离散模型-差分方程模型(12.7)汇总.

合集下载

数学建模中的差分方程模型

数学建模中的差分方程模型

数学建模中的差分方程模型数学建模是一种将实际问题转化为数学模型并寻求与之相连的数学方法的学科,不仅仅在理论研究上有很大的应用,也在实际生活中有着广泛的应用。

在各种数学模型中,差分方程模型也是一种很重要的模型。

本文将结合实例,介绍差分方程模型的定义、建立、求解以及应用。

差分方程模型定义差分方程模型是一种通过离散化的方法,将连续时间问题转化为离散时间问题,来描述变量随时间的变化规律的数学模型。

这种数学模型以时间为自变量,以某个状态量为因变量,由一定的关系式组成。

例如:y(n+1)=ay(n)+b,式子中y(n)代表第n时刻系统状态,y(n+1)代表第n+1时刻系统状态,a和b为常数。

差分方程模型建立建立差分方程模型的关键是将实际问题中的连续变化离散化。

一般情况下,对于所建立的模型,首先要确定它的思路和范围,然后根据实际情况,确定差分方程的形式。

此外,还需要进行参数的估计和参数变化的分析,以及对模型精确性的验证。

以物理学中的简谐振动为例,建立一个差分方程模型描述其运动,即一个质点在回复力作用下以简谐运动形式振动。

设t为时间,y为质点的位移,v为质点的速度,a为质点的加速度,则有:$$y=n\Delta y \\v=\dfrac{y(n+1)-y(n-1)}{2\Delta t} \\a=\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2}$$其中n为时间步长,$\Delta t$为时间间隔。

我们利用受力平衡的原理,即简谐振动中的$F=-ky$得到:$$\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2} = -\dfrac{k}{m}y(n)$$将$\alpha=\dfrac{k}{m}$带入上式得到:$$y(n+1)-2(1+\alpha)y(n)+y(n-1) = 0$$此时,我们便成功地建立了描述简谐振动的差分方程模型。

差分方程模型求解对差分方程模型求解通常有两种方法:一种是使用递推公式进行求解,另一个方法是使用其它数学方法,如拉普拉斯变换或离散傅立叶变换等。

差分方程模型的基本概念

差分方程模型的基本概念

预测经济趋势
通过建立差分方程模型,可以对 未来的经济趋势进行预测,帮助 决策者制定相应的经济政策。
评估经济政策
差分方程模型可以用来评估不同 经济政策的实施效果,为政策制 定者提供参考依据。
在物理学中的应用
描述振动现象
差分方程模型可以用来描述物体的振动规律,如弹簧振荡、单摆 等。
预Байду номын сангаас波动传播
在声学和波动理论中,差分方程模型可以用来描述波动传播的规 律,如声波、电磁波等。
可以采用动态模型来反映数据的变化趋势,减少时间滞后的影 响。
可以利用大数据技术来处理大规模的数据集,提高模型的预测 精度和稳定性。
可以尝试优化参数估计方法,例如采用全局优化算法或贝叶斯 推断等方法,以提高参数估计的准确性和稳定性。
THANKS FOR WATCHING
感谢您的观看
确定差分关系
根据时间序列数据的特性,确定合适的差分关系,以描述数据的变化规律。差分关系通常表示为变量在不同时间 点的变化量或变化率。
建立差分方程模型
根据变量和参数建立模型
根据确定的变量和参数,建立差分方程模型,以描述变量的变化规律。
验证模型的适用性
建立差分方程模型后,需要验证模型的适用性,确保模型能够准确描述实际问题的变化规律。
Python
使用Python的数值计算库,如NumPy和 SciPy,求解差分方程。
Mathematica
使用Mathematica的符号计算和数值计算功 能求解差分方程。
04 差分方程模型的应用
在经济学中的应用
描述经济周期
差分方程模型可以用来描述经济 活动的周期性变化,如经济增长、 通货膨胀、就业率等的时间序列 数据。

数模几个典型的模型

数模几个典型的模型

几种常用的数学模型一:建立数学模型本章介绍数学建模的方法和步骤。

掌握以下模型:椅子能否在不平的地面上放平;商人如何安全过河;如何预报人口的增长等模型。

重点掌握如何对模型进行合理假设及Logistic模型。

二:初等模型公平的席位分配;录像机计数器的用途;双层玻璃窗的功效;汽车的刹车距离;动物的身长和体重;实物交换;核军备竞赛。

重点掌握公平的席位分配及动物的身长和体重等模型。

三:简单的优化模型存贮模型;生猪的出售时机;森林救火;最优价格;血管分支;冰山运输。

重点掌握微元法在建模中的应用及模型的敏感性分析、强健性分析。

难点:模型的合理假设。

四:微分方程模型传染病模型;经济增长模型;正规战与游击战;药物在体内的分布与排除;香烟过滤嘴的作用;人口预测与控制。

万有引力定律的发现重点掌握传染病模型及人口预测与控制模型,及数学模型的应用。

难点:模型的合理假设及简化。

五:稳定性模型捕鱼业的持续收获;军备竞赛;种群的相互竞争;种群的相互依存;食饵——捕食者模型。

重点掌握捕鱼业的持续收获及种群的相互竞争等模型。

难点:对实际问题的分析。

六:差分方程模型市场经济中的蛛网模型;减肥计划——节食与运动;差分形式的阻滞增长模型;按年龄分组的种群增长。

重点掌握市场经济中的蛛网模型及按年龄分组的种群增长等模型。

七:离散模型层次分析法;循环比赛的名次;效益的合理分配。

存在公正的选举规则吗重点掌握层次分析法及效益的合理分配。

八:概率模型传送系统的效率;报童的诀窍;随机存贮策略;轧钢中的浪费;广告中的学问。

重点:报童的诀窍及广告中的学问等模型。

九:统计回归模型牙膏的销售量;软件开发人员的薪金;投资额与生产总值和物价指数;教学评估。

重点:MATLAB统计工具箱的使用。

离散时间系统的数学模型—差分方程

离散时间系统的数学模型—差分方程
?用差分方程描述线性时不变离散系统?由实际问题直接得到差分方程?由微分方程导出差分方程?由系统框图写差分方程?差分方程的特点一
一.用差分方程描述线性时不变离散系统
线性:均匀性、可加性均成立;
x (n) 1
离散时间系统
y (n) 1
x 2 ( n ) 离散时间系统
c x (n ) + c x (n )
x1n+ x2n
x2 n
乘法器:
x1n x1n+ x2n
x2 n
x1 n
x1n x2 n
x2 n
系统框图
乘法器
xn
延时器
axn
a
yn
1
yn 1
E
xn a axn
yn
yn 1
z 1
五.差分方程的特点
(1)输出序列的第n个值不仅决定同一瞬间的输入样值, 而且还与前面输出值有关,每个输出值必须依次保留。
11
22
离散时间系统
y2 (n )
c y (n ) + c y (n )
11
22
时不变性
xn yn,xn N yn N 整个序列右移 N位
x(n)
y(n)
1 1 0 1 2 3 n
1
系统
1 o 1 2 3 4 n
x(n N )
y(n N )
1
1
系统
1 0 1 2 3
yt ynT yn
f t f nT f n
yn yn 1 ayn+ f n
T
yn 1 yn 1+ T f n
1 aT
1 aT
当前输出 前一个输出 输入

(完整版)差分方程模型(讲义)

(完整版)差分方程模型(讲义)

差分方程模型一. 引言数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。

1. 确定性连续模型1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。

2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。

3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。

4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。

2. 确定性离散模型1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。

2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。

3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。

4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。

随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。

在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。

有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。

例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。

这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。

有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。

但是,往往都需要用计算机求数值解。

这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。

差分方程及其Z变换法求解

差分方程及其Z变换法求解
依此类推,可得n阶差分方程: y[(k + n)T ] + a1 y[(k + n − 1)T ] + .......an −1 y[(k + 1)T ] + an y[kT ]
= b0 r[(k + m)T ] + b1r[(k + m − 1)T ] + .......bm−1r[(k + 1)T ] + bm r (kT )
zX 1 ( z ) − zx1 (0) = X 2 ( z )
x2(kT)
z −1
x1(kT) z −1 x2(z) y[(k+1)T] KT
-
x1(0) 1 x1(z)
例2:画出例2所示离散系统的模拟图
y[(k + 1)T ] = -( KT -1) y (kT ) + KTr (kT ) r(kT)+ 1)T ] + ( KT -1) y (kT ) = KTr (kT ) y (k + 1) + ( K -1) y (k ) = Kr (k )
KT-1
三、差分方程的解
差分方程的求解:迭代法、z变换法。 迭代法:将原系统的差分方程化为如下形式:
y[(k + n)T ] = −a1 y[(k + n − 1)T ] − ...... − an −1 y[(k + 1)T ] − an y[kT ] + b0 r[( k + m)T ] + b1r[(k + m − 1)T ] + .......bm −1r[( k + 1)T ] + bm r (kT )
y (kT ) = 0.446 + 1.429(-0.4) k -1.875(-0.6) k

§7.3 离散时间系统的数学模型—差分方程

§7.3 离散时间系统的数学模型—差分方程
i =−∞ n
2n − 1 ∇ sin nω = sin nω − sin(n − 1)ω = 2 sin cos ω 2 2
ω
∑δ (i ) = u(n)
n
i =−∞ n
∑ u(i ) = (n + 1)u(n)
2
n
1 ∑ iu(i ) = 2 n(n + 1)u(n) i =−∞
i =−∞
1 ∑ i u(i ) = 6 n(n + 1)(2n + 1)u(n) i =−∞
n代表序号
注意:微分方程近似写作差分方程的条件是样值间隔T 注意:微分方程近似写作差分方程的条件是样值间隔T 要足够小, 越小,近似程度越好。实际上, 要足够小, T越小,近似程度越好。实际上,利用计算 机来求解微分方程时,就是根据这一原理完成的。 机来求解微分方程时,就是根据这一原理完成的。 返回
返回
(四)稳定系统
有界输入、产生有界输出的系统称为稳定系统。 称为稳定系统 有界输入、产生有界输出的系统称为稳定系统。 稳定系统的充要条件:∑ h (n ) < ∞ 稳定系统的充要条件:
n = −∞ ∞
即:单位脉冲响应绝对可和。 单位脉冲响应绝对可和。
lim 注意: 注意: h( n ) = 0,只是系统稳定的必要条件, 只是系统稳定的必要条件,
n→∞
而非充分条件 而非充分条件。 充分条件。
返回
二、差分方程
在连续时间系统中, 在连续时间系统中,系统内部的数学运算关系可归结 为微分(积分)、乘系数、相加的关系, )、乘系数 微分方程。 为微分(积分)、乘系数、相加的关系,即:微分方程。 在离散时间系统中,基本运算关系是延时(移位)、 在离散时间系统中,基本运算关系是延时(移位)、 乘系数、相加的关系, 差分方程。 乘系数、相加的关系,即:差分方程。 这是由于系统的组成以及所处理的信号的性质不同, 这是由于系统的组成以及所处理的信号的性质不同, 因此描述系统的数学手段也不同。 因此描述系统的数学手段也不同。 (一)数学模型的基本单元 数学模型的基本单元 (二)差分 (三)差分方程 (四)差分方程的建立 (五)差分方程的特点

种群增长模型

种群增长模型

具密度效应旳种群离散增长最简朴旳模型是:
Nt+1=[1.0-B(Nt-Neq)]Nt
模型旳行为特征,用变化参数值旳措施来检验:
设Neq=100,B=0.011,N0=10, N1=[1.0-0.011(10-100)]10=19.9 N2=[1.0-0.011(19.9-100)]19.9=37.4 N3=63.1 N4=88.7 N5=99.7
与密度有关
种群离散增长模型 种群连续增长模型
(一)与密度无关旳种群增长模型 1、种群离散增长模型(差分方程)
假设:①种群在无限环境中增长,增长率不变 ②世代之间不重叠,增长不连续 ③种群没有迁入、迁出 ④种群没有年龄构造
N t+1=λNt 或
Nt=N0 λt lgNt=lgN0+(lgλ)t
式中:N —— 种群大小; t —— 时间; λ—— 种群旳周限增长率。
§1、种群旳概念
§2、种群动态 种群统计学
密度 初级种群参数 次级种群参数 生命表和存活曲线 种群增长率
三、种群增长模型
研究种群旳目旳:阐明自然种群动态 规律及调整机制。
归纳法(搜集资料、解释、归纳)
措施
自然种群
演绎法(假设、搜集资料、检验)
试验种群
种群 增长 模型
与密度无关
种群离散增长模型 种群连续增长模型
按此方程,种群增长将不再是“J”字型, 而是“S”型。“S”型曲线有两个特点:
①曲线渐近于K值,即平衡密度; ② 曲线上升是平滑旳。
草履虫(Paramecium caudatum)种群旳S型增长(Gause,1934)
逻缉斯谛曲线常划分为5个时期: ① 开始期,种群个体数极少,密度增长缓慢; ② 加速期,随个体数增长,密度增长逐渐加紧; ③ 转折期,当个体数到达饱和密度旳二分之一 (即 K/2时),密度增长最快; ④ 减速期,个体超出 K/2 后来,增长变慢; ⑤ 饱和期,种群个体数到达 K 值而饱和。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(步三) 求非齐次方程 (1.1)的一个特解 y t .若yt为方程(1.2)的 yt yt 通解,则非齐次方程 (1.1)的通解为
二 市场经济中的蛛网模型
供大于求 价格下降
数量与价格在振荡 增加产量 价格上涨 供不应求
减少产量
现 象
问 题
描述商品数量与价格的变化规律 商品数量与价格的振荡在什么条件下趋向稳定
方程模型与蛛网模型的一致
Kf
1/ K g
结果解释 结果解释
考察 , 的含义
xk~第k时段商品数量;yk~第k时段商品价格
yk y0 ( xk x0 )
~ 商品数量减少1单位, 价格上涨幅度
xk 1 x0 ( yk y0 )
~ 价格上涨1单位, (下时段)供应的增加 ~ 消费者对需求的敏感程度 ~ 生产者对价格的敏感程度 小, 有利于经济稳定 小, 有利于经济稳定
意常数。类似于微分方程,称差分方程
t
yt 2 yt 0
t
a0 (t ) yt n a1 (t ) yt n1 an (t ) yt b(t )
为n阶线性差分方程, 当 b( t )≠0时称其为n阶非齐次线性差 分方程,而
a0 (t ) yt n a1 (t ) yt n1 an (t ) yt 0
则被称为方程对应的 齐次线性差分方程 。 若所有的 ai(t)均为与t无关的常数,则称其为 常系数差分 方程,即n阶常系数线性差分方程可分成
a0 yn t a1 yn t 1 an yt b(t )
的形式,其对应的齐次方程为
(1.1)
a0 yn t a1 yn t 1 an yt 0 (1.2) ( 2) (1) 容易证明,若序列 y t 与 y t 均为方程(1.2)的解,则
差分方程模型
一 差分方程简介
二 市场经济中的蛛网模型
三 差分形式的阻滞增长模型
四 微分方程的数值解
一 差分方程简介
以t 表示时间,规 定t只取非负整数。t=0表示第一周期初, t=1表示第二周期初等。 记yt 为变量y在时刻t 时的取值,则 称 yt yt 1 yt 为yt 的一阶差分,称
2 yt ( yt ) yt 1 yt yt 2 2 yt 1 yt
为的二阶差分。类似地,可以定义yt的n阶差分。 由t、yt及yt的差分给出的方程称 为yt差分方程,其中含的最 高阶差分的阶数称为该差分方程的阶。差分方程也可以写成 不显含差分的形式。例如,二阶差分方程 2 yt yt yt 0 也可改写成 yt 2 yt 1 yt 0
P0是不稳定平衡点
P3 f P0 g P4
y0 y3 y1
0
P3
P2
曲线斜率
K f Kg
P1 x1 x
y0 0
P2
K f Kg
x
P1 x0
x2 x0 x3
方程模型 yk f ( xk )
在P0点附近用直线近似曲线
yk y0 ( xk x0 ) ( 0) xk 1 x0 ( yk y0 ) ( 0)
xk 1 h( yk )
k x x ( ) ( x1 0
1 ( 1 / )
xk x0 xk
P0稳定 K f K g P0不稳定 K f K g
1 ( 1 / )
1 经济稳定
结果解释
经济不稳定时政府的干预办法
y y0 0 y g f g f x
(步二)根据特征根的不同情况,求齐次方 程(1.2)的通解 情况1 若特征方程(1.3)有n个互不相同的实根
,…, ,则齐次方程( 1.2)的通解为 n 1

t C11 C n tn (C1,…,Cn为任意常数)
情况2 若λ 是特征方程(1.3)的k重根,通解中对应 (C1 C k t k 1 )t 于λ的项为 C 为任意常数, i=1,…,k。 i
yt c1 yt(1) c2 yt( 2 )
也是方程(1.2)的解,其 中c1、c2为任意常数,这说明, 齐次方程的解构成一个 线性空间(解空间)。 此规律对于(1.1)也成立。
方程(1.1)可用如下的代数方法求其通解: (步一)先求解对应的特征方程 (1.3) a0 n a1 n1 an 0
当不稳定时政府能采取什么干预手段使之稳定
蛛网模型
xk~第k时段商品数量;yk~第k时段商品价格
消费者的需求关系
生产者的供应关系
y y0 0
需求函数
yk f ( xk )
减函 数
供应函数 xk 1 h( yk ) 增函数
f
yk g ( xk 1 )
g P0 x0
f与g的交点P0(x0,y0) ~ 平衡点 一旦xk=x0,则yk=y0,
满足一差分方程的序 列yt称为此差分方程的解。类似于微分 方程情况,若解中含有的任意常数的个数等于差分方程的阶 数时,称此解为该差分方程 的通解。若解中不含任意常数, 则称此解为满足某些初值条件的 特解,例如,考察两阶差 分方程 易见
yt sin 与 yt cos 均是它的特解,而 2 2 yt c1 sin t c2 sin t 2 2则为它的通解,其 中c1,c2为两个任
x
xk+1,xk+2,…=x0, yk+1,yk+2, …=y0
P P P P P P P P0 1 2 3 1 2 3 0
P0是稳定平衡点
y y2 f g P4 P0 y
蛛 网 模 型 yk f ( xk ), xk 1 h( yk ) yk g ( xk 1 ) x1 y1 x2 y2 x3 设x1偏离x0 xk x0 , yk y0 xk x0 , yk y0
相关文档
最新文档