(完整版)高中数学数列知识点整理
高中数列公式大全基础知识点方法归纳及解题技巧超详细(完整版)

高中数列公式大全基础知识点方法归纳及解题技巧超详细!(完整版)1. 等差数列的定义与性质定义:(为常数), 等差中项:成等差数列前项和 性质:是等差数列(1)若,则(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为 (4)若是等差数列,且前项和分别为,则(5)为等差数列(为常数,是关于的常数项为0的二次函数)的最值可求二次函数的最值;或者求出中的正、负分界项,即:当,解不等式组可得达到最大值时的值.当,由可得达到最小值时的值.(6)项数为偶数n 2的等差数列,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列,有1n n a a d +-=d ()11n a a n d =+-x A y ,,2A x y ⇔=+n ()()11122n n a a n n n S nad +-==+{}n a m n p q +=+m n p q a a a a +=+;232n n n n n S S S S S --,,……a d a a d -+,,n n a b ,n n n S T ,2121m m m m a S b T --={}n a 2n S an bn ⇔=+a b ,n n S 2n S an bn =+{}n a 100a d ><,10n n a a +≥⎧⎨≤⎩n S n 100a d <>,10n n a a +≤⎧⎨≥⎩n S n {}n a {}n a)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:(为常数,),.等比中项:成等比数列,或前项和:(要注意!)性质:是等比数列(1)若,则 (2)仍为等比数列,公比为nq . 注意:由求时应注意什么?时,; 时,.3.求数列通项公式的常用方法 (1)求差(商)法 如:数列,,求 解 时,,∴①时, ②①—②得:,∴,∴1n na q a +=q 0q ≠11n n a a q -=x G y 、、2G xy ⇒=G =n ()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩{}n a m n p q +=+mn p q a a a a =··232n n n n n S S S S S --,,……n S n a 1n =11a S =2n ≥1n n n a S S -=-{}n a 12211125222n n a a a n +++=+……n a 1n =112152a =⨯+114a =2n ≥12121111215222n n a a a n --+++=-+……122n n a =12n n a +=114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列满足,求 注意到,代入得;又,∴是等比数列,时,(2)叠乘法如:数列中,,求 解,∴又,∴. (3)等差型递推公式由,求,用迭加法时,两边相加得∴[练习]数列中,,求()(4)等比型递推公式(为常数,)可转化为等比数列,设 令,∴,∴是首项为为公比的等比数列 ∴,∴ (5)倒数法如:,求 {}n a 111543n n n S S a a +++==,n a 11n n n a S S ++=-14n nS S +=14S ={}n S 4nn S =2n ≥1134n n n n a S S --=-==……·{}n a 1131n nana a n +==+,n a 3212112123n n a a a n a a a n--=·……·……11n a a n =13a =3n a n =110()n n a a f n a a --==,n a 2n ≥21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………1(2)(3)()n a a f f f n -=+++……0(2)(3)()n a a f f f n =++++……{}n a ()111132n n n a a a n --==+≥,na ()1312nn a =-1n n a ca d -=+c d 、010c c d ≠≠≠,,()()111n n n n a x c a x a ca c x --+=+⇒=+-(1)c x d -=1d x c =-1n d a c ⎧⎫+⎨⎬-⎩⎭11d a c c +-,1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭11212nn n a a a a +==+,n a由已知得:,∴ ∴为等差数列,,公差为,∴, ∴( 附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4. 求数列前n 项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:是公差为的等差数列,求解:由∴ [练习]求和: (2)错位相减法若为等差数列,为等比数列,求数列(差比数列)前项和,可由,1211122n n n n a a a a ++==+11112n n a a +-=1n a ⎧⎫⎨⎬⎩⎭111a =12()()11111122n n n a =+-=+·21n a n =+{}n a d 111nk k k a a =+∑()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑……11111n d a a +⎛⎫=- ⎪⎝⎭111112123123n+++++++++++ (1)21n n a S n ===-+…………,{}n a {}n b {}n n a b n n n S qS -求,其中为的公比.如: ①②①—②时,,时, (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.相加[练习]已知,则由∴原式 (附:a.用倒序相加法求数列的前n 项和如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
高三数学数列知识点总结大全

高三数学数列知识点总结大全一、数列的概念和基本性质数列是由一列有序的数按照一定规律排列而成的序列。
数列的基本性质包括:1. 通项公式:根据数列的规律可以得到通项公式,用来表示数列中任意一项的公式。
2. 递增和递减:如果数列中的每一项都比前一项大,则这个数列是递增数列;如果数列中的每一项都比前一项小,则这个数列是递减数列。
3. 公差:对于等差数列,相邻两项的差值是一个常数,称为等差数列的公差。
4. 公比:对于等比数列,相邻两项的比值是一个常数,称为等比数列的公比。
二、等差数列等差数列是指在数列中,从第二项开始,每一项与前一项的差值都相等的数列。
等差数列的常见性质有:1. 通项公式:设等差数列的首项为a₁,公差为d,则第n项的通项公式为:an = a₁ + (n-1)d。
2. 求和公式:等差数列的前n项和公式为:Sn = n/2(a₁ + an) = n/2(2a₁ + (n-1)d)。
三、等比数列等比数列是指在数列中,从第二项开始,每一项与前一项的比值都相等的数列。
等比数列的常见性质有:1. 通项公式:设等比数列的首项为a₁,公比为q,则第n项的通项公式为:an = a₁*q^(n-1)。
2. 求和公式:当公比q不等于1时,等比数列的前n项和公式为:Sn = a₁ * (1 - q^n)/(1 - q)。
四、数列的应用1. 数列在排列组合中的应用:通过分析排列组合问题中的数列规律,可以解决一些复杂的计数问题。
2. 数列在几何问题中的应用:数列常常用于解决几何中的问题,如等差数列可以用于求解等差数列的和,等比数列可以用于求解等比数列的和或比率等。
3. 数列在金融问题中的应用:数列在金融领域中有广泛应用,如利率计算中的等比数列,投资回报等问题都可以用数列进行分析和求解。
五、常见数列的分类1. 斐波那契数列:斐波那契数列是指从第三项开始,每一项都是前两项的和,即Fn = Fn-1 + Fn-2,其中F1 = 1,F2 = 1。
(完整版)高中数学数列知识点整理

1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。
S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。
⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。
3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。
反之不一定成立。
数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。
数列知识点总结(高中数学)

数列知识点总结 数列的概念与简单表示法知识点一、数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。
数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常称为首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项,所以数列的一般形式可以写成: ,,,,,,321 n a a a a简记为{}n a 。
项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列。
1.从第2项起,每一项都大于它的前一项的数列叫做递增数列; 2.从第2项起,每一项都小于它的前一项的数列叫做递减数列; 3.各项相等的数列叫做常数列;4.从第2项起,有些项大于它的前一项,有些项小于它前一项的数列叫做摆动数列; 知识点二、通项公式如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。
知识点三、数列的前n 项和1.数列的前n 项和的定义:我们把数列{}n a 从第一项起到第n 项止的各项之和,称为数列{}n a 的前n 项和,记作n S ,即n n a a a S +++= 21。
2.数列前n 项和n S 与通项公式n a 之间的关系:⎩⎨⎧≥-==-.2,,1,11n S S n S a n n n等差数列知识点一、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
知识点二、等差中项有三个数b A a ,,组成的等差数列可以看成简单的等差数列,这时A 叫做b a 与的等差中项。
1.根据等差中项的定义:b A a ,,是等差数列,则2b a A +=;反之,若2ba A +=,则b A a ,,是等差数列。
2.在等差数列{}n a 中,任取相邻的三项()*+-∈≥N n n a a a n n n ,2,,11,则n a 是1-n a 与1+n a 的等差中项;反之,n a 是1-n a 与1+n a 的等差中项对一切*∈≥N n n ,2均成立,则数列{}n a 是等差数列。
数列基础 知识点总结高中

数列基础知识点总结高中1. 什么是数列数列是指按照一定顺序排列的一组数,数列中的每一个数都叫做这个数列的项。
数列可以写成一般形式为{an},其中an表示数列的第n项,也可以写成a1, a2, a3, ..., an的形式。
2. 数列的分类数列可以按照项的性质和数列中项的变化规律进行分类,主要可以分为以下几种类型:- 等差数列:如果一个数列中的相邻两项的差都相等,那么这个数列就叫做等差数列。
- 等比数列:如果一个数列中的相邻两项的比都相等,那么这个数列就叫做等比数列。
- 菲波那契数列:这是一种非常有趣的数列,它的每一项都是前两项的和,即an = a(n-1) + a(n-2)。
3. 数列的通项公式对于某些特定的数列,我们可以通过推导或者观察得到一个通项公式,这个公式可以用来表示数列中任意一项的值。
例如对于一个等差数列{an},它的通项公式可以表示为an = a1 + (n-1)d,其中a1表示数列的首项,d表示数列的公差,n表示数列的项数。
4. 数列的性质数列有很多性质,例如对于一个等差数列,它的前n项的和可以用一个公式来表示,即Sn = (a1 + an) × n ÷ 2,其中a1为首项,an为末项。
对于一个等比数列,它的前n项的和也可以用一个公式来表示。
5. 数列的求和对于一些特定的数列,我们可以通过一些方法来求解它的前n项的和,例如使用公式、数学归纳法等。
6. 数列的应用数列在数学中有很多实际应用,例如在计算机科学中,数列可以用来表示计算机程序的执行次数;在经济学中,数列可以用来分析经济增长趋势等。
7. 数列的递推公式对于一些特定的数列,我们可以用递推公式来表示数列的变化规律,通过递推公式可以方便地计算数列的各项的值。
8. 数列的极限数列的极限是数学分析中一个非常重要的概念,它可以帮助我们理解数列的收敛性、发散性等性质。
数列的极限可以用来解决一些实际问题,例如计算机程序的性能优化等。
高中数学数列知识点总结5篇

高中数学数列知识点总结5篇篇1一、数列的基本概念数列是一种特殊的函数,其定义域为自然数集或其自然数子集。
数列分为等差数列和等比数列两种基本形式,此外还有更为复杂的数列形式。
数列的通项公式是描述数列的一般规律的重要工具,对于等差数列和等比数列,其通项公式分别为an=a1+(n-1)d和an=a1×q^(n-1)。
掌握数列的基本概念对于后续的学习至关重要。
二、等差数列等差数列是一种常见且重要的数列形式,其任意两项之差都相等。
在等差数列中,需要掌握的主要知识点包括等差数列的通项公式、求和公式、中项公式等。
等差数列的求和公式为Sn=n(a1+an)/2或Sn=na1+[n(n-1)/2]d,这些公式在处理与等差数列相关的问题时非常实用。
等比数列的特点是任意两项之比都相等。
在等比数列中,需要掌握的知识点包括等比数列的通项公式、求和公式以及公比的概念。
等比数列的求和公式为Sn=a1(1-q^n)/(1-q),掌握这个公式对于解决涉及等比数列的问题非常关键。
四、数列的极限数列的极限是描述数列变化趋势的重要概念。
当n趋近于无穷大时,数列的项会趋近于一个固定的值,这个值就是数列的极限。
掌握数列极限的概念和计算方法是分析数列性质的重要工具。
五、数列的应用数列在实际生活中有着广泛的应用,如金融、物理、工程等领域。
例如,在金融领域,复利计算就涉及等比数列的应用;在物理领域,许多物理量的变化可以看作是等差或等比数列的形式。
掌握数列的应用对于解决实际问题具有重要意义。
除了等差数列和等比数列外,还有一些特殊数列需要了解,如斐波那契数列、三角数列等。
这些数列具有独特的性质和应用场景,了解这些数列有助于拓宽数学视野,提高数学素养。
七、数列的证明在数列的学习中,还需要掌握一些证明方法,如数学归纳法、反证法等。
这些证明方法在证明数列的性质和解决问题时非常有用。
掌握这些证明方法有助于提升数学思维和逻辑推理能力。
综上所述,高中数学中的数列知识点丰富且重要,需要掌握基本概念、等差数列和等比数列的性质、数列的极限、应用、特殊数列以及证明方法等方面的知识。
高三数列综合知识点归纳

高三数列综合知识点归纳数列是数学中一个重要的概念,它是由一系列按照特定规律排列的数字组成的序列。
在高三数学中,数列是一个非常重要的知识点,掌握好数列的概念和相关性质对于学习其他数学知识以及解题技巧都有着很大的帮助。
本文将对高三数列中的一些重要知识点进行归纳总结。
一、等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
我们用首项为a₁,公差为d的等差数列表示为:a₁,a₁+d,a₁+2d,a₁+3d,......。
1. 等差数列的通项公式:第n项aₙ = a₁ + (n-1)d;2. 等差数列的前n项和公式:前n项和Sₙ = (a₁ + aₙ) * n / 2;3. 等差数列的性质:任意两项之和与中间项的和相等,例如a₁ + aₙ = a₂ + aₙ₋₁ = ...... = a₍ₙ₊₁₎₋₁ + a₍ₙ₊₁₎;4. 等差数列的性质:如果等差数列的首项为a₁,公差为d,那么第n项和第m项的和等于第n+m-1项的两倍,即aₙ + aₙ =2a₁ + (n+m-1)d。
二、等比数列等比数列是指数列中相邻两项之比保持恒定的数列。
我们用首项为a₁,公比为q的等比数列表示为:a₁,a₁q,a₁q²,a₁q³,......。
1. 等比数列的通项公式:第n项aₙ = a₁ * q^(n-1);2. 等比数列的前n项和公式(当q≠1时):前n项和Sₙ = a₁* (1-q^n) / (1-q);3. 等比数列的性质:任意两项之比与中间项的比相等,例如a₁ / aₙ = a₂ / aₙ₋₁ = ...... = a₍ₙ₊₁₎ / a₍ₙ₊₁₎₋₁;4. 等比数列的性质:如果等比数列的首项为a₁,公比为q,那么第n项和第m项的比等于第n+m-1项的幂次,即aₙ / aₙ =q^(n-m+1)。
三、数列的变形根据等差数列和等比数列的性质,我们可以对数列进行一些变形,从而得到其他有用的数列形式。
1. 差数列:对于等差数列,相邻两项之差的数列称为差数列。
数列高考知识点归纳(非常全)

数列高考知识点大扫描数列基本概念数列是一种特殊函数,对于数列这种特殊函数,着重讨论它的定义域、值域、增减性和最值等方面的性质,依据这些性质将数列分类:依定义域分为:有穷数列、无穷数列; 依值域分为:有界数列和无界数列;依增减性分为递增数列、递减数列和摆动数列。
数列的表示方法:列表法、图象法、解析法(通项公式法及递推关系法); 数列通项:()n a f n =2、等差数列1、定义 当n N ∈,且2n ≥ 时,总有 1,()n n a a d d +-=常,d 叫公差。
2、通项公式 1(1)n a a n d =+-1)、从函数角度看 1()n a dn a d =+-是n 的一次函数,其图象是以点 1(1,)a 为端点, 斜率为d 斜线上一些孤立点。
2)、从变形角度看 (1)()n n a a n d =+--, 即可从两个不同方向认识同一数列,公差为相反数。
又11(1),(1)n m a a n d a a m d =+-=+-,相减得 ()n m a a n m d -=-,即()n m a a n m d =+-. 若 n>m ,则以 m a 为第一项,n a 是第n-m+1项,公差为d ; 若n<m ,则 m a 以为第一项时,n a 是第m-n+1项,公差为-d.3)、从发展的角度看 若{}n a 是等差数列,则12(2)p q a a a p q d +=++- ,12(2)m n a a a m n d +=++-, 因此有如下命题:在等差数列中,若2m n p q r +=+= , 则2m n p q r a a a a a +=+=. 3、前n 项和公式由 1211,n n n n n S a a a S a a a -=+++=+++,相加得 12n n a a S n +=, 还可表示为1(1),(0)2n n n S na d d -=+≠,是n 的二次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。
S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。
⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。
3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。
反之不一定成立。
数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。
⑦ 若等比数列a n 的前n 项和S n,则S k 、S 2kS k 、S 3k S 2k … 是等比数列•4、非等差、等比数列通项公式的求法类型I I 观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析, 寻找规律,从而根据规律写出此数列的一个通项。
类型n I 公式法:若已知数列的前n 项和S n 与a n 的关系,求数列 a n 的通项a n 可用 公式a n ''(n°构造两式作差求解。
& S.1,5 2)用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即印和a n 合为一个表达,(要先分n 1和n 2两种情况分别进行运算,然后验 证能否统一)。
类型川| 累加法:21q,—,q ,形如a n 1 a n f (n )型的递推数列(其中f (n )是关于n 的函数)可 构造:a n 4 1 f(n 1) a n 1 a n 2 f(n 2) a 2 a if (1)将上述n 1个式子两边分别相加,可得:a n f(n 1) f(n 2) ...f(2)f(1) a 「(n 2)① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ③ 若f(n)是关于n 的二次函数,累加后可分组求和 ④若f (n)是关于n 的分式函数,累加后可裂项求和.类型W | 累乘法:a形如a n 1 a n f(n) 口 f(n)型的递推数列(其中f(n)是关于n 的函数)可构亘 f (n 1)a n 1造:an1f(n 2)a n 2亚 f(1)a 1将上述n 1个式子两边分别相乘,可得:a n f(n 1) f(n 2) ... f(2) f(1)a 1,( n 2)有时若不能直接用,可变形成这种形式,然后用这种方法求解。
类型v | 构造数列法: ㈠形如 a n 1pa n q (其中 p, q 均为常数且 p 0) 型的递推式:(1 )若P 1时,数列{ a n }为等差数列; (2) 若q 0时,数列{ a n }为等比数列;(3) ________________________________________________________________________ 若p 1且q 0时,数列{ a n }为线性递推数列,其通项可通过待定系数法构造 _______________ 比数列来求.方法有如下两种:法一:设a n 1p(a n ),展开移项整理得a n 1 pa n ( p 1),与题设a n 1 pa n q 比较系数(待定系数法)得— 为首项,以p 为公比的等比数列.再利用等比数列的通项公 p 1式求出 a n 旦的通项整理可得 a n .p 1a a法二:由a n 1pa n q 得a n pa n 1 q(n 2)两式相减并整理得 丄1np,即a n a n 1a n 1 a n 构成以a 2印为首项,以p 为公比的等比数列.求出a n 1 a n 的通项再转化 为类型川(累加法) 便可求出a n .㈡形如 a n 1 pa n f(n)(p 1)型的递推式: ⑴当f (n)为一次函数类型(即等差数列)时:法一:设a n An B p a n 1 A(n 1) B ,通过待定系数法确定 A 、B 的值,转 化成以a 1 A B 为首项,以p 为公比的等比数列 a n An B ,再利用等比数列的通项 公式求出a n An B 的通项整理可得a n .法二: 当f(n)的公差为d 时,由递推式得:a n 1 pa n f(n),a n pa n 1 f (n 1)两式相减得:a n 1 a “b n pb n 1 d 转化为类型V ㈠求出b n ,再用类型川(累加法)便可求出a n .⑵当f (n)为指数函数类型(即等比数列)时:法一:设a n f(n) p a n 1 f (n 1),通过待定系数法确定 的值,转化成以 a 1 f(1)为首项,以p 为公比的等比数列 a n f(n),再利用等比数列的通项公式求 出a n f(n)的通项整理可得a n .法二:当f(n)的公比为q 时,由递推式得:a n 1 pa n f(n) --------------------- ①,a n pa n 1 f (n 1),两边同时乘以q 得a .q pqa “ 1 qf (n 1)——②,由①②两式相,(p0)an 1p(a n a np(am 寿即a n — 构成以a 1p 1p(a n a n 1) d ,令 b n a n 1 a n 得:减得a n 1 a n q p(a n qa n 1),即qa n p,在转化为类型V㈠便可求出a*.a n qa n 1法三:递推公式为a* 1 pa n q n(其中p, q均为常数)或a* 1 pa* rq n(其中p, q, r均为常数)时,要先在原递推公式两边冋时除以n 1 a n 1q,得:n1q p ? a n 1nq q q引入辅助数列b n (其中b n冷),得:b n 1 —b n1-再应用类型VP的方法解决。
q q q ⑶当f (n)为任意数列时,可用通法:在a n 1 pa n f(n)两边同时除以p n1可得到a n 1a n f(n)令n n 1 ,令 6 ,则p p p p b n 1 bn ―,在转化为类型川(累加法),求出bi之后得a n p°b n. p还有形如a , ma n的递推式,也可采用取倒数方法转化成丄印丄m形式,化归n 1pa n q a n 1 q a n p为a n 1 pa n q型求出丄的表达式,再求a n.a n类型忸| 形如a n 2 pa n 1 qa n型的递推式:用待定系数法,化为特殊数歹U {a n a n 1}的形式求解。
方法为•设a n 2 ka n 1 h(a n 1 ka n),比较系数得h k p, hk q,可解得h、k ,于是1 (2n 1)(2 n 1)1 1 12(2 n 1 2n 1)呼1c n m{a n 1 ka n }是公比为h 的等比数列,这样就化归为 a . 1总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方 法求解的数列,可用归纳、猜想、证明方法求出数列通项公式 a n .5、非等差、等比数列前 n 项和公式的求法 ⑴错位相减法①若数列 a n 为等差数列,数列b n 为等比数列,则数列a n b n 的求和就要采用此法 ②将数列 a n 0 的每一项分别乘以b n 的公比,然后在错位相减,进而可得到数列a nb n 的前n 项和•此法是在推导等比数列的前n 项和公式时所用的方法 ⑵裂项相消法(a,b i ,b 2,c 为常数)时,往往可将(an bj(an b 2)a n 变成两项的差,采用裂项相消法求和可用待定系数法进行裂项: 设a n,通分整理后与原式相比较,根据对应项系数相等得an b an b 2,从而可得常见的拆项公式有:n(n 1)pa n q 型。
般地,当数列的通项 a n (an 0)(a n b 2) (b 2 bj1an b i1 an b 2)•⑤ n n! (n 1)! n!.⑶分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可•一般分两步:①找通向项公式②由通项公式确定如何分组.⑷倒序相加法如果一个数列a n,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加法。
特征:a i a n a2 a n 1 ...⑸记住常见数列的前n项和:①i 2 3 ... n2② 1 3 5 ... (2n 1) n2;③122232... n21)(2 n 1).6。