MATLAB入门教程
MATLAB科学计算软件入门教程

MATLAB科学计算软件入门教程第一章:MATLAB基础知识MATLAB是一种专业的科学计算软件,具有强大的数学计算和数据分析能力。
在使用MATLAB进行科学计算前,我们需要先了解一些基本知识。
1.1 MATLAB界面打开MATLAB后,我们会看到一个主界面。
主界面中有命令窗口、当前文件夹窗口、工作空间窗口和编辑器窗口等基本功能区域。
1.2 MATLAB变量和数据类型MATLAB中的变量可以用来存储各种类型的数据,如数字、字符串、矩阵等。
常见的数据类型包括:double(双精度浮点数)、char(字符)、logical(逻辑值)等。
1.3 MATLAB基本操作在MATLAB中,可以使用基本的数学运算符进行加、减、乘、除等计算操作。
另外,还可以通过内置函数实现更复杂的数学运算。
例如,sin函数可以计算正弦值,sum函数可以计算矩阵元素的和等。
第二章:MATLAB矩阵和向量操作2.1 创建矩阵和向量在MATLAB中,可以使用方括号来创建矩阵和向量。
例如,使用[1,2;3,4]可以创建一个2x2的矩阵。
2.2 矩阵和向量的加减乘除运算MATLAB提供了丰富的矩阵和向量运算函数,可以进行加法、减法、乘法、除法等运算操作。
例如,可以使用矩阵相乘函数*来计算矩阵的乘法。
2.3 矩阵和向量的索引和切片在MATLAB中,可以使用索引和切片操作来获取矩阵和向量中的特定元素或子集。
例如,使用矩阵名加上行和列的索引可以获取矩阵中指定位置的元素。
第三章:MATLAB数据可视化3.1 绘制二维图形MATLAB提供了丰富的绘图函数,可以绘制二维曲线、散点图、柱状图、等高线图等。
例如,可以使用plot函数来绘制二维曲线。
3.2 绘制三维图形MATLAB还可以绘制三维图形,如三维曲线、三维散点图、三维曲面等。
例如,可以使用plot3函数来绘制三维曲线。
3.3 图像处理与显示MATLAB提供了图像处理和显示的函数,可以加载、编辑和保存图像。
2024版matlab教程(全)资料ppt课件

进行通信系统的建模、仿真和分析。
谢谢聆听
B
C
变量与赋值
在MATLAB中,变量不需要事先声明,可以 直接赋值。变量名以字母开头,可以包含字 母、数字和下划线。
常用函数
MATLAB提供了丰富的内置函数,如sin、 cos、tan等三角函数,以及abs、sqrt等数 学函数。用户可以通过help命令查看函数的
D
使用方法。
02 矩阵运算与数组操作
错误处理
阐述try-catch错误处理机制的语法、 执行流程及应用实例。
04
函数定义与调用
函数概述
阐述函数的概念、作用及分类,包括内置函数和 自定义函数。
函数调用
深入剖析函数的调用方法,包括直接调用、间接 调用及参数传递等技巧。
ABCD
函数定义
详细讲解自定义函数的定义方法,包括函数名、 输入参数、输出参数及函数体等要素。
拟合方法
利用已知数据点构造近似函数,如最小二乘法、多项 式拟合、非线性拟合等。
插值与拟合的比较
插值函数经过所有数据点,而拟合函数则追求整体上 的近似。
数值积分与微分
01
数值积分方法
利用数值技术计算定积分的近似 值,如矩形法、梯形法、辛普森 法等。
02
数值微分方法
通过数值技术求解函数的导数或 微分,如差分法、中心差分法、 五点差分法等。
02
01
矩阵运算
加法与减法
对应元素相加或相减,要求矩阵 大小相同
乘法
使用`*`或`mtimes`函数进行矩阵 乘法,要求内维数相同
点乘与点除
使用`.*`、`./`进行对应元素相乘或 相除,要求矩阵大小相同
特征值与特征向量
MATLAB的基本使用教程

MATLAB的基本使用教程MATLAB是一种强大的数学计算软件,广泛应用于科学、工程和技术领域。
它提供了丰富的功能和工具,能够快速、有效地处理和分析各种数学问题。
本文将介绍MATLAB的基本使用方法,帮助初学者快速入门。
一、MATLAB的安装与启动1、下载和安装MATLAB软件:在MathWorks官方网站上下载适合自己操作系统的MATLAB软件,并根据安装提示进行安装。
安装完成后,会生成一个MATLAB的启动图标。
2、启动MATLAB:双击MATLAB的启动图标,或者在命令行中输入"matlab"命令,即可启动MATLAB。
二、MATLAB的基本操作1、工作环境:MATLAB提供了一个强大的集成开发环境(IDE),可以在其中编写和运行代码。
在MATLAB的界面中,包括主窗口、命令窗口、变量窗口、编辑器等。
2、命令窗口:在命令窗口中可以输入和执行MATLAB命令。
可以直接在命令窗口中输入简单的计算,例如输入"2+3"并按下回车键,即可输出计算结果。
3、脚本文件:MATLAB可以编写和运行脚本文件,将一系列命令组织起来,并按顺序执行。
在编辑器中编写MATLAB代码,并将文件保存为.m扩展名的脚本文件。
然后在命令窗口中输入脚本文件的文件名(不带扩展名),按下回车键即可执行脚本文件中的代码。
4、变量和赋值:在MATLAB中,可以创建和操作各种类型的变量。
例如,可以使用"="符号将一个值赋给一个变量,例如"A=5"。
在后续的计算和分析中,可以使用这个变量,例如输入"B=A+3",结果B 将被赋值为8。
5、矩阵和向量:MATLAB中的基本数据结构是矩阵和向量。
可以使用方括号[]来创建矩阵和向量,并使用逗号或空格来分隔不同的元素。
例如,"[1,2,3]"表示一个包含3个元素的行向量。
6、矩阵运算:MATLAB提供了丰富的矩阵运算符和函数,可以对矩阵进行各种运算。
(完整版)Matlab入门教程(很齐全)

2 2
0 1
3 1
>> a=[4 -2 2;-3 0 5;1 5 3]; b=[1 3 4;-2 0 -3;2 -1 1]; >> a*b
ans =
12 10 24 7 -14 -7
-3 0 -8
=AB
数组和矩阵
9.矩阵的基本运算
例 已知
4 2 2 1 3 4
A
(3)用linspace函数构造数组
x = linspace(first,last,num)
x = linspace(0,10,5)
7.构造矩阵
(1)简单创建方法
数组和矩阵
row = [e1,e2,…,em]; A = [row1;row2;…;rown]
A = [2 4 1;4 5 2;7 2 1]
3 1
0 5
5 3
,
B
2 2
0 1
3 1
>> rank(a) ans =
3
R(A)
数组和矩阵
9.矩阵的基本运算
例 已知
4 2 2 1 3 4
A
2 2
0 1
3 1
6.构造数组
数组和矩阵
(1)直接构造,用空格或逗号间隔数组元素
A = [2 3 5 1] 或 A = [sqrt(2),3e2,log(5),1+2i]
(2)用增量法构造数组
(first:last) 或 (first:step:last)
A = 10:15 A = 3:0.2:4
A = 9:-1:0
MATLAB 9.8 基础教程 第1章 基础入门

1.1.2 MATLAB系统结构
MATLAB系统由MATAB开发环境、MATLAB数学函数库、MATLAB语言、MATLAB图形处理系统 和MATLAB应用程序接口(API)五大部分构成。
1993年推出了基于PC平台的以Windows为操作系统平台的MATLAB 4.0版;
2006年起,每年推出两个版本,上半年推出的用a标识,下半年推出的用b标识;
2012年9月份开发的MATLAB 8.0(R2012b),采用了全新的视图界面,具有MATLAB和 Simulink的重大更新,可显著提升用户的使用与导航体验,其包括64位和32位两个版本;
Symbolic Math
System Identification
Global Optimization 全局优化工具箱
Text Analytics
Image Acquisition 图像采集工具箱
Image Processing
图象处理工具箱
Instrument Control 仪表控制工具箱
LTE
开发环境
• 一套方便用户使用 的 MATLAB 函 数和 文件工具集,其中 许多工具是图形化 用户接口。它是一 个集成的用户工作 区,允许用户输入 输出数据,并提供 了M文件的集成编 译和调试环境,包 括 MATLAB 桌 面、 命令窗口、M文件 编辑调试器、工作 区浏览器和在线帮 助文档。
数学函数库
• 是数学算法的一个 巨大集合,包括初 等数学的基本算法 和高等数学、线性 代数等学科的复杂 算法等。用户直接 调用其函数就可进 行运算,它是 MATLAB系 统 的基 础组成部分。
MATLAB基础使用教程

MATLAB基础使用教程一、什么是MATLAB?MATLAB是一款强大的数学计算软件,广泛应用于科学研究、工程设计和数据分析等领域。
它以其简单易用的编程语言和丰富的功能,成为了许多科研工作者和工程师的首选工具。
在本篇文章中,将介绍MATLAB的基础使用方法,帮助初学者快速入门。
二、MATLAB的安装与入门1. 下载和安装MATLAB软件在MathWorks官方网站上下载适用于您的操作系统版本的MATLAB,然后按照安装向导的提示进行安装。
2. MATLAB的界面介绍在打开MATLAB后,您将看到一个包含命令窗口、编辑器和变量编辑器等组件的界面。
命令窗口是最常用的组件,您可以在其中输入MATLAB的命令并执行。
3. 基本操作在命令窗口中,可以输入简单的算术运算,如加减乘除,以及一些内置函数。
例如,输入"2+3"并按下Enter,MATLAB将返回结果5。
三、MATLAB的变量与数据类型1. 变量的定义与赋值在MATLAB中,可以使用一个变量来存储一个数值或一个数据矩阵。
要定义一个变量并赋值,只需输入变量名和等号,然后再输入数值或矩阵。
例如,输入"A=5",即可定义一个名为A的变量,并将其赋值为5。
2. 数据类型MATLAB支持多种数据类型,包括整数、浮点数、字符串和逻辑类型。
您可以使用"whos"命令查看当前可用的变量及其数据类型。
3. 矩阵与数组操作在MATLAB中,矩阵和数组是最常用的数据结构之一。
您可以使用方括号来创建矩阵或数组,并使用索引来访问其中的元素。
例如,输入"A=[1 2 3; 4 5 6]",即可创建一个2行3列的矩阵。
四、MATLAB的数学运算与函数1. 基本数学运算MATLAB支持各种基本的数学运算,包括加、减、乘、除、幂运算等。
您可以直接在命令窗口中输入相应的表达式,并按下Enter键进行计算。
2024版MATLAB基础教程(第五版)全套教学课件

强化学习算法如Q-learning、SARSA 等也可以在MATLAB中进行实现和仿 真。
监督学习
无监督学习
深度学习
强化学习
MATLAB支持各种监督学习算法的实 现,如线性回归、逻辑回归、支持向 量机等。
MATLAB还提供了深度学习工具箱, 支持各种深度学习模型的构建和训练。
其他应用领域探讨
控制系统设计 数字图像处理 生物信息学
详细讲解如何创建符号对象,包括符号变量、符号表达式、符号函数等,
以及如何进行符号对象的操作,如符号表达式的化简、求值等。
03
符号微积分
介绍符号微积分的基本概念和运算规则,包括符号函数的极限、导数、
积分等运算。
方程求解与函数极值问题
线性方程组求解 介绍线性方程组的基本概念和解法,包括直接法和迭代法, 以及如何使用MATLAB求解线性方程组。
MATLAB面向对象编程
定义类、创建对象、访问属性和方法、实现继承和多态
文件操作与数据处理方法
文件操作
打开和关闭文件、读写文件内容、处理二进制文件
数据处理
数据导入和导出、数据清洗和转换、数据可视化和分析
实践案例分析:科学计算问题求解
案例一
求解线性方程组
案例二
数值积分与微分
案例三
常微分方程求解
案例四
avi、gif等格式转换
可视化工具箱介绍
MATLAB图形界面设计工具
GUIDE
数据可视化工具箱
Data Visualization Toolbox
地图可视化工具箱
Mapping Toolbox
信号处理可视化工具箱
Signal Processing Toolbox
MATLAB入门教程)1.MATLAB的基本知识

1-1、基本运算与函数在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter 键即可。
例如:>> (5*2+1.3-0.8)*10/25ans =4.2000MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。
小提示:">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。
我们也可将上述运算式的结果设定给另一个变数x:x = (5*2+1.3-0.8)*10^2/25x = 42此时MATLAB会直接显示x的值。
由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。
小提示:MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。
MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。
若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:y = sin(10)*exp(-0.3*4^2);若要显示变数y的值,直接键入y即可:>>yy =-0.0045在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。
下表即为MATLAB常用的基本数学函数及三角函数:小整理:MATLAB常用的基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示rats(x):将实数x化为多项分数展开sign(x):符号函数(Signum function)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB入门教程1.MATLAB的基本知识1-1、基本运算与函数在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter 键即可。
例如:>> (5*2+1.3-0.8)*10/25ans =4.2000MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。
小提示:">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。
我们也可将上述运算式的结果设定给另一个变数x:x = (5*2+1.3-0.8)*10^2/25x = 42此时MATLAB会直接显示x的值。
由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。
小提示:MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variabledeclaration)。
MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。
若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:y = sin(10)*exp(-0.3*4^2);若要显示变数y的值,直接键入y即可:>>yy =-0.0045在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。
下表即为MATLAB常用的基本数学函数及三角函数:小整理:MATLAB常用的基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示rats(x):将实数x化为多项分数展开sign(x):符号函数(Signum function)。
当x<0时,sign(x)=-1;当x=0时,sign(x)=0;当x>0时,sign(x)=1。
> 小整理:MATLAB常用的三角函数sin(x):正弦函数cos(x):馀弦函数tan(x):正切函数asin(x):反正弦函数acos(x):反馀弦函数atan(x):反正切函数atan2(x,y):四象限的反正切函数sinh(x):超越正弦函数cosh(x):超越馀弦函数tanh(x):超越正切函数asinh(x):反超越正弦函数acosh(x):反超越馀弦函数atanh(x):反超越正切函数变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算:x = [1 3 5 2];y = 2*x+1y = 3 7 11 5小提示:变数命名的规则1.第一个字母必须是英文字母2.字母间不可留空格3.最多只能有19个字母,MATLAB会忽略多馀字母我们可以随意更改、增加或删除向量的元素:y(3) = 2 % 更改第三个元素y =3 7 2 5y(6) = 10 % 加入第六个元素y = 3 7 2 5 0 10y(4) = [] % 删除第四个元素,y = 3 7 2 0 10在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。
MATLAB亦可取出向量的一个元素或一部份来做运算:x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算ans = 9y(2:4)-1 % 取出y的第二至第四个元素来做运算ans = 6 1 -1在上例中,2:4代表一个由2、3、4组成的向量若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):helplinspace 小整理:MATLAB的查询命令help:用来查询已知命令的用法。
例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。
(键入help help则显示help的用法,请试看看!)lookfor:用来寻找未知的命令。
例如要寻找计算反矩阵的命令,可键入lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。
找到所需的命令後,即可用help进一步找出其用法。
(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。
)将列向量转置(Transpose)後,即可得到行向量(Column vector):z = x'z = 4.00005.20006.40007.60008.800010.0000不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:length(z) % z的元素个数ans = 6max(z) % z的最大值ans = 10min(z) % z的最小值ans = 4小整理:适用於向量的常用函数有:min(x): 向量x的元素的最小值max(x): 向量x的元素的最大值mean(x): 向量x的元素的平均值median(x): 向量x的元素的中位数std(x): 向量x的元素的标准差diff(x): 向量x的相邻元素的差sort(x): 对向量x的元素进行排序(Sorting)length(x): 向量x的元素个数norm(x): 向量x的欧氏(Euclidean)长度sum(x): 向量x的元素总和prod(x): 向量x的元素总乘积cumsum(x): 向量x的累计元素总和cumprod(x): 向量x的累计元素总乘积dot(x, y): 向量x和y的内积cross(x, y): 向量x和y的外积(大部份的向量函数也可适用於矩阵,详见下述。
)若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:A = [1 2 3 4; 5 6 7 8; 9 1011 12];A =1 2 3 45 6 7 89 10 11 12同样地,我们可以对矩阵进行各种处理:A(2,3) = 5 % 改变位於第二列,第三行的元素值A =1 2 3 45 6 5 89 10 11 12B = A(2,1:3) % 取出部份矩阵BB = 5 6 5A = [A B'] % 将B转置後以行向量并入AA =1 2 3 4 55 6 5 8 69 10 11 12 5A(:, 2) = [] % 删除第二行(:代表所有列)A =1 3 4 55 5 8 69 11 12 5A = [A; 4 3 2 1] % 加入第四列A =1 3 4 55 5 8 69 11 12 54 3 2 1A([1 4], :) = [] % 删除第一和第四列(:代表所有行)A =5 5 8 69 11 12 5这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。
小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。
举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。
此外,若要重新安排矩阵的形状,可用reshape命令:B = reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数B =5 89 125 611 5小提示:A(:)就是将矩阵A每一列堆叠起来,成为一个行向量,而这也是MATLAB变数的内部储存方式。
以前例而言,reshape(A, 8, 1)和A(:)同样都会产生一个8x1的矩阵。
MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:x = sin(pi/3); y = x^2; z = y*10,z =7.5000若一个数学运算是太长,可用三个句点将其延伸到下一行:z = 10*sin(pi/3)* ...sin(pi/3);若要检视现存於工作空间(Workspace)的变数,可键入who:whoYour variables are:testfile x这些是由使用者定义的变数。
若要知道这些变数的详细资料,可键入:whosName Size Bytes ClassA 2x4 64 double arrayB 4x2 64 double arrayans 1x1 8 double arrayx 1x1 8 double arrayy 1x1 8 double arrayz 1x1 8 double arrayGrand total is 20 elements using 160 bytes使用clear可以删除工作空间的变数:clear AA??? Undefined function or variable 'A'.另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不到,但使用者可直接取用,例如:pians = 3.1416下表即为MATLAB常用到的永久常数。
小整理:MATLAB的永久常数i或j:基本虚数单位eps:系统的浮点(Floating-point)精确度inf:无限大,例如1/0 nan或NaN:非数值(Not a number),例如0/0pi:圆周率p(= 3.1415926...)realmax:系统所能表示的最大数值realmin:系统所能表示的最小数值nargin: 函数的输入引数个数nargin: 函数的输出引数个数1-2、重复命令最简单的重复命令是圈(for-loop),其基本形式为:for 变数= 矩阵;运算式;end其中变数的值会被依次设定为矩阵的每一行,来执行介於for和end之间的运算式。
因此,若无意外情况,运算式执行的次数会等於矩阵的行数。
举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence):x = zeros(1,6); % x是一个16的零矩阵for i = 1:6,x(i) = 1/i;在上例中,矩阵x最初是一个16的零矩阵,在圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。