高一数学-三角函数的图像和性质练习题
三角函数的图象与性质(解析版)

三角函数的图象与性质一、 考情分析1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.二、 知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无[微点提醒] 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.三、 经典例题考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cosx ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8.规律方法 1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法(1)利用三角函数线求解. (2)利用三角函数的图象求解. 考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________. 【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3, 即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.规律方法 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【解析】 令2k π≤x +π6≤2k π+π,k ∈Z , 解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【解析】 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.规律方法 1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.规律方法 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称 (2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称, 所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T=2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ).又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9.规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可. 2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可. [方法技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.4.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.5.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.6.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .四、 课时作业1.(2021·宝鸡中学高一期中)函数π()tan 23f x x ⎛⎫=-⎪⎝⎭的单调递增区间为( ) A .πππ2π,()2623k k k ⎡⎤++∈⎢⎥⎣⎦ZB .πππ5π,()212212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z D .π2ππ,π()63k k k ⎛⎫++∈ ⎪⎝⎭Z 【答案】C 【解析】()π2232k x k k Z ππππ-<-<+∈得:5212212k k x ππππ-<<+,所以函数π()tan 23f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z . 2.(2021·陕西省西安中学高一期中)设函数12sin y x =-,则函数的最大值及取到最大值时的x 取值集合分别为( ) A .3,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭B .1,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭C .3,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭D .1,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【答案】C【解析】由于22sin 2,22sin 2,112sin 3x x x -≤≤-≤-≤-≤-≤, 所以当32,2x k k Z ππ=+∈时,函数12sin y x =-有最大值为3. 3.(2021·吉林省高三其他(文))下列函数中,是奇函数且在其定义域上是增函数的是( ) A .1y x=B .y tanx =C .x x y e e -=-D .2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间, 对于B 选项,由正切函数y tanx =的图像可知不符合题意; 对于C 选项,令()x x f x e e -=-知()x x f x e e --=-, 所以()()0f x f x +-=所以()x x f x e e -=-为奇函数, 又x y e =在定义内单调递增,所以x y e -=-单调递增, 所以函数x x y e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数.4.(2021·武功县普集高级中学高一月考)函数y =)A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】C【解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z . 所以函数2cos 1y x =+的定义域是()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈.5.(2021·武功县普集高级中学高一月考)函数sin y x x =的部分图像是( )A .B .C .D .【答案】A【解析】:因为sin y x x =,所以()f x 为偶函数,其图象关于y 轴对称,故可以排除B ,D.又因为函数()f x 在()0,π上函数值为正,故排除C.6.(2019·呼玛县高级中学高一月考)若函数()sin()(0,0,)2πωϕωϕ=+>><f x A x A 的部分图像如图所示,则函数()f x 的解析式为( )A .()sin(2)6f x x π=+ B .()cos(2)6f x x π=+ C .()cos(2)3f x x π=+D .()sin(2)3f x x π=+【答案】D【解析】由函数的部分图像可知1A =,22T π=,故T π=,所以2ππω=即2ω=.由函数图像的对称轴为12x π=,所以22,122k k Z ππϕπ⨯+=+∈, 因2πϕ<,故3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭,故选D . 7.(2019·呼玛县高级中学高一月考)设cos 12a π=,41sin6b π=,7cos 4c π=,则( ) A .a c b >> B .c b a >> C .c a b >> D .b c a >>【答案】A 【解析】4155b sinsin 6sin sin cos 66663ππππππ⎛⎫==+=== ⎪⎝⎭,7c cos cos 44ππ== 因为3412πππ>>,且y cos 0,2x π=在(,)是单调递减函数,所以a c b >>,故选A8.(2019·延安市第一中学高三月考(理))已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( )A .关于点,012π⎛⎫-⎪⎝⎭对称 B .关于点,012π⎛⎫⎪⎝⎭对称 C .关于直线12x π=-对称D .关于直线12x π=对称 【答案】B【解析】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±, 所以2sin 13πφ⎛⎫+=±⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确.9.(2021·河北省故城县高级中学高一期中)关于函数sin(),2y x π=+在以下说法中正确的是( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]-ππ上是减函数【答案】B【解析】sin()cos 2y x x π=+=,它在[0,]π上是减函数.10.(2021·上海高一课时练习)下列命题中正确的是( ) A .cos y x =在第一象限和第四象限内是减函数 B .sin y x =在第一象限和第三象限内是增函数C .cos y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是减函数 D .sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数 【答案】D【解析】对于cos y x =,该函数的单调递减区间为:[]2,2,k k k Z πππ+∈,故A 错,C 错. 对于sin y x =,该函数的单调递增区间为:2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,故B 错,D 对.11.(2021·陕西省西安中学高三其他(理))关于函数()2sin sin 222x x f x x π⎛⎫=+- ⎪⎝⎭有下述四个结论: ①函数()f x 的图象把圆221x y +=的面积两等分 ②()f x 是周期为π的函数③函数()f x 在区间(,)-∞+∞上有3个零点④函数()f x 在区间(,)-∞+∞上单调递减 其中所有正确结论的编号是( ) A .①③④ B .②④C .①④D .①③【答案】C【解析】f (x )=2sin2x sin (2π+2x )﹣x =2sin 2x cos 2x﹣x =sin x ﹣x , 对于①,因为f (﹣x )=sin (﹣x )﹣(﹣x )=﹣sin x +x =﹣f (x ),所以函数f (x )为奇函数,关于原点对称,且过圆心,而圆x 2+y 2=1也是关于原点对称,所以①正确;对于②,因为f (x +π)=sin (x +π)﹣(x +π)=﹣sin x ﹣x ﹣π≠f (x ),所以f (x )的周期不是π,即②错误;对于③,因为()'f x =cos x ﹣1≤0,所以f (x )单调递减,所以f (x )在区间(﹣∞,+∞)上至多有1个零点, 即③错误; 对于④,()'fx =cos x ﹣1≤0,所以f (x )单调递减,即④正确.12.(2021·山西省高三其他(文))已知()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象关于直线524x π=对称,把()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称,则ω的最小值为( ) A .2 B .3C .4D .6【答案】C【解析】因为()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称, 所以()f x 关于点,03π⎛⎫⎪⎝⎭对称, 又()f x 的图象既关于直线524x π=对称, 设()f x 的最小正周期为T ,则()()2153244k T k N ππ+-=∈, 即()21284k k N ππω+⎛⎫=⋅∈ ⎪⎝⎭,所以()84k k N ω=+∈,取0k =,得4ω=,13.(2021·上海高二课时练习)设直线的斜率(,1][1,)k ∈-∞-⋃+∞,则该直线的倾斜角α满足( ). A .44ππα-B .42ππα<或324ππα< C .04πα或34παπ<D .04πα或34παπ【答案】B【解析】因为tan k α=, 所以当1k ≤-时,324ππα<≤, 当1k时,42ππα≤<,即直线的倾斜角α满足42ππα<或324ππα<, 14.(2021·调兵山市第一高级中学高一月考)方程10sin x x =的根的个数是( ) A .6 B .7C .8D .9【答案】B【解析】分别作函数,10sin y x y x ==图象,如图,由图可得交点个数为7,所以方程10sin x x =的根的个数是715.(2021·福建省高三其他(文))图数()1cos f x x x x ⎛⎫=+ ⎪⎝⎭,[)(],00,x ππ∈-的图象可能为( )A .B .C .D .【答案】A【解析】由题知:()()11cos cos ()f x x x x x f x x x ⎛⎫⎛⎫-=---=-+=- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 为奇函数,故排除B ,D. 又因为02x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故排除C.16.(2021·上海高一期中)函数sin cos y x x =⋅的最小正周期和最大值分别为( ) A .π,1 B .π,12C .2π,1D .2π,12【答案】B【解析】1sin cos =sin 22y x x x =⋅, 函数sin cos y x x =⋅的最小正周期22T ππ==, 1sin 21x -≤≤,∴111sin 2222x -≤≤, ∴函数sin cos y x x =⋅的最大值为12. 17.(2021·山西省高三其他(文))对于函数()()1122f x sinx cosx sinx cosx =+--.有下列说法:①()f x 的值城为[]1,1-;②当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值;③函数()f x 的最小正周期是π;④当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >.其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】因为()()1122cosx sinx cosx f x sinx cosx sinx cosx sinx sinx cosx≥⎧=+--=⎨<⎩,,,作出函数()f x 的图象,如图所示:所以,()f x 的值城为22⎡-⎢⎣⎦,①错误; 函数()f x 的最小正周期是2π,③错误; 当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值,②正确;当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >,④正确. 18.(多选题)(2021·海南省海南中学高三月考)已知函数()()sin f x A x =+ωϕ(0,0A ω>>)在1x =处取得最大值,且最小正周期为2,则下列说法正确的有( ). A .函数()1f x -是奇函数B .函数()1f x +是偶函数C .函数()2f x +在[]0,1上单调递增D .函数()3f x +是周期函数【答案】BCD【解析】因为()()sin f x A x =+ωϕ在1x =处取得最大值, 所以有2()2k k Z πωϕπ+=+∈,又因为()()sin f x A x =+ωϕ的最小正周期为2, 所以有22,0πωωπω=>∴=,因此()()sin sin 2cos 2f x A x A x k A x πωϕπππ⎛⎫=+=+-=- ⎪⎝⎭.选项A :设()()1cos[(1)]cos g x f x A x A x ππ=-=--=, 因为()cos[()]cos ()g x A x A x g x ππ-=-==, 所以()()1g x f x =-是偶函数,故本选项说法不正确; 选项B :设()()1cos[(1)]cos h x f x A x A x ππ=+=-+= 因为()cos[()]cos ()h x A x A x h x ππ-=-==, 所以()()1h x f x =+是偶函数,故本选项说法正确;选项C :设()()2cos[(2)]cos m x f x A x A x ππ=+=-+=-,因为[]0,1x ∈,所以[]0,x ππ∈,又因为0A >,所以函数()()2m x f x =+在[]0,1上单调递增,故本选项说法正确;选项D :设()()3cos[(3)]cos n x f x A x A x ππ=+=-+=, 函数()n x 最小正周期为:22ππ=,所以本选项说法正确.19.(2021·山东省微山县第一中学高一月考)已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则( )A .2π为()f x 的一个周期B .()y f x =的图象关于直线43x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D .()f x π+的一个零点为3π【答案】AD【解析】根据函数()6f x cos x π⎛⎫=+⎪⎝⎭知最小正周期为2π,A 正确.当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误;函数()6f x cos x π⎛⎫=+ ⎪⎝⎭在5,26ππ⎛⎫ ⎪⎝⎭上单调递减,在5,6ππ⎛⎫⎪⎝⎭上单调递增,故C 错误; ()76f x cos x ππ⎛⎫+=+⎪⎝⎭,73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.20.(2021·山东省高一期中)将函数()2sin 2f x x x =+12π个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,则下列说法中正确的是( )A .()f xB .()g x 是奇函数C .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称 D .()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减 【答案】CD【解析】函数2()sin 2sin 22sin(2)3f x x x x x x π=+=+,把函数图象向左平移12π个单位,得到2sin[2()]2sin(2)2cos 21232y x x x πππ=++=+=, 再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到()2cos g x x =. ①故()f x 函数的最大值为2,故选项A 错误. ②函数()2cos g x x =为偶函数,故选项B 错误. ③当6x π=-时,2sin 20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故选项C 正确.④由于()2cos g x x =,在[]2,2k k πππ+,()k Z ∈上单调递减,故函数()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减.故选项D 正确.21.(2021·上海高一期中)函数()tan 6f x x π=的单调递增区间为________【答案】(63,63)k k -+,k ∈Z 【解析】由622x k k πππππ-+<<+,k Z ∈,解得6363k x k -<<+,k Z ∈,故函数的单调增区间为()63,63k k -+,k Z ∈,22.(2021·河北省故城县高级中学高一期中)已知函数()sin()f x x π=-,()cos()g x x π=+,有以下结论:①函数()()y f x g x =的最小正周期为π; ②函数()()y f x g x =的最大值为2;③将函数()y f x =的图象向右平移2π个单位后得到函数()y g x =的图象; ④将函数()y f x =的图象向左平移2π个单位后得到函数()y g x =的图象.其中正确结论的序号是____________. 【答案】①④【解析】()sin()sin f x x x π=-=-,()cos()cos g x x x π=+=-. 因为1()()(sin )(cos )sin cos sin 22y f x g x x x x x x ==-⋅-=⋅=, 所以1()()sin 22y f x g x x ==的最小正周期为:22ππ=,故结论①正确; 因为1()()sin 22y f x g x x ==的最大值为12,所以结论②不正确;因为函数()y f x =的图象向右平移2π个单位后得到函数的解析式为: ()sin()cos 22y f x x x ππ=-=--=,所以结论③不正确;因为函数()y f x =的图象向左平移2π个单位后得到函数的解析式为: ()sin()cos ()22y f x x x g x ππ=+=-+=-=,所以结论④正确.23.(2021·宝鸡中学高一期中)函数()sin()f x A x B ωϕ=++的一部分图象如图所示,其中0A >,0>ω,π||2ϕ<.(1)求函数()y f x =解析式;(2)求[0,π]x ∈时,函数()y f x =的值域; (3)将函数()y f x =的图象向右平移π4个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递减区间.【解析】(1)根据函数()sin()f x A x B ωϕ=++的一部分图象,其中0A >,0>ω,π||2ϕ<, ∵40A B A B +=⎧⎨-+=⎩,∴22A B =⎧⎨=⎩;∵12π5ππ44126T ω=⋅=-,∴2ω=, 再根据π46f ⎛⎫= ⎪⎝⎭,可得ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z ,∵π||2ϕ<,∴π6ϕ=,∴函数()y f x =的解析式为π()2sin 226f x x ⎛⎫=++ ⎪⎝⎭; (2)∵[]0,πx ∈,∴ππ13π2,666x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 2[1,1]6x ⎛⎫+∈- ⎪⎝⎭, ∴函数()y f x =的值域为[]0,4; (3)将函数()y f x =的图象向右平移π4个单位长度, 得到函数πππ()2sin 222sin 22463g x x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,对于函数π()2sin 223g x x ⎛⎫=-+ ⎪⎝⎭, 令ππ3π2π22π232k x k +≤-≤+,k ∈Z , 求得5π11πππ1212k x k +≤≤+,k ∈Z , 故函数()g x 的单调减区间为5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z .24.(2021·山西省平遥中学校高一月考)已知函数()4sin cos 3f x x x π⎛⎫=+ ⎪⎝⎭. (1)求函数()f x 的最小正周期及单调增区间; (2)求函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域和取得最大值时相应的x 的值.【解析】(1)()4sin cos cos sin sin 33f x x x x ππ⎛⎫=- ⎪⎝⎭22sin cos x x x =-)sin 21cos 2x x =-+sin 2x x =2sin 23x π⎛⎫=+ ⎪⎝⎭.∴22T ππ==. 由222232k x k πππππ-+≤+≤+,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈ ∴单调增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)∵46x ππ-≤≤,∴22633x πππ-≤+≤. ∴1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,即12sin 223x π⎛⎫-≤+≤ ⎪⎝⎭.∴函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域为[]1,2- 且当232x ππ+=,即12x π=时,()max 2f x =. 25.(2021·武功县普集高级中学高一月考)在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 【解析】(1)依题意,由最低点为2,23M π⎛⎫-⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-.。
高一数学三角函数的图象与性质试题

高一数学三角函数的图象与性质试题1.设函数,为常数.(1)若的图象中相邻两对称轴之间的距离不小于,求的取值范围;(2)若的最小正周期为,且当时,的最大值是,又,求的值.【答案】(1);(2)或【解析】(1)利用两角和正弦公式和降幂公式化简,得到的形式,利用公式计算周期,进而求出的取值范围;(2)求三角函数的最小正周期一般化成,,形式,利用周期公式即可.求解较复杂三角函数的最值时,首先化成形式,在求最大值或最小值;(3)三角函数的给值求值的问题一般是正用公式将“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角三角函数值,代入展开即可,注意角的范围.试题解析:(1)==由题意知,得的取值范围为(2)若的最小正周期为,得=1=,有在区间上为增函数,所以的最大值为,则,所以=,所以=+=或【考点】(1)三角函数周期的应用;(2)三角函数的化简和求值.2.函数(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,则的值是________.【答案】.【解析】由图可知,,因此,由于为第三个点,因此,解得,,.【考点】求三角函数的解析式.3.由函数的图象得到的图象,需要将的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B【解析】,即函数的图象得到,需要将的图象向左平移个单位,故选择B.【考点】三角函数图象变换.4.函数f(x)=Asin(wx+j)(A>0,w>0,-<j<,x∈R)的部分图象如图所示:,(1)求函数y=f(x)的解析式;(2)当x∈时,求f(x)的取值范围.【答案】(1)f(x)=sin(x+);(2)[-1,].【解析】(1)图像离平衡位置最高值为1可知A=1,又从图可看出周期的四分之一为,根据可求得w的值,对于j可通过代入(,1)点求得,但要注意j的范围;(2)本小题考查三角函数求值域问题,由x的范围可先求出x+的范围,结合正弦函数图像可求出sin(x+)的取值范围.试题解析:(1)由图象得A=1,,所以T=2p,则w="1." 将点(,1)代入得sin(+j)=1,而-<j<,所以j=,因此函数f(x)=sin(x+).(2)由于x∈,-≤x+≤,所以-1≤sin(x+)≤,所以f(x)的取值范围[-1,].【考点】由三角函数的图像求函数的解析式,,三角函数的值域问题.5.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则f(x)的表达式为().A.B.C.D.【答案】B【解析】由图像,得,则,所以,又因为图像过,所以,所以可取,得;故选B.【考点】三角函数的图像与性质.6.已知函数 ,其中对恒成立,且,则的单调递增区间是()A.B.C.D.【答案】C【解析】又(1)又由,(2),由(1)、(2)可得,,由,得:的单调增区间是.【考点】1、由y=Asin(ωx+φ)的部分图象确定其解析式;2、函数y=Asin(ωx+φ)的图象变换.7.若函数().A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数【答案】D【解析】,是偶函数,且.【考点】二倍角公式的逆用、三角函数的性质.8.已知函数(1)求函数的周期;(2)求函数的单调递增区间;(3)若时,的最小值为– 2 ,求a的值.【答案】(1)(2)(3)【解析】利用正余弦和差角公式以及辅助角公式化简三角函数式.(1)根据求周期;(2)根据化简所得的函数名称,确定单调增区间.根据单调性可求最值.(1)(2)当即函数单调递增,故所求区间为.(3),所以当,即时,函数取最小值,所以,解得.【考点】三角函数的化简;周期;单调性;最值.9.函数的部分图象如图所示,则的值分别是()A.B.C.D.【答案】C【解析】,由,可知,将代入,又,可得.【考点】的图象和性质.10.已知函数.(1)求值;(2)求的最小值正周期;(3)求的单调递增区间.【答案】(1) (2)(3)【解析】(1)中直接带入角求值即可.(2)要求最值及周期,得将函数解析式转化为或.所以化简三角函数.需要用到辅助角公式化简,而后直接判断最小值,利用周期公式求周期.(3)根据(2)中的化简后的函数式,利用三角函数单调性解决.(1) .(2)因为所以所以所以的最小正周期为(3)令所以所以的单调递增区间为【考点】三角函数求特殊值,三角函数化简求最值和周期,三角函数求单调区间.11.知函数,,则是()A.最小正周期为的奇函数B.最小正周期为的奇函数C.最小正周期为的偶函数D.最小正周期为的偶函数【答案】C【解析】将函数化简为,所以函数是的偶函数.【考点】1.三角函数的化简;2.三角函数的性质.12.若函数在区间上的值域是,则的最大值是.【答案】【解析】结合三角函数图像知,当的点均匀分布在最小值点两边时,区间长度最大.令为函数取最小值点,则分布在其两侧且使的点为和,所以的最大值是【考点】三角函数图像与性质13.为了得到函数的图像,只需将函数图像上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】A【解析】,故要得到的图像,只需将函数的图像向左平移个单位长度,故选A.【考点】三角函数的图像变换.14.函数图像的一条对称轴方程是()A.B.C.D.【答案】A【解析】,由的对称轴可知,所求函数图像的对称轴满足即,当时,,故选A.【考点】1.三角函数图像与性质中的余弦函数的对称性;2.诱导公式.15.已知,(0°<A<90°)求的值。
高一数学三角函数试题

高一数学三角函数试题1.已知向量.(1)若,且,求角的值;(2)若,且,求的值.【答案】(1);(2)【解析】(1)根据向量垂直其数量积为0,可得到的关系式,从而得出的值,再根据角的范围得角的大小。
(2)根据数量积公式可得的关系式,用两角和差公式的逆用即化一公式将其化简为再根据角的范围找整体角的范围,从而可计算出的值。
用凑角的方法将写成的形式,用正弦的两角和公式展开计算即可。
(1)∵ , ∴ , 即 3分∴,又∴∴. 6分(2) 8分∴,又∵ , ∴, ∴ 10分∴. 12分【考点】1数量积公式;2两角和差公式。
2.如图,在中,已知,是上一点,,则【答案】【解析】由余弦定理得:,在三角形中,再由正弦定理得:【考点】正余弦定理综合3.已知,函数.(1)设,将函数表示为关于的函数,求的解析式和定义域;(2)对任意,不等式都成立,求实数的取值范围.【答案】(1),定义域为;(2)实数的取值范围是.【解析】(1)由恒等变换公式可求得,并可以表示出定义域;(2)由求出的取值范围,化简成形式,用函数单调性即可求出实数的取值范围.试题解析:(1)∴2分由可得4分∴6分定义域为 8分(2)∵∴10分∵恒成立∴恒成立化简得又∵∴ 12分令得∴在上为减函数14分∴∴ 16分【考点】恒等变换公式、恒成立问题.4.已知函数(1)用五点法画出它在一个周期内的闭区间上的图象;(2)求函数的单调增区间;(3)若,求的最大值和最小值.【答案】(1)(2)(3),【解析】(1)列表、作图 .4分6303(2)由得所以所以函数的单调增区间为 8分(3)因为所以,所以,所以当即时,当即时, -12分【考点】三角函数的性质点评:主要是考查了三角函数的图象与性质的求解运用,属于基础题。
5.已知函数(1)写出函数的单调递减区间;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)(2)【解析】(1)为所求(2)【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。
高一数学三角函数的图象与性质试题

高一数学三角函数的图象与性质试题1.已知函数的周期为,且 ,将函数图像上的所有点的横坐标伸长为原来的倍(纵坐标不变),再将所得图像向右平移个单位长度后得到函数的图像.(1)求函数与的解析式;(2)是否存在,使得按照某种顺序成等差数列?若存在,请求出的值,若不存在,说明理由;(3)求实数与正整数,使得在内恰有2013个零点.【答案】(1);(2)假设存在,当时,,,又,则,所以,即,化简得或与矛盾,所以不存在,使得按照某种顺序成等差数列;(3),.【解析】(1)依题意可求得和,利用三角函数的图像变换可求得;(2)依题意,当时,,和,问题转化为方程在内是否有解,通过求解该方程即可判断是否有解即可;(3)将“函数有零点的问题”转化为“方程有实数根”的问题,可分种情况进行讨论:①当时,由题意知其不成立;②当时,先令将其换元为,然后根据函数的图像及其性质判断在内有解所满足的条件,最后由零点的个数,判断出正整数的取值即可.试题解析:(1)由函数的周期为可得,,又由,得,所以;将函数的图像上所有点的横坐标伸长到原来的2倍(保持纵坐标不变)后可得的图像,再将的图象向右平移个单位长度后得到函数. (2)假设存在,当时,,,又,则,所以,即,化简得或与矛盾,所以不存在,使得按照某种顺序成等差数列.(3)令,即,当时,显然不成立;当时,,令,则当时,.由函数及,的图像可知,当时,在内有3个解.再由可知,,综上所述,,.【考点】函数的图象变换,函数与方程.2.已知函数()的部分图象如图所示,则的解析式是___________.【答案】【解析】由图可知,,得,从而,所以,然后将代入,得,又,得,因此,,注意最后确定的值时,一定要代入,而不是,否则会产生增根.【考点】三角函数的图象与性质.3.是否存在实数a,使得函数在闭区间上的最大值是1?若存在,求出对应的a值?若不存在,试说明理由.【答案】存在符合题意.【解析】将原函数化简为,令,0≤t≤1,可将问题转化为一元二次函数中来解决,,其中0≤t≤1,对称轴与给定的范围进行讨论,得出最值,验证最值是否取到1 即可.解:,当0≤x≤时,0≤cos x≤1,令则0≤t≤1,∴,0≤t≤1.当,即0≤a≤2时,则当,即时.,解得或a=-4(舍去).当,即a<0时,则当t=0,即时,,解得 (舍去).当,即a>2时,则当t=1,即时,,解得 (舍去).综上知,存在符合题意.【考点】同角三角函数的基本关系式,二次函数求最值.4.已知函数的最小正周期为,则该函数图象()A.关于直线对称B.关于点对称C.关于点对称D.关于直线对称【答案】B【解析】∵的最小正周期为,∴,即,对于A,B:当时,,∴A错误,B正确;对于C,D:当时,,∴C,D均错误,故选B.【考点】正弦型函数的图像和性质.5.如图是函数的图像,是图像上任意一点,过点A作轴的平行线,交其图像于另一点B(A,B可重合),设线段AB的长为,则函数的图像是 ( )A B C D【答案】A【解析】∵是函数上的一点,由图及诱导公式,可知:,∴当时,,当时,有,故选B.【考点】三角函数的图像与性质.6. [2014·郑州质检]要得到函数y=cos2x的图象,只需将函数y=sin2x的图象沿x轴() A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】B【解析】∵y=cos2x=sin(2x+),∴只需将函数y=sin2x的图象沿x轴向个单位,即得y=sin2(x+)=cos2x的图象,故选B.7.函数和函数在内都是()A.周期函数B.增函数C.奇函数D.减函数【答案】C【解析】由正弦函数与正切函数的性质可知,在是奇函数,减函数,在是奇函数,增函数. 故选C.【考点】正弦函数与正切函数的性质.8.已知函数的一部分图象如图所示,如果,则()A.B.C.D.【答案】C【解析】由图象振幅知,由图象中心位置知,由,知,故,所以选C. 可将代入,可得时,取.【考点】的图象与性质.9.已知函数的部分图象,如图所示.(1)求函数解析式;(2)若方程在有两个不同的实根,求的取值范围.【答案】(1)函数解析式为;(2).【解析】(1)由图知:,∴;把点带入得;(2)当时,,结合的图象,可求的取值范围.解: (1) 5分(2) 9分【考点】三角函数的图象和性质.10.已知函数的最大值为3,最小值为.(1)求的值;(2)当求时,函数的值域.【答案】(1);(2)函数在的值域为.【解析】(1)先由余弦函数的图像与性质及得到函数的最值,从而列出方程组,求解即可得到的值;(2)将(1)求出的值代入得到,将当整体,先算出,进而由正弦函数的图像与性质得到,进而可确定函数的值域.试题解析:(1)由余弦函数的性质可知,又,所以,所以,所以因为函数的最大值为3,最小值为所以,求解得到(2)由(1)可得因为,所以,由正弦函数的性质可得,所以所以函数的值域为.【考点】1.三角函数的图像与性质;2.不等式的性质.11.函数y=sin(πx+)(>0)的部分图象如图所示,设P是图像的最高点,A,B是图像与x轴的交点,记∠APB=θ,则sin2θ的值是( )A.B.C.-D.-【答案】A【解析】由周期公式可知函数周期为2,∴AB=2,过P作PD⊥AB与D,根据周期的大小看出直角三角形中直角边的长度,解出∠APD与∠BPD的正弦和余弦,利用两角和与差公式求出sinθ,进而求得sin2θ.【考点】(1)三角函数的性质;(2)解三角形.12.下列函数同时具有“最小正周期是,图象关于点(,0)对称”两个性质的函数是()A.B.C.D.【答案】B【解析】排除C,D,因为这两个选项中函数的周期均为。
高一数学三角函数试题

高一数学三角函数试题1.不等式sin()>0成立的x的取值范围为( )A.B.C.D.【答案】D【解析】,即,可得,故选D.【考点】解三角不等式2.已知函数(Ⅰ)若求函数的值;(Ⅱ)求函数的值域。
【答案】(1)(2)[ 1 , 2 ]【解析】解:(Ⅰ) 2分6分(Ⅱ) 8分函数的值域为[ 1 , 2 ] 12分【考点】三角函数的性质点评:主要是考查了三角函数的化简和性质的运用,属于基础题。
3.若cosθ>0且tanθ<0,则θ所在的象限为 .【答案】四【解析】若cosθ>0,则为第一或四象限角;若tanθ<0,则θ为第二或四象限角,所以θ所在的象限为四。
【考点】象限角点评:当θ为第一、二象限角时,,当θ为第三、四象限角时,;当θ为第一、四象限角时,,当θ为第二、三象限角时,;当θ为第一、三象限角时,,当θ为第二、四象限角时,。
4.如果角θ的终边经过点那么tanθ的值是()A.B.C.D.【答案】D【解析】直接根据三角函数的定义,求出tanθ的值.根据角的终边经过点,那么可知=,选D.【考点】正切函数的定义点评:本题是基础题,考查正切函数的定义,是送分题5.设函数图像的一条对称轴是直线.(1)求;(2)画出函数在区间上的图像(在答题纸上完成列表并作图).【答案】(1)(2)如图。
【解析】解:(1)的图像的对称轴,(2) 由故函数【考点】正弦函数的图像和性质点评:画三角函数的图像时,常用到五点法。
6.已知tanα=2,则3sin2α+5sinαcosα-2cos2α=.【答案】4【解析】∵tanα=2,∴3sin2α+5sinαcosα-2cos2α=【考点】本题考查了三角公式的化简点评:此类问题应首先将所给式子变形,即将其转化成所求函数式能使用的条件,或者将所求函数式经过变形后再用条件7.(本小题满分12分)已知函数(1)写出函数的最小正周期和对称轴;(2)设,的最小值是,最大值是,求实数的值.【答案】(1)最小正周期,对称轴,;(2)。
高一数学三角函数的图象与性质(二)

三角函数的图象与性质(二)一、基本知识:了解正弦函数、余弦函数、正切函数的图象,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的图象,理解参数A 、ω、φ的物理意义.掌握将函数图象进行对称变换、平移变换、伸缩变换.会根据图象提供的信息,求出函数解析式.二、例题分析:【例1】(2004年某某卷)设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( A )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=【思路串讲】本题主要考查三角函数的图象与性质以及分析问题与解决问题的能力.“会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型”,此类问题的求解一般是先找出周期,定出A 与是的值,最后确定 的值.【标准答案】A【例2】 函数y=Asin (ωx+φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点和最低点横坐标差3π,又图象过点(0,1),求这个函数的解析式.分析 求函数的解析式,即求A 、ω、φ的值.A 与最大、最小值有关,易知A=2,ω与周期有关,由图象可知,相邻最高点与最低点横坐标差3π,即T 2=3π.得 T=6π,所以ω=13.所以y=2sin(x 3+φ),又图象过点(0,1),所以可得关于φ的等式,从而可将φ求出,易得解析式为y=2sin(x 3 +π6).【例3】 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)(2)求这个函数关于直线x=2解:(1)T=13π3- π3=4π.∴ω=2πT = 12.又A=3,由图象可知所给曲线是由y=3sin x2沿x 轴向右平移 π3而得到的.∴解析式为 y=3sin 12 (x -π3).(2)设(x ,y)为y=3sin(12 x -π6 )关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6).点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用. 【例4】 已知函数y=12cos 2x+ 32sinxcosx+1 (x ∈R).(1)当y 取得最大值时,求自变量x 的集合;(2)该函数图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能以及运算能力.解题突破口:利用三角公式进行恒等变形化简为)sin()(ϕω+=t A x f ,(1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化.必须搞清A 、ω、φ和图象的哪些因素有关;y=sin ωx 和y=sin(ωx+φ)两图象间平移变换的方向和平移的单位数量极易搞错,解题时要倍加小心.解 (1)y= 12·1+cos2x 2 + 32·12 sin2x +1= 12sin(2x+π6)+ 54.当2x+π6 =2k π+π2 ,即x=k π+π6,k ∈Z 时,y max = 74.(2)由y=sinx 图象左移π6个单位,再将图象上各点横坐标缩短到原来的12(纵坐标不变),其次将图象上各点纵坐标缩短到原来的12(横坐标不变),最后把图象向上平移 54个单位即可.点评 (1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化. 【例5】已知函数)cos (sin sin 2)(x x x x f +=.(I )函数)(x f 的最小正周期和最大值;(II )在给出的直角坐标系中,画出函数]2,2[)(ππ-=在区间x f y 上的图象.【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能、“五点”法作图以及运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式. 要画出函数]2,2[)(ππ-=在区间x f y 上的图象.主要用“五点”法作图.【标准答案】(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=)42sin(21)4sin 2cos 4cos2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π- 8π-8π 83π 85π y1 21- 1 21+ 1故函数)(x f y =在区间]2,2[ππ-上的图象是【例6】(2003年卷)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期;(Ⅱ)若]2,0[π∈x ,求)(x f 的最大值、最小值.【思路串讲】本题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】(Ⅰ)因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T ……6分(Ⅱ)因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1.所以)(x f 在]2,0[π上的最大值为1,最小值为-.2……13分【例7】(2003年春季卷)已知函数)(,2cos 4sin 5cos 6)(24x f xx x x f 求-+=的定义域,判断它的奇偶性,并求其值域.【思路串讲】本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力.解题突破口:要求函数数)(x f 的定义域,转化为02cos ≠x ,要求函数数)(x f 的值域,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】由Z k k x k x x ∈+≠+≠≠,42,2202cos ππππ解得得.所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且因为)(x f 的定义域关于原点对称,且)2cos(4)(sin 5)(cos 6)(24x x x x f ---+-=-)(),(2cos 4sin 5cos 624x f x f xx x 所以=-+=是偶函数.当xx x x f Z k k x 2cos 4sin 5cos 6)(,,4224-+=∈+≠时ππ1cos 32cos )1cos 3)(1cos 2(222-=--=x xx x ,所以)(x f 的值域为}221211|{≤<<≤-y y y 或. 三、训练反馈:1.将y=cosx 的图象作关于x 轴的对称变换,再将所得的图象向下平移1个单位,所得图象对应的函数是 ( D )A .y=cosx+1B .y=cosx -1C .y=-cosx+1D .y=-cosx -12.函数f(x)=sin3x 图象的对称中心的坐标一定是 ( B ) A . (12k π,0), k ∈Z B .(13k π,0), k ∈ZC .(14k π,0), k ∈ZD .(k π,0),k ∈Z3.函数y=cos(2x+π2)的图象的一个对称轴方程为 ( B )A .x=- π2B .x=- π4C .x= π8 D .x=π4.为了得到函数y=3sin(3x+π4),x ∈R 的图象,只需把函数y=3sin(x+π4)的图象上所有点( B )A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的13倍,纵坐标不变C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的13倍,横坐标不变.5.要得到y=sin(2x -π3)的图象,只需将y=sin2x 的图象 ( D )A .向左平移π3个单位B . 向右平移π3个单位C .向左平移π6个单位D . 向右平移π6个单位6.函数y=12sin(2x+θ)的图象关于y 轴对称的充要条件是 ( B )A .θ=2k π+π2B .θ=k π+π2 C .θ=2k π+πD .θ=k π+π(k ∈Z)7.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( D ) A .y=sin(-2x+π3) B .y=sin(-2x -π3)C .y=sin(-2x+ 2π3)D . y=sin(-2x -2π3)8.右图是周期为2π的三角函数y=f(x)的图象,那么f(x)可以写成 ( D )A .sin(1+x)B . sin(-1-x)C .sin(x -1)D . sin(1-x)9.y=tan(12x -π3)在一个周期内的图象是 (A )10.已知函数y=2cosx(0≤x ≤2π)的图象与直线y=2围成一个封闭的平面图形,则该封闭图形面积是.4π-BACD11.将y=sin(3x -π6)的图象向(左、右)平移个单位可得y=sin(3x+π3)的图像.左,π612.已知函数y=Asin(ωx+φ),在同一个周期内,当x=π9时取得最大值12,当x=4π9时取得最小值- 12,若A >0,ω>0,|φ|<π2,求该函数的解析表达式. y=12 sin(3x+π6)13.已知函数y=3sinx+cosx ,x ∈R .(1)当y 取得最大值时,求自变量x 的取值集合; (2)该函数的图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?(1){x |x=π3+2k π,k ∈Z}; (2)将y=sinx 的图象向左平移π6,得到函数y=sin(x+π6)的图象,再将所得图象上各点横坐标不变,纵坐标伸长到原来的2倍,得到函数y=2sin(x+π6)的图象.word 11 / 11。
三角函数的图像与性质专项训练(解析版)

三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
高一数学 三角函数的图像和性质练习题

高一数学三角函数的图像和性质练习题高一数学三角函数的图像和性质练题1.若cosx=0,则角x等于( )。
A。
kπ(k∈Z)B。
π/2+kπ(k∈Z)C。
π+kπ(k∈Z)D。
-π/2+kπ(k∈Z)2.使cosx=(1+m)/(1-m)有意义的m的值为( )。
A。
m≥0B。
m≤0C。
-1<m<1D。
m<-1或m>13.函数y=3cos(2πx-)的最小正周期是( )。
A。
5πB。
2π/5C。
2πD。
5π/24.函数y=2sinx+2cosx-3的最大值是( )。
A。
-1B。
1/2C。
-1/2D。
-55.下列函数中,同时满足①在(-π/2,π/2)上是增函数,②为奇函数,③以π为最小正周期的函数是( )。
A。
y=XXXB。
y=cosxXXXD。
y=|sinx|6.函数y=sin(2x+π/6)的图象可看成是把函数y=sin2x的图象向左平移得到( )。
A。
向右平移π/6B。
向左平移π/6C。
向右平移5π/6D。
向左平移5π/67.函数y=sin(-2x)的单调增区间是( )。
A。
[kπ-。
kπ+]。
(k∈Z)B。
[kπ+。
kπ+]。
(k∈Z)C。
[kπ-。
kπ+]。
(k∈Z)D。
[kπ+。
kπ+]。
(k∈Z)8.函数y=sin2x图象的一条对称轴是( )。
A。
x=-π/2B。
x=-π/4C。
x=π/4D。
x=π/29.函数y=sin(3x-π/5)的定义域是(-∞,+∞),值域是[-1,1],最小正周期是10π/3,振幅是1,频率是3,初相是π/5.10.函数y=sin(2x-π/6)的图象向左平移,所得的曲线对应的函数解析式是y=sin(2x+π/6)。
11.关于函数f(x)=4sin(2x+π/3),(x∈R),有下列命题:1)y=f(x)的表达式可改写为y=4cos(2x-π/6);2)y=f(x)是以π为最小正周期的周期函数;3)y=f(x)的图象关于点(-π/3,0)对称。
1)y=f(x)的表达式可改写为y=4cos(2x-π/6);2)y=f(x)是以2π/3为最小正周期的周期函数;3)y=f(x)的图象关于点(π/3,0)对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的图像和性质练习题
1.若cosx=0,则角x 等于( )
A .k π(k ∈Z )
B .2π+k π(k ∈Z )
C .2π+2k π(k ∈Z )
D .-2
π+2k π(k ∈Z ) 2.使cosx=m
m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1
D .m <-1或m >1 3.函数y=3cos (52
x -
6π)的最小正周期是( ) A .5π2 B .2π5 C .2π D .5π
4.函数y=2sin 2x+2cosx -3的最大值是( )
A .-1
B .21
C .-21
D .-5
5.下列函数中,同时满足①在(0,
2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2x
D .y=|sinx|
6.函数y=sin(2x+π6 )的图象可看成是把函数y=sin2x 的图象做以下平移得到( )
A.向右平移π6
B. 向左平移 π12
C. 向右平移 π12
D. 向左平移π6
7.函数y=sin(π4 -2x)的单调增区间是( )
A. [kπ-3π8 , kπ+3π8 ] (k ∈Z)
B. [kπ+π8 , kπ+5π8 ] (k ∈Z)
C. [kπ-π8 , kπ+3π8 ] (k ∈Z)
D. [kπ+3π8 , kπ+7π8 ] (k ∈Z)
8.函数 y=15 sin2x 图象的一条对称轴是( )
= - π2 B. x= - π4 C. x = π8 D. x= - 5π4
9.函数 y=15 sin(3x-π3 ) 的定义域是__________,值域是________,最小正周期是________,
振幅是________,频率是________,初相是_________.
10.函数y=sin2x 的图象向左平移 π6 ,所得的曲线对应的函数解析式是____ _____.
11.关于函数f(x)=4sin(2x+π3 ),(x ∈R),有下列命题:
(1)y=f(x)的表达式可改写为y=4cos(2x-π6 );(2)y=f(x)是以2π为最小正周期的周期函数;(3)
y=f(x)的图象关于点(-π
6,0)对称;(4)y=f(x)的图象关于直线x=-
π
6对称;其中正确的命题序号是___________.
12.已知函数y=3sin(
2
1x-
4
π).
(1)用“五点法”作函数的图象;
(2)说出此图象是由y=sinx的图象经过怎样的变化得到的;
(3)求此函数的最小正周期;
(4)求此函数的对称轴、对称中心、单调递增区间.
13. 如图是函数y=A sin(ωx+φ)+2的图象的一部分,求它的振幅、最小正周期和初相。
14. 已知函数.1
cos
sin
3
2
sin
2
)
(2+
+
=x
x
x
x
f求:
(1))
(x
f的最小正周期;(2))
(x
f的单调递增区间;(3))
(x
f在]
2
,0[
π
上的最值.
高一数学三角函数的图像和性质练习题参考答案:
1.B 2.B 3.D
9.(-∞,+ ∞),(-
1
5,
1
5),
2π
3,
1
5,
1
5,
3
2π,-
π
3;
=sin2(x+
π
6);
11.(1)(3)
12.解:(1)
(2)方法一:“先平移,后伸缩”.
先把y =sin x 的图象上所有的点向右平移
4π个单位,得到y =sin (x -4π)的图象;再把y =sin (x -4π)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin (21x -4
π)的图象;最后将y =sin (21
x -
4π)的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin (21
x -4
π)的图象. 方法二:“先伸缩,后平移”. 先把y =sin x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin (21
x )的
图象;再把y =sin (21x )图象上所有的点向右平移
2π个单位,得到y =sin 21(x -2π)= sin (4π2-x )的图象;最后将y =sin (21x -
4π)的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin (21x -
4π)的图象. (3)周期T =21π2π2=ω
=4π,振幅A =3,初相是-4
π. (4)由于y =3sin (21
x -4
π)是周期函数,通过观察图象可知,所有与x 轴垂直并且通过图象的最值点的直线都是此函数的对称轴,即令21
x -4π=2π+k π,解得直线方程为x =2
π3+2k π,k ∈Z ; 所有图象与x 轴的交点都是函数的对称中心,所以对称中心为点(2π+2k π,0),k ∈Z ; x 前的系数为正数,所以把21
x -4π视为一个整体,令-2π+2k π≤21x -4π≤2
π+2k π,解得[-2π+4k π,2
π3+4k π],k ∈Z 为此函数的单调递增区间. 13. A =1,T=34π,φ=-4
3π 14. 解:(Ⅰ)因为1cos sin 32sin 2)(2++=x x x x f
1cos sin 322cos 1++-=x x x
22cos 2sin 3+-=x x
,2)6
2sin(2+-=π
x 所以)(x f 的最小正周期.22ππ==T (Ⅱ)因为,2)6
2sin(2)(+-=πx x f 所以由),(2
26222Z k k x k ∈+≤-≤-πππππ 得)Z k (3
k x 6k ∈π+π≤≤π-π 所以)(x f 的单调增区间是).](3,6[Z k k k ∈+-ππππ (Ⅲ)因为.65626,20ππππ≤-≤-≤
≤x x 所以 所以.1)6
2sin(21≤-≤-πx 所以].4,1[2)6
2sin(2)(∈+-=πx x f 即)(x f 的最小值为1,最大值为4.。