本科阶段固体物理期末重点计算题定稿版

合集下载

固体物理期末复习题目及答案

固体物理期末复习题目及答案

09级微电子学专业《固体物理》期末考复习题目至诚学院 信息工程系 微电子学专业姓名:陈长彬 学号:3第一章晶体结构IX 把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。

(1)简立方(2)体心立方(3)面心立方(4)金刚石解:(IX 简立方,晶胞内含有一个原子∏=1,原子球半径为R,立方晶格的顶点原子球相切,立方边长a=2R, 体积为(2/?)5 ,4 4mR' -J ΓR'V(2町(2)、体心立方晶胞内含有2个原子n=2,原子球半径为R,晶胞边长为"立方晶格的体对角线原子球相切,(3)、面心立方晶胞内含有4个原子24,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方∖R √2(4).金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线;长,体对角线为8R = √L4解:对于体心立方,原胞基欠为:■ Zl . —* —* «3 = γ(* + 丿 一 &)对丁•体心立方原胞体枳为:Q = ^∙(^×ξ)所以=r 0∙52体对角线长为4个原子半径,所以Q =体边长为可所以G=4 √Σ4 、 4x-χR' /T=—一 =—ΛB = 0.7464 I 4 1 n∙-JΓR S×-πR /rK 33√3Vi R )2.证明面心立方和体心立方互为倒格子。

16 " = 034n -πR 3V龙= 0.68根据倒格子旱矢定义,并将体心原胞旱矢代入计灯之,町得:将计算所得到的倒格了•呈矢与外心立方的原胞呈欠相比 较,可知面心立方的倒格子是体心立方。

囚此可以说,曲心立方和体心立方互为倒格子。

3、证明:倒格子原胞体积为y∙ = E≤~,其中VC 为正格子原胞的体积。

对F 面心'工方•原胞皋欠为:金=斗 G + F) S 7=^(k+i)N=斗(7 + j)/ & ■将计只所得到的倒格子堆矢与Ifll 心立方廉胞肚矢相同, 可知体也立方的倒格子妊而心立方。

固体物理期末复习真题

固体物理期末复习真题

1、确定晶格振动的色射关系,大略画出色散关系曲线。 2、讨论长波极限下( q 0 ),相邻两种原子振幅之比及物理意义。
二十三、 比较关于晶格比热的爱因斯坦模型和德拜模型与实验结果的符合情况并说明 原因。 二十四、在固体的能带理论中,近自由电子近似和紧束缚模型的基本假设和主要结果 是什么? 二十五、设有同种原子组成的二维正三角晶体,原子间距为 a 。
1、确定晶格振动的色散关系; 2、讨论 q 0 及布里渊区边界处的振动情况.
十五、二维矩形晶格 a 2 A i , b 4 A j 。
1、写出倒格子基矢,画出倒格子图及第一布里渊区; 2、若每一原胞内含一个单价原子,计算自由电子费米圆的半径.
十六、说明固体能带模型基于哪几点简化近似,并给出:
1、干涉条件是: n a cos , 为衍射束和原子链间夹角, n 为整数。 2、当 n 为奇数时,衍射强度 I f A f B ;
当 n 为偶数时,衍射强度 I f A f B
2
2
二十、设有一离子晶体,只计及最近邻间的排斥作用时,其两个离子间的势能具有 如下形式:
最近邻间
(2)证明基态下电子气体的压强与体积的关系为:
P 2 V0 3V
(3)证明基态下自由电子的体弹性模量为:
B 5 P 10U 0 2 n F 3 9V 3
其中 n 二、
N V
(1)证明点阵平面上的阵点密度(单位面积上的阵点数)

d VC
VC ---初基晶胞的体积
d ---该点阵平面所属平面族中相邻两点阵平面的距离。
最近邻以外
式中 , 为参数, R 是最近邻离子距离。试求平衡时晶体总的互作用势能的表达式, 晶体共包含 N 对正负离子。 二十一、说明位错的类型及位错在金属塑性形变中的作用。 二十二、设一维双原子链,质量为 m 和 M 的两种原子交错排列, M m ,晶格常数 为 2a ,最近邻原子间的恢复力常数为 ,只考虑最近邻作用:

固体物理期末试题及答案

固体物理期末试题及答案

固体物理期末试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体的说法,错误的是:A. 晶体具有规则的几何外形B. 晶体内部原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 电子在金属中的自由运动是金属导电的主要原因,这种现象称为:A. 金属键B. 离子键C. 共价键D. 范德华力答案:A3. 半导体材料的导电性介于导体和绝缘体之间,这是因为:A. 半导体材料中的电子不能自由移动B. 半导体材料中的电子在特定条件下才能自由移动C. 半导体材料中的电子数量少于导体D. 半导体材料中的电子数量多于绝缘体答案:B4. 根据泡利不相容原理,一个原子轨道中最多可以容纳的电子数是:A. 1个B. 2个C. 4个D. 8个答案:B二、填空题(每题5分,共20分)1. 晶体的三种基本类型是________、________和________。

答案:单晶体、多晶体、非晶体2. 根据能带理论,固体中的能带可以分为________和________。

答案:导带、价带3. 固体物理中,费米能级是指在绝对零度时,电子占据的最高能级,其对应的温度是________。

答案:0K4. 根据德布罗意波理论,物质粒子也具有波动性,电子的波长与其动量成________关系。

答案:反比三、简答题(每题10分,共30分)1. 简述布拉格定律及其在晶体结构分析中的应用。

答案:布拉格定律是指当X射线或电子波以一定角度入射到晶体表面时,如果满足nλ=2d*sinθ的条件,其中n为整数,λ为波长,d为晶面间距,θ为入射角,那么会发生衍射现象。

这个定律在晶体结构分析中非常重要,因为它允许科学家通过测量衍射角来确定晶体的晶面间距和晶体结构。

2. 解释什么是超导现象,并简述其应用。

答案:超导现象是指某些材料在低于临界温度时,电阻突然降为零的现象。

这意味着在超导状态下,电流可以在材料内部无损耗地流动。

超导现象的应用非常广泛,包括但不限于磁悬浮列车、粒子加速器中的超导磁体、以及医疗成像设备如MRI。

固体物理期末考试题及答案

固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。

晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。

例如,立方晶系的晶格常数a是指立方体的边长。

7. 简述能带理论的基本概念。

能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。

在固体中,电子的能量不是连续的,而是分成一系列的能带。

价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。

8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。

在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。

三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。

求该链的声子频率。

解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。

解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。

(完整word版)固体物理期末3套试题题资料

(完整word版)固体物理期末3套试题题资料

电子科技大学二零零六至二零零七学年第二学期期末考试固体电子学课程考试题卷(分钟)考试形式:考试日期200 7 年7 月日课程成绩构成:平时20 分,期中10 分,实验0 分,期末70 分一.填空(共30分,每空2分)1.Si晶体是--格子,由两个----的子晶格沿---套构而成;其固体物理学原胞包含---个原子,其固体物理学原胞基矢可表示-,-, -。

假设其结晶学原胞的体积为a3,则其固体物理学原胞体积为-。

2.-称为布拉菲格子;倒格子基矢与正格子基矢满足-,-称为倒格子格子;-称为复式格子。

最常见的两种原胞是--和-3.声子是-,其能量为-动量为-二.问答题(共30分,每题6分)1.晶体有哪几种结合类型?简述晶体结合的一般性质。

-2.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别? -3.什么是热缺陷?简述肖特基缺陷和弗仑克尔缺陷的特点。

-4.简述空穴的概念及其性质.-5.根据量子理论简述电子对比热的贡献,写出表达式,并说明为什么在高温时可以不考虑电子对比热的贡献在低温时必须考虑? --三.综合应用(共40分)1.(10分)已知半导体InP 具有闪锌矿结构,In,P 两原子的距离为d=2Å,试求:(1)晶格常数;(2)原胞基矢及倒格子基矢;(3)密勒指数为(1,1,0)晶面的面间距,以及In(1,1,0)晶面与P (1,1,1)晶面的距离。

2. (15分)设有某个一维简单格子,晶格常数为a,原子质量为M ,在平衡位置附近两原子间的互作用势可表示为:32206121)21()(r r r a a U r U ξηξη+++-= 式中和都是常数,只考虑最近邻原子间的相互作用,试求:(1)在简谐近似下,求出晶格振动的色散关系;(2)求出它的比热0V C 。

(提示:a r dr r u d =⎪⎪⎭⎫ ⎝⎛=22)(β3. (15分)用紧束缚近似写出二维正方点阵最近邻近似下的s 电子能带的能量表达式,并计算能带宽度及带底电子和带顶空穴的有效质量。

固体物理总复习资料及答案

固体物理总复习资料及答案

固体物理总复习题一、填空题1.原胞是 的晶格重复单元。

对于布拉伐格子,原胞只包含 个原子。

2.在三维晶格中,对一定的波矢q ,有 支声学波, 支光学波。

3.电子在三维周期性晶格中波函数方程的解具有 形式,式中 在晶格平移下保持不变。

4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为 ;能带的表示有 、 、 三种图式。

5.按结构划分,晶体可分为 大晶系,共 布喇菲格子。

6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为格子,由若干个布喇菲格子相套而成的格子,叫做 格子。

其原胞中有 以上的原子。

7.电子占据了一个能带中的所有的状态,称该能带为 ;没有任何电子占据的能带,称为 ;导带以下的第一满带,或者最上面的一个满带称为 ;最下面的一个空带称为 ;两个能带之间,不允许存在的能级宽度,称为 。

8.基本对称操作包括 , , 三种操作。

9.包含一个n 重转轴和n 个垂直的二重轴的点群叫 。

10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为 。

11.具有晶格周期性势场中的电子,其波动方程为 。

12.在自由电子近似的模型中, 随位置变化小,当作 来处理。

13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作 处理。

这是晶体中描述电子状态的模型。

14.固体可分为,,。

15.典型的晶格结构具有简立方结构,,,四种结构。

16.在自由电子模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。

17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为,表达式为。

18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。

19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。

20.晶体的五种典型的结合形式是、、、、。

固体物理期末复习题目

固体物理期末复习题目

固体物理期末复习题目一、名词解释:1、晶体;2、非晶体;3、点阵;4、晶格;5、格点;6、晶体的周期性;7、晶体的对称性8、密勒指数;9、倒格子;10、配位数;11、致密度;12、固体物理学元胞;13、结晶学元胞;14、布拉菲格子;15、复式格子;16、声子;17、布洛赫波;18、布里渊区;19、格波;20、电子的有效质量二、计算证明题1. 晶体点阵中的一个平面hkl ,试证:(1)晶格的两个相邻平行平面(这些平面通过格点)之间的距离为2||hkl d K π=此处123K hb kb lb =++;(2)利用上述关系证明,对于简单立方格子,22d l =+ a 为晶格常数;(3)说明什么样的晶面容易解理,为什么?2、金刚石晶胞的立方边长为m 101056.3-?,求最近邻原子间的距离、平均每立方厘米中的原子数和金刚石的密度。

(碳原子的重量为2310*99.1-g )3. 试证:在晶体中由于受到周期性的限制,只能有1、2、3、4、6重旋转对称轴,5重和大于6重的对称轴不存在。

4、晶体点阵中的一个平面.hkl(a )证明倒易点阵矢量321b l b k b h G ++=垂直于这个平面。

(b )证明正格子原胞体积与倒格子原胞体积互为倒数5. 证明体心立方格子和面心立方格子互为正、倒格子。

6. 在六角空间格子中选取一平行六面体为原胞,试求:(1)基矢321,,a a a的表示式;(2)原胞的体积;(3)倒格子基矢321,,b b b 。

7、氪原子组成惰性晶体为体心立方结构,其总势能可写为()- ??=6612122R A R A N R U σσε,其中N 为氪原子数,R 为最近邻原子间距离,点阵和A 6=12.25,A 12=9.11;设雷纳德—琼斯系数ε=0.014eV ,σ=3.65。

求:(1)平衡时原子间最近距离R 0及点阵常数a ;(2)每个原子的结合能(eV )。

8. 设两原子间的互作用能可表示为()n m r r r u βα+-=式中,第一项为引力能;第二项为排斥能;βα,均为正常数。

大学固体物理试题及答案

大学固体物理试题及答案

大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。

答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。

答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。

答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。

答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。

答案:费米能级是指在绝对零度时,电子占据的最高能级。

在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。

2. 解释为什么金属在常温下具有良好的导电性。

答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。

3. 什么是超导现象?请简述其物理机制。

答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。

其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。

四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科阶段固体物理期末重点计算题HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。

解:氯化钠与金刚石型结构都是复式格子。

氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。

金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。

由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:相应的晶胞基矢都为:2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。

试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。

解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。

所以,其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。

所以,其晶面指数为()1120。

(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。

所以,其晶面指数为()1100。

(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。

所以,其晶面指数为()0001。

3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;面心立方:6;六角密集:6;金刚石:16。

证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,(2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子,(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子,(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。

原胞底面边长为2m R 。

每个晶胞占有两个原子,33482233m m m V R R ππ∴=⨯=,原胞的体积为:()23462sin 603m m m V R R ==(5).构成金刚石结构时,14的体对角线长度等于两个最大球半径,即:32m R a =,每个晶胞包含8个原子, 4. 金刚石结构原子间的键间角与立方体的体对角线间的夹角相同,试用矢量分析的方法证明这一夹角为10928'。

证明:如图所示,沿晶胞基矢的方向建立坐标系,并设晶格常数为1。

选择体对角线AB 和CD ,用坐标表示为{1,1,1}-和{1,1,1}-。

所以,其夹角的余弦为:5. 试求面心立方结构(110)和(111)晶面族的原子数面密度,设晶格常数为a 。

解:如图所示,面ABCD 即(110)面,面CDE 即为(111)面。

设该面心立方的晶格常数为a ,则在(110)面内选取只包含一个原子的面AFGD ,其面积为22222aa a =,所以其原子数面密度为:在(111)面内选取只包含一个原子的面DHIG ,其面积为:22()sin 23a π=, 所以其原子数面密度为:6. 若在面心立方结构的立方体心位置上也有一原子,试确定此结构的原胞,每个原胞内包含几个原子,设立方边长为a 。

解:这种体心立方结构中有五种不同的原子。

顶角、体心上的原子是两种不同的原子,另外,面心上的原子前后、上下、左右的原子两两一组,是互不相同的原子。

故此种结构共有五种不同的原子,整个面心立方就是一个原胞。

每个原胞中的原子数为:118132582⨯++⨯⨯=(个) 7. 底心立方(立方顶角与上、下底心处有原子)、侧心立方(立方顶角与四个侧面的中心处有原子)与边心立方(立方顶角与十二条棱的中点有原子)各属何种布拉维格子?每个原胞包含几个原子?解:这三种结构都属于简立方结构,原胞包含的原子数分别为:底心立方:1818⨯=侧心立方:1184382⨯+⨯=边心立方:11812484⨯+⨯=第二章1. 由实验测得NaCl 晶体的密度为2.16g/cm 3 , 它的弹性模量为2.14×1010 N/m 2 ,试求NaCl 晶体的每对离子内聚能cU N。

(已知马德隆常数M=1.7476, Na 和Cl 的原子量分别为23和35.45)解:NaCl 晶体中Na +和Cl -的最近距离为0r晶胞基矢长为 20r , 一个晶胞中含有四对正负离子对∴ 一个原胞(一个NaCl 分子)的体积为:302v r ==623(2335.45)102.16 6.0210m N ρ-+⨯=⨯⨯ ∴ NaCl 晶体中的正负离子的平衡间距为:由晶体体积弹性模量的公式:2400(1)36m n Me B r πεβ-= , 并且由于NaCl 晶体为面心立方结构,参数β=2,故由上式可得:=12941019236 3.148.85102(0.28210)1 2.41101.7476(1.610)--⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯ =7.82由平衡时离子晶体的内聚能公式:2001(1)4c NMe U r nπε=--,将n=7.82代入得NaCl 晶体的每对离子的内聚能为:=19212191.7476(1.610)1(1)4 3.148.85100.282107.82---⨯⨯--⨯⨯⨯⨯⨯ 2. LiF 晶体具有NaCl 结构,已由实验测得正负离子间的最近距离0r =0.2014nm(1摩尔的内聚能c U =1012.8kJ/mol, 以孤立离子系统的内能为能量的零点)。

试计算该晶体的体积弹性模量m B ,并与它的实验植1026.7110/N m ⨯进行比较。

解: 由平衡时离子晶体的内聚能公式:2001(1)4c NMe U r n πε=--,其中M=1.784计算1mol 的内聚能时,N=Na=6.02×1023 ,且0r =0.2014,计算得:n=10024(1)c r U NMeπε-+ =1993231924 3.148.85100.201410(1012.810)[1]6.0210 1.748(1.610)---⨯⨯⨯⨯⨯⨯-⨯+⨯⨯⨯⨯ =6.33LiF 晶体具有NaCl 结构,将 β=2,n =6.33, 0r =0.2014代入上式得:晶体的弹性模量为:2400(1)36m n Me B r πεβ-== 7.242×101 0 (N/m 2) 相对误差为:7.242 6.71100%7.9%6.71-⨯=3. 由气体分子的实验测得惰性气体Xe 的伦纳德——琼斯势参数0.02,0.398eV nm εσ==在低温下Xe 元素形成面心立方的晶体,试求Xe 晶体的晶格常数a,每个原子的内聚能cU N及体积弹性模量Bm 。

若对Xe 晶体施加压力82/610N m P =⨯。

试在近似假定体积弹性模量不变的情况下,计算这些晶体的晶格常数a 将变为多少?并求这时的内聚能cU N将变为多少? 解:原子间的平衡间距为 :0 1.09 1.090.3980.434r nm nm σ≈=⨯=因结构为立方晶体,则晶格常数为:0.614a nm == 每个原子的内聚能为:8.68.60.020.172cU eV Nε≈-=-⨯=- 体积弹性模量:3931975750.02(0.39810) 1.610Bm εσ----≈=⨯⨯⨯⨯⨯=3.81×109 N/m 2由体积弹性模量的定义式可知:()T P Bm V V∂=-∂ ∴ 00ln VV dV VP Bm Bm V V =-=-⎰因为:3V N r β=故 P 03lnr Bm r =- ∴ 晶格常数0.583nm a == / 1.09r σ=内聚能 2/612()8.60.149275c U r A Bm N A σε•=-≈-⨯=-第三章1.一维单原子晶格,在简谐近似下,考虑每一原子与其余所有原子都有作用,求格波的色散关系。

解:设第n 个原子的势能函数为其中,m β为与第n 个原子的相距ma 的原子间的恢复力常数,a 为晶格常数。

则,第n 个原子的受力为其中,利用了m m ββ-=。

第n 个原子的运动方程为令其试解为代入运动方程得故,2. 聚乙烯链CH CH CH CH -=-=-的伸张振动,可以采用一维双原子链模型来描述,原胞两原子质量均为M ,但每个原子与左右的力常数分别为1β和2β,原子链的周期为a 。

证明振动频率为解:单键及双键的长分别为1b 和2b ,而原子(,1)n 与(,2)n 的运动方程分别为令这两个方程的试解为把试解代入运动方程得有非零解的条件为解得利用12b b a +=,方程的解为晶体中的衍射1. 试证明面心立方与体心立方互为正倒格子。

方法1:面心立方:123()2()2()2aaa=+=+=+a j k a k i a i j (1)由正格子和倒格子的转换关系1232313122()/2()/2()/b a a b a a b a a πππ=⨯Ω=⨯Ω=⨯Ω(2) 其中:123()a a a Ω=•⨯得:1232()2()2()b i j k a b i j k a b i j k a πππ=-++=-+=+- (3)在体心立方中123()2()2()2aa i j k aa i j k ab i j k =-++=-+=+- (4) 由(2)式可得1232()2()2()b j k aa k i a a i j aπππ=+=+=+ (5) 比较(1)与(5),(3)与(4)便可得面心立方与体心立方互为正,倒格子。

方法2:由方法一中的(1)可知正格子与倒格子之间存在如下关系:由此可得面心立方的倒格子基矢:1232()2()2() b i j kab i j kab i j kaπππ=-++ =-+=+-同理可得体心立方的倒格子基矢:1232()2()2() b j kaa k iaa i jaπππ=+=+=+比较可得面心立方和体心立方互为正倒格子。

2. ,,a b c为简单正交格子的基矢,试证明晶面族(h k l)的晶面间距为解:,,,a aib b jc ck===()a b c abcΓ=•⨯=由19(2.2.7)p知可得:再由22p中hk和hkld的关系:2/h hklk dπ=可得:222 2()()()(h k lhkl a b chahdkπ⎡⎤===++⎦⎣得证。

相关文档
最新文档