差分方程模型的理论和方法
数学建模中的差分方程模型

数学建模中的差分方程模型数学建模是一种将实际问题转化为数学模型并寻求与之相连的数学方法的学科,不仅仅在理论研究上有很大的应用,也在实际生活中有着广泛的应用。
在各种数学模型中,差分方程模型也是一种很重要的模型。
本文将结合实例,介绍差分方程模型的定义、建立、求解以及应用。
差分方程模型定义差分方程模型是一种通过离散化的方法,将连续时间问题转化为离散时间问题,来描述变量随时间的变化规律的数学模型。
这种数学模型以时间为自变量,以某个状态量为因变量,由一定的关系式组成。
例如:y(n+1)=ay(n)+b,式子中y(n)代表第n时刻系统状态,y(n+1)代表第n+1时刻系统状态,a和b为常数。
差分方程模型建立建立差分方程模型的关键是将实际问题中的连续变化离散化。
一般情况下,对于所建立的模型,首先要确定它的思路和范围,然后根据实际情况,确定差分方程的形式。
此外,还需要进行参数的估计和参数变化的分析,以及对模型精确性的验证。
以物理学中的简谐振动为例,建立一个差分方程模型描述其运动,即一个质点在回复力作用下以简谐运动形式振动。
设t为时间,y为质点的位移,v为质点的速度,a为质点的加速度,则有:$$y=n\Delta y \\v=\dfrac{y(n+1)-y(n-1)}{2\Delta t} \\a=\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2}$$其中n为时间步长,$\Delta t$为时间间隔。
我们利用受力平衡的原理,即简谐振动中的$F=-ky$得到:$$\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2} = -\dfrac{k}{m}y(n)$$将$\alpha=\dfrac{k}{m}$带入上式得到:$$y(n+1)-2(1+\alpha)y(n)+y(n-1) = 0$$此时,我们便成功地建立了描述简谐振动的差分方程模型。
差分方程模型求解对差分方程模型求解通常有两种方法:一种是使用递推公式进行求解,另一个方法是使用其它数学方法,如拉普拉斯变换或离散傅立叶变换等。
差分方程模型的基本概念

预测经济趋势
通过建立差分方程模型,可以对 未来的经济趋势进行预测,帮助 决策者制定相应的经济政策。
评估经济政策
差分方程模型可以用来评估不同 经济政策的实施效果,为政策制 定者提供参考依据。
在物理学中的应用
描述振动现象
差分方程模型可以用来描述物体的振动规律,如弹簧振荡、单摆 等。
预Байду номын сангаас波动传播
在声学和波动理论中,差分方程模型可以用来描述波动传播的规 律,如声波、电磁波等。
可以采用动态模型来反映数据的变化趋势,减少时间滞后的影 响。
可以利用大数据技术来处理大规模的数据集,提高模型的预测 精度和稳定性。
可以尝试优化参数估计方法,例如采用全局优化算法或贝叶斯 推断等方法,以提高参数估计的准确性和稳定性。
THANKS FOR WATCHING
感谢您的观看
确定差分关系
根据时间序列数据的特性,确定合适的差分关系,以描述数据的变化规律。差分关系通常表示为变量在不同时间 点的变化量或变化率。
建立差分方程模型
根据变量和参数建立模型
根据确定的变量和参数,建立差分方程模型,以描述变量的变化规律。
验证模型的适用性
建立差分方程模型后,需要验证模型的适用性,确保模型能够准确描述实际问题的变化规律。
Python
使用Python的数值计算库,如NumPy和 SciPy,求解差分方程。
Mathematica
使用Mathematica的符号计算和数值计算功 能求解差分方程。
04 差分方程模型的应用
在经济学中的应用
描述经济周期
差分方程模型可以用来描述经济 活动的周期性变化,如经济增长、 通货膨胀、就业率等的时间序列 数据。
(完整版)差分方程模型(讲义)

差分方程模型一. 引言数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。
1. 确定性连续模型1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。
2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。
3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。
4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。
2. 确定性离散模型1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。
2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。
3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。
4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。
随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。
在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。
有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。
例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。
这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。
二. 差分方程简介在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。
有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。
但是,往往都需要用计算机求数值解。
这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。
差分方程及其Z变换法求解

= b0 r[(k + m)T ] + b1r[(k + m − 1)T ] + .......bm−1r[(k + 1)T ] + bm r (kT )
zX 1 ( z ) − zx1 (0) = X 2 ( z )
x2(kT)
z −1
x1(kT) z −1 x2(z) y[(k+1)T] KT
-
x1(0) 1 x1(z)
例2:画出例2所示离散系统的模拟图
y[(k + 1)T ] = -( KT -1) y (kT ) + KTr (kT ) r(kT)+ 1)T ] + ( KT -1) y (kT ) = KTr (kT ) y (k + 1) + ( K -1) y (k ) = Kr (k )
KT-1
三、差分方程的解
差分方程的求解:迭代法、z变换法。 迭代法:将原系统的差分方程化为如下形式:
y[(k + n)T ] = −a1 y[(k + n − 1)T ] − ...... − an −1 y[(k + 1)T ] − an y[kT ] + b0 r[( k + m)T ] + b1r[(k + m − 1)T ] + .......bm −1r[( k + 1)T ] + bm r (kT )
y (kT ) = 0.446 + 1.429(-0.4) k -1.875(-0.6) k
数学建模之差分方程

差分方程模型①建立差分方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立差分方程模型。
一阶常系数线性差分方程的一般形式为1(),(0)t t y ay f t a +-=≠(1)②求解一阶常系数齐次线性差分方程10,(0)t t y ay a +-=≠(2)常用的两种解法1)迭代法假设0y 已知,则有2112210(),n n n n n n y ay a ay a y a y a y ----======一般有0(0,1,2,).t t y a y t ==10t t y ay +-=(3)2)特征方程法假设(0)t Y λλ=≠为方程(3)的解,代入(3)得方程的特征方程10(0),t t a λλλ+-= ≠解得特征根:.a λ=则t t y a =是方程(3)的解,所以齐次方程的通解为 (t t y ca c =为任意常数)例题:设某房屋总价为a 元,先付一半可入住,另一半由银行以年利r 贷款, n 年付清,问平均每月付多少元?共付利息多少元?解:设每月应付x 元,月利率为12r ,则第一个月应付利息为 1.12224r a ra y =⨯=第二月应付利息为2111,2121212a r r rx y x y y ⎛⎫⎛⎫=-+⨯=+- ⎪ ⎪⎝⎭⎝⎭以此类推得到 11,1212t t r rx y y +⎛⎫=+- ⎪⎝⎭此方程为一阶常系数非线性差分方程。
其相应的特征方程为(1)012r λ-+= 特征根为112r + 则得到通解为1(12t t r y c c ⎛⎫=+ ⎪⎝⎭为任意常数). 解得特解为t y x *=所以原方程通解为 112t t r y c x ⎛⎫=++ ⎪⎝⎭当112224r a ra y =⨯=时,解得24112ra x c r -=+。
所以解得满足初始条件的特解为112411211211.2121212t t t t ra x r y x r a r r r x x ---⎛⎫=++ ⎪⎝⎭+⎛⎫⎛⎫=⨯⨯++-+ ⎪ ⎪⎝⎭⎝⎭ 于是得到n 年的利息之和为11212121212121221112nnn I y y a r r a n r =++⎛⎫⨯+⨯ ⎪⎝⎭=⨯-⎛⎫+- ⎪⎝⎭ 元,平均每月需要付12121212121112nna r rr⎛⎫⨯+⨯⎪⎝⎭⎛⎫+-⎪⎝⎭元。
差分方程的求解方法及其应用

差分方程的求解方法及其应用差分方程是数学中一个比较重要的分支,用于描述离散化的动态系统和过程,广泛应用于物理、工程、生态、经济、金融等领域。
通过离散化,可以将连续的问题转化为离散的数值计算问题,从而可以用计算机进行求解。
本文将介绍差分方程的求解方法及其应用,希望能够对读者有所帮助。
一、差分方程的定义差分方程是指包含有未知函数的离散变量的函数方程。
通俗的说,就是说差分方程用来描述离散的数学模型。
一般的差分方程可以写成如下形式:$$y_{n+1} = f(y_n, y_{n-1}, \cdots, y_{n-k+1}, n)$$其中,$y_n$ 是未知函数在 $n$ 时刻的值,$f$ 是一个给定的函数,$k$ 是差分方程中自变量的个数。
当 $k=1$ 时,常常称为一阶差分方程,如下所示:$$y_{n+1} = f(y_n, n)$$此外还有二阶、三阶等高阶差分方程。
差分方程与微分方程相似,都是用来描述某种动态系统的变化规律,只是微分方程是描述连续变化的模型,而差分方程是描述离散变化的模型。
二、差分方程的求解方法差分方程的求解方法可以分为两类,一类是解析解法,即用数学公式直接求解;另一类是数值解法,即用计算机进行数值计算求解。
1. 解析解法对于一些特殊的差分方程,可以用解析解法求出解析解。
解析解法就是通过数学公式直接求解,得到函数在论域上的解析表达式,从而可以对解析表达式进行分析求得有关该函数的很多重要信息。
以一阶线性差分方程为例,即:$$y_{n+1} = ay_n + b, \ \ (n=0,1,2,\cdots)$$其中 $y_0$ 是已知值, $a$ 和 $b$ 是常数。
可以通过数学公式得到该差分方程的解析解:$$y_n = a^ny_0 + b\frac{a^n-1}{a-1}, \ \ (n=0,1,2,\cdots)$$其它的高阶差分方程可以运用代数学、矩阵论、微积分等方法求解。
2. 数值解法数值解法是一种通过数值计算来求解差分方程的方法。
差分方程模型PPT课件

回到全国竞赛题。这里提出了新的问题: (1)潜伏期病人如何描述? (2)死亡病人在模型中的描述。 (3)需要考虑人口的迁移影响,如何描述? (4)如何控制疾病的蔓延?
问题的图示
b O
a
d
d
利用简单的几何关系即得到 yk1 f ( yk ), y1 b
例2:按年龄分组的种群增长模型。
问题考虑两个要点:增长和人口分布 人口分布:对于连续问题,可以利用分布函数和 密度函数描绘。
我们也可以利用离散的方法描述人口分布。把t时
刻人口从小到大分为n组,第k 组人数xk(t),则离 散人口分布可以利用向量
试从中国的实际情况和人口增长的上述特点出发, 参考附录2中的相关数据(也可以搜索相关文献和 补充新的数据),建立中国人口增长的数学模型, 并由此对中国人口增长的中短期和长期趋势做出 预测;特别要指出你们模型中的优点与不足之处。
附录1 《国家人口发展战略研究报告》 附录2 人口数据(《中国人口统计年鉴》中的部 分数据)及其说明
差分方程建模:设第k天病人所占比例为i(k),健 康人数量为s(k),则第k天病人数量变化为
Ni(k 1) Ni(k) s(k)Ni(k) Ni(k)
第k天健康人数量变化为
Ns(k 1) Ns(k) s(k)Ni(k)
把两个式子化简即得到差分方程组。
差分方程和微分方程的建模过程没有差异,差别 在于:变化率和的意义不同。
一阶线性差分方程组的稳定性: 设一阶线性差分方程组的解为{Xk}, 而受扰动解为 {Yk}。记扰动误差为
k X k Yk 则扰动误差满足
k1 A k
对任意初始扰动0,k0的充分必要条件为
( A) 1
这就是差分方程的稳定性条件。
差分方程方法总结

差分方程方法总结差分方程是用来描述离散时间系统行为的一种数学工具。
它们在许多领域中都有广泛的应用,包括物理学、工程学、经济学等。
本文将总结差分方程方法的基本原理和常见应用。
差分方程的基本原理是通过描述系统在不同时间点上的状态来推导出系统的动态行为。
差分方程可以应用于任何离散时间系统,这些系统的行为只在特定时间点上进行观察和量化。
差分方程的一般形式为:y(n+1)=f(y(n),y(n-1),...,y(n-k))其中,y表示系统在时间点n的状态,f是一个给定的函数,k表示差分方程的阶数,表示系统在过去k个时间点上的状态对当前状态的影响。
差分方程的解可以通过递归方法求得。
给定一个初始条件(通常是系统在初始时间点的状态),可以使用差分方程的递推关系式计算未来时间点上的状态。
例如,对于一个一阶差分方程:y(n+1)=a*y(n)+b其中a和b是常数,可以通过给定的初始条件y(0)求得差分方程的解。
根据递推关系式,可以计算y(1)、y(2)、y(3)等等。
在应用中,差分方程通常用于建模和预测。
通过观察系统在过去时间点上的行为,可以构建一个差分方程来描述系统的动态行为。
然后,可以使用差分方程来预测未来时间点上的系统状态。
这对于许多实际问题是非常有用的,例如经济学中的经济增长模型、工程学中的控制系统等。
此外,差分方程还可以用于分析系统的稳定性和收敛性。
通过分析差分方程的特征根(即差分方程的解的形式),可以得出系统是否稳定或收敛到一个特定的平衡点。
这对于控制系统设计和优化非常重要。
差分方程方法在许多领域中都有广泛的应用。
在物理学中,差分方程可以用于描述离散化的空间或时间系统,例如计算机模拟、粒子追踪等。
在工程学中,差分方程可以用于建模和控制系统,例如电路设计、机器人控制等。
在经济学中,差分方程可以用于经济增长模型、市场预测等。
总结起来,差分方程方法是一种描述离散时间系统行为的数学工具。
它具有简单的原理和应用广泛的特点,并且可以用于建模、预测和分析系统的稳定性和收敛性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 差分方程模型的理论和方法引言1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。
通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。
差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。
通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。
2、应用:差分方程模型有着广泛的应用。
实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。
差分方程模型有着非常广泛的实际背景。
在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。
可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。
3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。
或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。
在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。
在后面我们所举的实际例子中,这方面的内容应当重点体会。
差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。
同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。
第一节 差分方程的基本知识一、 基本概念1、 差分算子设数列{}n x ,定义差分算子n n n x x x -=∆∆+1:为n x 在n 处的向前差分。
而1--=∆n n n x x x 为n x 在n 处的向后差分。
以后我们都是指向前差分。
可见n x ∆是n 的函数。
从而可以进一步定义n x ∆的差分:n n x x 2)(∆=∆∆称之为在n 处的二阶差分,它反映的是的增量的增量。
类似可定义在n 处的k 阶差分为:))((1n k n k x x -∆∆=∆2、 差分算子 、不变算子、平移算子记n n n n x Ix x Ex ==+,1,称E 为平移算子,I 为不变算子 。
则有:n n n n x I E Ix Ex x )(-=-=∆ I E -=∆∴ 由上述关系可得:i n ki ik i k n iki ik ik n kn kx C x E C x I E x +=-=-∑∑-=-=-=∆0)1()1()((1)这表明n x 在n 处的k 阶差分由n x 在k n n n ++....1,,处的取值所线性决定。
反之,由 n n n x x x -=∆+1 得 n n n x x x ∆+=+1:n n n n x x x x +-=∆++1222,得:n n n n x x x x 2122∆++-=++,这个关系表明:第n+2项可以用前两项以及相邻三项增量的增量来表现和计算。
即一个数列的任意一项都可以用其前面的k 项和包括这项在内的k+1 项增量的增量的增量……..第k 层增量所构成。
…….. ,)1(1k n i n k i ik ik n kx x C x ++-=-+-=∆∑得:n k i n k i ik i k k n x x C x ∆+--=+-=-+∑1)1((2)可以看出:k n x +可以由n kn n x x x ∆∆,...,,的线性组合表示出来3、 差分方程由n x 以及它的差分所构成的方程),...,,,(1n k n n n k x x x n f x -∆∆=∆ (3)称之为k 阶差分方程。
由(1)式可知(3)式可化为),...,,,(11-+++=k n n n k n x x x n F x (4)故(4)也称为k 阶差分方程(反映的是未知数列n x 任意一项与其前,前面k 项之间的关系)。
由(1)和(2)可知,(3)和(4)是等价的。
我们经常用的差分方程的形式是(4)式。
4、 差分方程的解与有关概念(1) 如果n x 使k 阶差分方程(4)对所有的n 成立,则称n x 为方程(4)的解。
(2) 如果-=x x n (-x 为常数)是(4)的解,即),...,,(---=x x n F x则称-=x x n 为(4)的平衡解或叫平衡点。
平衡解可能 不只一个。
平衡解的基本意义是:设n x 是(4)的解,考虑n x 的变化性态,其中之一是极限状况,如果x x n n =∞→lim ,则方程(4)两边取极限(x 就存在在这里面),应当有 ),...,,(---=x x n F x(3) 如果(4)的解n x 使得--x x n 既不是最终正的,也不是最终负的,则称nx 为关于平衡点-x 是振动解。
(4) 如果令:--=x x y n n ,则方程(4)会变成),...,,(1-++=k n n k n y y n G y (5)则 0=y 成为(5)的平衡点。
(5) 如果(5)的所有解是关于0=y 振动的,则称k 阶差分方程 (5)是振动方程。
如果(5)的所有解是关于0=y 非振动的,则称k 阶差分方程(5)是非振动方程。
(6) 如果(5)有解n y ,使得对任意大的y N 有 0>≥n N n y Sup y则称n y 为正则解。
(即不会从某项后全为零)(7) 如果方程(4)的解n x 使得-∞→=x x Lim n n ,则称n x 为稳定解。
5、 差分算子的若干性质(1)n n n n y x y x ∆+∆=+∆βαβα)(.)((2))(1)(1n n n n n n n n y x x y y y y x ∆-∆=∆+(3)n n n n n n y x x y y x ∆+∆=∆+1)( (4)∑∑==+++∆+-=∆bak k k a bak a b b k k y x y x y x x y111(5)∑=∆=+∆==ni i i n nnn x Cx I x E x 0000)(6、 Z 变换定义:对于数列n x ,定义复数级数∑∞=-==0)()(k k kn z xx Z z X (6)这是关于z 洛朗级数。
它的收敛域是:21R z R <<,其中2R 可以为∞,1R 可以为0。
称)(n x Z 为n x 的z -变换。
由复变函数展开成洛朗级数的唯一性可知:z 变换是一一对应的,从而有逆变换,记为:))((1z X Z x n -=(7)z 变换是研究数列的有效工具 。
z 变换的若干重要性质:(1)线性性 )()()(n n n n y Z x Z y x Z βαβα+=+(2)平移性质 ])([)(1∑-=-+-=N k k kNN n z xz X z x Zz 变换举例:(1)⎩⎨⎧≠=∞=0,00,)(n n n δ, 则∑∞==--=⨯==001)1()())((k k kk z z k n Z δδ(2)⎩⎨⎧<≥=0,00,1)(k k n u ,则∑∑∞=∞=-->-===00,1,1)())((k k kk z z z z z k u n u Z (3)设,)(n a n f =则∑∞=->>-==0,0,,)(k kk n a a z a z z z a a Z (4)设,!1)(n n f =则0,!1)!1(01>==∑∞=-z e z k n Z k z k第二节 差分方程常用解法与性质分析1、 常系数线性差分方程的解方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。
又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。
如果(9)有形如nn x λ=的解,带入方程中可得:0 (11)10=++++--k k k k a a a a λλλ (10)称方程(10)为方程(8)、(9)的特征方程。
显然,如果能求出(10)的根,则可以得到(9)的解。
基本结果如下:(1) 若(10)有k 个不同的实根,则(9)有通解: nk k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: nm m nc n c c λ)...(121----+++(3)若(10)有一对单复根 βαλi ±=,令:ϕρλi e±=,αβϕβαρarctan,22=+=,则(9)的通解中有构成项: n c n c nnϕρϕρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e±=,则(9)的通项中有构成项:n n c n c c n nc n c c n m m m m nm m ϕρϕρsin )...(cos )...(1221121---++---+++++++综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。
通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解:=n x -n x +*n x (11)(8) 的特解可通过待定系数法来确定。
例如:如果)(),()(n p n p b n b m m n=为n 的多项式,则当b 不是特征根时,可设成形如)(n q b m n形式的特解,其中)(n q m 为m 次多项式;如果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系数即可。