2020年六年级下册数学课件-趣味数学 幻方 通用版 (共48张PPT)

合集下载

趣味数学—数阵图与幻方

趣味数学—数阵图与幻方

三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。

趣味数学-幻方PPT幻灯片.ppt

趣味数学-幻方PPT幻灯片.ppt
耆那幻方。
耆那幻方:
是在印度耆那教寺庙门前一块石牌上刻的,是12 -13世纪的产物。它的任何2×2的方块内的4个数 字和也是34。
5:如何编幻方(幻方的构成)
四阶幻方构成方法
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
原理与步骤:
1 2 34 567 8 9 10 11 12 13 14 15 16
每行每列斜着的三个数的和是否都相等,来判断是不是幻方。
2、填幻方:
1)这只龟姐姐背上的有些图案看不清了,你能帮它 找出来吗?
92
4 3
5
7
81 6
1、利用每一行,每一列,每一条对角线上的 三个数的和相等的特点。
4、填幻方: 2)看!又来了一只龟爷爷,背上的图案缺得 更多了,请你帮帮它好吗?
72 9
27 6 951 438
8 16 357 492
6 72 159 834
2 94 753 618
4 38 753 276
将幻方围绕中心,向右旋转90度一次、二次、三次
向右旋转90度一次、二次、三次后将幻方上下对换。
5:如何编幻方(幻方的构成)
1)三阶幻方构成方法之一
九子斜排 上下对易 左右更替 四维挺出

13 14 15 16
练习:填四阶幻方:
把3,4,5,6,…..18这16个数字编成一个四阶幻方.
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
3 4 5 6 42 7 8 9 10 42 11 12 13 14 42
15 16 17 18 42
42 42 42 42
所以 幻和=42
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方

趣味数学讲座1(幻方)

趣味数学讲座1(幻方)

15 23 9 3 17
13 21 7 20
11 24
奇数阶幻方的编制:
1、凸十字方法
2、马步法
3、பைடு நூலகம்接法
双偶数幻方的制作:
数字小魔术
2 4
4 6
6 8
8 10
3
5
5
7
7
9
9
11
从左边给定的数字方阵中任选 一个数字,把其所在的行,列 上的数字划去,依次实施,直 到划完所有数字。划去的数字 不能再选。那么所选择的数字 的和游戏表演者能马上说出。
4 3
8
9 5
1
2 7
6
《九宫图》除了各行,列以及 两对角线和均为15外,还有其 它有趣的一些性质。
4 9 2 3 5 7 8 1 6
2 7 6 9 5 1 4 3 8
8 1 6 3 5 7 4 9 2
4 3 8 9 5 1 2 7 6
以上各图在幻方里认为是一种结果。三阶幻方 只有一种结果。 在中国古代系统研究幻方第一人首推南宋时期的 数学家杨辉。 “九子斜排,上下对易,左右相更,四维挺出” 演示
5 4 1, 3 , 7 , 9 2 2 , 4 , 6 ,8 3
4
9
2
3
8
5
1
7
6
四阶幻方及其编制
16 5 9 4
3
2
13 8 12 1
四阶幻方排除其旋转变化 其结果有880种之多。
10 11 6 7
15 14
丢勒名画 : 忧郁者
1 5 9
2 6
3 7
问题互动4
把1,2,3…12分别不重复地填入 中, 使得各直线上的数字和相等,并且和最小。

趣味数学

趣味数学

1591年,法国数学家韦达在菱形中大量使用这个符号,才逐渐为人们接受。十七世纪德国 莱布尼茨广泛使用了“=”号,他还在几何学中用“~”表示相似,用“≌”表示全等。
大于号“>”和小于号“<”,是1631年英国著名代数学家赫锐奥特创用。至于“≯”、 “≮”、“≠”这三个符号的出现,是很晚很晚的事了。大括号“{}”和中括号“[]”是代 数创始人之一魏治德创造的。 任意号 任意号来源于英语中的any一词,因为小写和大写均容易造成混淆,故将其单词首字 母大写后倒置,如图所示。
趣味数学
哥德巴赫猜想
哥德巴赫是德国数学家。 1729年至1764年,哥德巴赫与欧拉保持了长达三十 五年的书信往来。 在1742年6月7日给欧拉的信中,哥德巴赫提出了一 个命题。他写道:“我的问题是这样的:随便取某一个 奇数,比如77,可以把它写成三个素数之和: 77=53+17+7;再任取一个奇数,比如461,461=449+7+5, 也是三个素数之和,461还可以写成257+199+5,仍然是三 欧拉 歌德巴 赫 个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。但这怎样证明呢?虽然 做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般 的证明,而不是一个别的检验。” 欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出 了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。 不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成 如下形式:2N+1=3+2(N-1),其中2(N-1)≥4. 若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三 个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。 但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要 求更高。 现在通常把这两个命题统称为哥德巴赫猜想。

趣味数学课件-幻方

趣味数学课件-幻方

神龟背洛书
神龟背洛书
在公元前23世纪,大 禹治水的时侯,在黄 河支流洛水中,有一 天忽然浮现出一个大 乌龟,当时,大禹与 治水士兵正在河 边观
察洛河水情,商议治理黄河大计,遇 到乌龟在河里上下翻腾十分奇怪。只 见此龟行走水面,游来游去,身形庞 大,甲背平圆。近处仔细观看,
甲背上有9种花点的图案, 大禹让士兵们将图案中的 花点记了下来,带回去作 了认真的研究,他惊奇地 发现9种花点数正巧是, 1—9这9个数,各数的位置排列也相 当奇巧,各线上三数之和皆为15, 既均衡又对称,奇偶交替变化之中似 有一种周转运动之妙,大禹受到启发 ,用此原理治理黄河,获得成功。
而在国外,公元130年,希腊人塞翁 才第一次提起幻方。我国不仅拥用 幻方的发明权,而且是对幻方进行 深入研究的国家。公元13世纪的数 学家杨辉已经编制出3-10阶幻方, 记载在他1275年写的《续古摘厅算 法》一书中。在欧洲,直到574年, 德国著名画家丢功才绘制出了完整 的4阶幻方。
一般地, 将1,2,3...n 2填入到一个n n的表格中 使得 , 每行, 列以及两对角线上的 个数字之和相等 称这 n , 样数表为n阶幻方.
26 21 22 7 12 13 111
19 23 27 10 14 18 111
24 25 20 15 16 11 111
84 84 84 138 138 138
六阶幻方填法
35 3 31 8 30 4 111 35 4 1 32 9 28 5 36 111 32 5 6 7 2 33 34 29 111 2 33 26 21 22 17 12 13 111 17 22 19 23 27 10 14 18 111 14 23 24 25 20 15 16 11 111 11 24 111 111 111 111 111 111 111 111

趣味数学-幻方共50页文档

趣味数学-幻方共50页文档
趣味数学-幻方
1、 舟 遥 遥 以 轻飏, 风飘飘 而吹衣 。 2、 秋 菊 有 佳 色,裛 露掇其 英。 3、 日 月 掷 人 去,有 志不获 骋。 4、 未 言 心 相 醉,不 再接杯 酒。 5、 黄 发 垂 髫 ,并怡 然自乐 。

谢谢!
50
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

Байду номын сангаас
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华

第8、9、10课--神奇的幻方

第8、9、10课--神奇的幻方

42
41
距 离 幻 方 中 心
九阶幻方
将 幻 方 按 图 中
的 任 何 中 心 对 称 位 置 上 两 数 和 都 为
粗 线 分 成 九 块 , 即 为 九 个 三 阶 幻 方
82
2020/12/1
43
若把上述九个三阶幻方的每个幻方的“幻和”值写在九宫格中,又构成一个新的三阶幻方
谢谢观看
2020/12/1
19
构成
2020/12/1
20
三阶幻方构成方法之一
九子斜排 上下对易 左右更替 四维挺出
2020/12/1
21
2020/12/1
22
2020/12/1
23
三阶幻方构成方法之二
画格辅助 九子斜排 送子回家 清除辅助
2020/12/1
24
1
4
2
7
5
3
8
6
9
2020/12/1
25
9
3
7
1
2020/12/1
2020/12/1
14
三阶幻方
幻和是:3×(32+1)÷2=15
2020/12/1
15
洛书
2020/12/1
16
四阶幻方
幻和是:4×(42+1)÷2=34
2020/12/1
17
五阶幻方
幻和是:5×(52+1)÷2=65
2020/12/1
18
六阶幻方
幻和是:6×(62+1)÷2=111
2020/12/1
2020/12/1
33
偶阶幻方 都可以照这样的方法去填
❖ 如;八阶幻方

十阶幻方

小学趣味数学:三阶幻方

小学趣味数学:三阶幻方
25 11 21 23 2 17
•在图1所示的和方格表中填入合适的数,使得每行、 •每列以及每条对角线上的三个数的和相等。
•那么标有“☆”的方格内应填入的数是____8___.
3
☆6 4
7
在空格中填数,使每一行,每一列、每条对角线的和 都等于30.
13 5 12 9 10 11 8 15 7
用9个连续自然数组成三阶幻方, 使每一行、每一列、 每条对角线的和都是60
奇阶幻方的解法
我国数学家杨辉的《续古摘奇算经》对于3阶幻方
的构造方法是:“九子斜排,上下对易,左右相更,四 维挺进。”,具体操作如下图:
其结果为:“戴九履一,左七右三,二四为肩,六 八为足。”
1 42 753 86
9
9 42 357 86
1
492 753 816
类似的原理可以构造5阶、 7阶、9阶等奇数阶幻方。 下图给出了5阶幻方的构
192 18 240
198 150 102
60 282 108
193 19 241 199 151 103 61 283 109
191 17 239 197 149 101 59 281 107
THANK YOU!
10 3 8 57 9 6 11 4
三阶幻方的性质
规律1: 幻和=中间数×3

492


35 7

816
规律2:与中间数对应的上下、左右、 对角两个数字的和=中间数×2

492
阶 幻
35 7

816
规律3:角上的数字=对角相邻 的两数字和的一半

492


3 57
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数4个的请让数4它个的们分数4别个的交数换4个的吧!
和 和 和和
34 34
4个数和= 34
4个数和= 34 1.我先我变是个魔中师心, 点 4个我数可和是= 3有4 魔法的
现在我们来指引 24.个数每数字中你列和2心们的和=点去数334与相字把谁对每和关行相于等
3.数字5和9谁关于 中心点相对
9
9
3
7
1
这种方法适用于所有的 奇阶幻方
1
6
2
11 24 7 20 3
16 4 12 25 8 16
21
17 5 13 21 9
22 10 18 1 14 22
23 6 19 2 15
24
20
25
4 5
10
1997年美国佬发射 了两个宇宙飞船, 在飞船上为了向外 星人展示人类的文 明,科学家就选择 了一张四阶幻图--
276+951+438= 1665 672+159+834= 1665
2762+9512+4382= 1172421 6722+1592+8342= 1172421
4)每列看成的三位数和 =它逆转之后的三位数。
5)每列看成的三位数的平方和 =它逆转之后的三位数平方和
行也成立
3、探究幻方的规律(3):
49 2 35 7 8 16
4、如何改变幻方:
改变数的位置还有可能满足上述规律吗?
4 92 357 816
8 16 357 492
2 94 753 618
6 18 753 294
上下换 左右换 上下左右换
4、探究改变幻方的规律: 共有8种:
4 92 357 816
83
59 2
618 7 53 2 94
4+5+6=15
每行、每列、对角线上的三个数的和都相等的方格,叫 “幻方”。这个相等的和叫三阶幻方的幻和。
练习1 它们是幻方么?你怎样来判别?
20 2 6 7 15 8 4 3 15
15 8 1 6 15 3 5 7 15
9 1 5 15
4 9 2 15
19 11 15 11 不是
15 15 15 15 是
三、四阶幻方
五阶幻方
六阶幻方
3、探究幻方的规律(1):
49 2 35 7 8 16
1、所有行、列、对角线上的数 之和均为15;
2、偶数位于角上,奇数在中间;
3、5位于中心点,相对的两个端 点数和为10。因为9个数之和是45, 所以中间的数的5。
3、探究幻方的规律(2):
49 2 35 7 8 16
它就是对称交换法
1 83
1、利用每一行,每一列,每一条对角线上的 三个数的和相等的特点。
3,如果幻方的和全是15,看谁填得又对又快:
81 6 57 2
83 5
67 2
2、幻方的分类
• 按照纵横各有数字的个数,可以分为: 三阶幻方、 四阶幻方、 五阶幻方、 六阶幻方… …
按照纵横数字数量奇偶的不同,可以分为: 奇阶幻方 偶阶幻方
1、初步认识1〜9的幻方。 2、通过尝试、调整数据,探究幻
方的关系。 3、培养学生对中国古代数学文化
的兴趣。
故事引入:
公元前三千多年,有条洛河经常发大水,皇帝 夏禹带领百姓去治理洛河,这时,从水中浮起一 只大乌龟,背上有奇特的图案。
龟背上的图案是 什么意思呢?
龟背上的图案代表了几个不同的数,人们称它为“书”。
每行每列斜着的三个数的和是否都相等,来判断是不是幻方。
2、填幻方:
1)这只龟姐姐背上的有些图案看不清了,你能帮它 找出来吗?
92
4 3
5
7
81 6
1、利用每一行,每一列,每一条对角线上的 三个数的和相等的特点。
4、填幻方: 2)看!又来了一只龟爷爷,背上的图案缺得 更多了,请你帮帮它好吗?
72 9
耆那幻方。
耆那幻方:
是在印度耆那教寺庙门前一块石牌上刻的,是12 -13世纪的产物。它的任何2×2的方块内的4个数 字和也是34。
5:如何编幻方(幻方的构成)
四阶幻方构成方法
数字依次先排好, 上下中间交叉换, 左右中间交叉换, 其他地方不要变!
原理与步骤:
1 2 34 567 8 9 10 11 12 13 14 15 16
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1 42 7 53 86
9
换位
9 42
三阶幻方有技巧,
3 5 7 3数斜着先排好,
86 1
上下左右要交换, 然后各自归位了!
归位
5:如何填幻方(幻方的构成) 2)三阶幻方构成方法之二 画格辅助 九子斜排 送子回家 清除辅助
1
4
2
7
5
3
8
6
27 6 951 438
8 16 357 492
6 72 159 834
2 94 753 618
4 38 753 276
将幻方围绕中心,向右旋转90度一次、二次、三次
向右旋转90度一次、二次、三次后将幻方上下对换。
5:如何编幻方(幻方的构成)
1)三阶幻方构成方法之一
九子斜排 上下对易 左右更替 四维挺出
13 14 15 16 第四行和=58 多了24
第 第第 第 一 二三 四 对角线和=34 列 列 列 列 和 和和 和
对角线和=34
=40 =36 =32 =28
少6 少2 多2 多6
根据刚才的情况我们发现对角线上的 4个数和就是幻和,那么就让它们位置都不变。
1 2 34 56 78 9 10 11 12 13 14 15 16
49 2 35 7 8 16
357+753= 1100 951+159= 1100
456+654= 1100 852+258= 11700
6)每列每行每一条对角线上看成的三位数 和它逆转之后的三位数之和相等。
(7)幻和=九个数之和÷3, (8)中间数=幻和÷3. (9)C=(A+B)÷2 (如右图)
(1)先算幻和: 幻和=(1+2+…+16)÷4= 34
三阶幻方的幻和可以用9个数的和除以3; 那么四阶幻方的幻和也可以用16个数的和除以4
原理与步骤:(1 )幻和=34 (2)分析列表
1 2 3 4 第一行和=10 少了24
5 6 7 8 第二行和=26 少了8
9 10 11 12 第三行和=42 多了8
探究一
龟背上的这些数填到表格中,你能发现什么?
49 2 35 7 8 16
每一行,每一列,每一条对角线上的三个 数的和,有什么特点?
1、幻方的定义(三阶8+5幻+2=方15 )
49 2
35 7
8 16
49 2 35 7 +8 +1 +6 15 15 15
4+9+2=15 3+5+7=15 8+1+6=15
相关文档
最新文档