + sin θ cos θ )dθ = 4a
4 2 2
2
∫
π
2 0
cos 2 θ dθ =π a 2
∫
AB
F ⋅ dr =
∫
z2
z1
mgdz = mg ( z 1 − z 2 )
L
7. 把对坐标的曲线积分
∫
P ( x , y )dx + Q( x , y )dy 化成对弧长 L 的曲线积分,其中 L 为:
(1) 在 xoy 面内沿直线从点(0,0)到点(1,1) (2) 沿抛物线 y = x 从点(0,0)到点(1,1)
y = x与y = x 2的交点为( 0, 0 ),( 1, 1 )
记: L1 : y = x ( 0 ≤ x ≤ 1); 所以
解:LΒιβλιοθήκη : y = x 2 (0 ≤ x ≤ 1)
∫ xds = ∫ xds + ∫ xds
L L1 L2
= ∫ x 1 + ( x )′ 2 dx + ∫ x 1 + ( x 2 )′ 2 dx
∫∫ (−2 y cos x + 6 xy
D
− 6 xy 2 + 2 y cos x )dxdy = 0
即
∫ (2 xy
L
3
0 3 − y 2 cos x )dx + (1 − 2 y sin x + 3 x 2 y 2 )dy + ∫ (1 − 2 y + π 2 y 2 )dy + 0 = 0 1 4
=∫
1 1 + 4x2
L2
[ P ( x , y ) + 2 xQ( x , y )]ds
(1 − x ) 2 dx 2x − x2
dx = 2x − x 2 ds
(3)
ds = 1 + ( 2 x − x 2 )′ 2 dx = 1 +
∴ cos α =
∴ cos β = sin α = 1 − ( 2 x − x 2 ) = 1 − x
5.利用格林公式,计算下列曲线积分: (3)
∫ (2 xy
L
3
− y 2 cos x )dx + (1 − 2 y sin x + 3 x 2 y 2 )dy ,其中 L 为抛物线 2 x = π y 2 上由
点(0,0)到 (
π
2
,1) 的一段弧;
解:记:D 为 L: x =
π
2
,
2
y = 0 所围的闭区域,则
= − ∫ 1dt = −2π
0
2π
6. 设 z 轴与重力的方向一致, 求质量为 m 的质点从位置 ( x1 , y1 , z1 ) 沿直线移到 ( x 2 , y 2 , z 2 ) 时 重力所做的功。 解: F = {0, 0, mg } ,记 dr={dx,dy,dz}, W= A ( x1 , y1 , z 1 ) , B ( x 2 , y 2 , z 2 ) ,则功
L1 + L2
∫
ydx − xdy ∂Q ∂P = ∫∫ ( − )dxdy = 0 2 2 2( x + y ) D1 ∂x ∂y
ydx − xdy = ∫ 2 2 L 2( x + y )
L1 −
∫
2 2 2 2 2π − ε sin θ − ε cos θ ydx − xdy = dθ = −π 2( x 2 + y 2 ) ∫0 2ε 2
解: ds =
x t + y t + z t dt = 1 + 4 x 2 + 9 y 2 dt
dx 1 = ds 1 + 4x2 + 9 y2 cos γ = dz 3y = ds 1 + 4x2 + 9 y2
2
2
2
∴
cos α =
cos β =
dy 2x = ds 1 + 4x2 + 9 y2
解:圆弧的参数方程为: x = 2a cos
2
θ,
y = 2a cosθ sin θ
(0 ≤ θ ≤ π ) 2
∴ 原式 =
∫
2a
0
1 x ⋅ 0dx + ∫ 2 4a 2 cos 3 θ sin θ ( −4a cos θ sin θ dθ ) = − π a 3 0 2
其中 L 为圆周 x + y = a
∫
L31
P ( x , y )dx + Q( x , y )dy = ∫ [ P 2 x − x 2 + Q ⋅ (1 − x )]ds
L3
8. 设 Γ 为曲线 x = t , y = t , z = t 上相应于 t 从 0 变到 1 的曲线弧,把对坐标的曲线积分
2 3
∫
Γ
Pdx + Qdy + Rdz 化成对弧长的曲线积分。
= ∫ a 2 n+1 dt = 2π a 2 n+1
(2)
∫ ( x + y )ds, 其中L为连接(1,0)及(0,1)两点的直线段
L
解:该直线方程: y = 1 − x 所以,原式= (3)
∫ 1⋅
0
1
1 + (1 − x )′ 2 dx = ∫
1
0
2dx = 2
所围成的区域边界
∫
L
xds, 其中L为由直线y = x 及抛物线y = x 2
2 2 2
(3) 沿上半圆周 x + y = 2 x 从点(0,0)到点(1,1)
o 解: (1) L1 的方向余弦: cos α = cos β = cos 45 = 1
2
∫
( 2)
L1
P ( x , y )dx + Q ( x , y )dy = ∫
2
1 2
L1
[ P ( x , y ) + Q( x , y )]ds
2
A=
1 1 2π xdy − ydx = [4 cos t ⋅ 3 cos t − 3 sin t ( −4 sin t )]dt = 12π 2 ∫L 2 ∫0
(3)化为圆的参数方程: x = r cos θ = 2a cos θ ⋅ cos θ = 2a cos 2 θ
y = r sin θ = 2a cos θ sin θ = a sin 2θ
2t
=
(6)
∫
2
0
3 −t 3 e dt = (1 − e − 2 ). 2 2
∫
Γ
x 2 yzds ,其中 Γ 为折线 ABCD,这里 A,B,C,D 依次为点(0,0,0) 、
(0,0,2) 、 (1,0,2) 、 (1,3,2) ;
z B
解:AB:
x = 0, y = 0, z = t ( 0 ≤ t ≤ 2 ) ,
dS = 1 + 4 x 2 + 4 y 2 dxdy
原式=
D xy
∫∫
3( 2 − x 2 − y 2 ) 1 + 4( x 2 + y 2 )dxdy = 3 ∫ = 111 π 10
2
2π 0
dθ ∫
2 0
( 2 − r 2 ) 1 + 4r 2 rdr
5. (2)计算
∫∫ ( x
∴ 原式 = ∫ 0dt + ∫ 0dt + ∫ 1 2 ⋅ t ⋅ 2dt = 9
习题 10-2 3. 计算下列对坐标的曲线积分: ( 2)
∫
L
xydx, 其中 L 为圆周 ( x − a ) 2 + y 2 = a 2 (a > 0) 及 x 轴所围成的在第一象限内的区域
的整个边界(按逆时针方向绕行)
3. 计算曲线积分
∫
ydx − xdy 2 2 ,其中 L 为圆周 ( x − 1) + y = 2 的方向,L 为逆时针方向。 L 2( x 2 + y 2 ) −x y 无意义,该点又在圆内,所以不能 , Q= 2 2( x + y ) 2( x 2 + y 2 )
2
解: (当 x=0, y=0 时, P =
原式= e
L1
∫
x2 + y2
ds + ∫ e
L2
x2 + y2
ds + ∫ e
L3
ds
=
∫
a
0
e x 1 + 0 2 dx + ∫
a x a 0 2x
a 2
0
e
2x
1 + ( x ′) 2 dx + ∫ a e a 1 + (
2
a
− 2x 2 a −x
2 2
) 2 dx