八年级数学教学案例-(4)
八年级数学教案人教版(通用19篇)

八年级数学教案人教版(通用19篇)八年级数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的.应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.【例2】如果x2+axy+16y2是完全平方,求a的值.【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.【探研时空】1.已知x+y=7,xy=10,求下列各式的值.(1)x2+y2;(2)(x-y)22.已知x+=-3,求x4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破八年级数学教案 2一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。
人教版数学八年级上册14.1.4整式的乘法(第4课时)优秀教学案例

在教学评价方面,我采用了多元化的评价方式,既注重学生的课堂表现,也关注学生的作业完成情况。通过及时反馈,让学生了解自己的学习情况,提高学生的学习效果。此外,我还针对学生的个体差异,给予不同的指导和帮助,让每个学生都能在课堂上得到有效的学习。
2.通过多媒体展示、实物演示等方式,形象直观地展示整式乘法的运算过程,增强学生的直观感受。
3.设计具有挑战性和启发性的问题,激发学生的思考,引导学生主动探索整式乘法的运算规律。
4.创设轻松、愉快的学习氛围,使学生在课堂上能够放松心情,积极主动地参与学习活动。
(二)问题导向
1.针对整式乘法的重难点,设计系列问题,引导学生逐步深入思考,自主探索解题思路。
4.讲解多项式乘以多项式的运算规则,举例说明运算过程,让学生熟练掌握相关运算。
(三)学生小组讨论
1.分配任务,让学生分组讨论如何将实际问题转化为整式乘法问题。
2.引导学生运用已学知识,分析问题、解决问题,培养学生的团队协作能力和沟通能力。
3.教师巡回指导,及时发现学生在小组讨论中的问题,给予针对性的帮助和指导。
人教版数学八年级上册14.1.4整式的乘法(第4课时)优秀教学案例
一、案例背景
本节课是人教版数学八年级上册第14章第1节第4课时,内容是整式的乘法。在此之前,学生已经学习了整式的加减、乘方以及因式分解等基础知识。通过前面的学习,学生已经掌握了整式的基本运算方法和技巧,但对于整式的乘法运算还不太熟练,特别是对于多项式乘以多项式的运算方法还不太理解。因此,本节课的教学目标是让学生掌握整式乘法的基本运算方法,提高学生的运算能力,培养学生的逻辑思维能力。
初中数学八年级教案模板案例

数学(mathematics 或者 maths ,来自希腊语,“máthēma”;经常被缩写为“mat h”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
下面是给大家整理的初中数学八年级教案案例 5 篇,希翼大家能有所收获!初中数学八年级教案案例 1教材分析1、本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
学情分析1、虽然这是一节全新的数学概念课,学生没有接触过。
但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
教学目标1、理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和普通的辩证关系。
2、能根据问题信息写出一次函数的表达式。
能利用一次函数解决简单的实际问题。
3、经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
初中数学八年级教案案例 2一次函数的图象应用》教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的思想,形成良好的函数观点,体味一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学【例 5】小芳以 200 米/分的速度起跑后,先匀加速跑 5 分,每分提高速度 20 米/分,又匀速跑 10 分,试写出这段时间里她的跑步速度 y(单位:米/分)随跑步时间 x(单位:•分)变化的函数关系式,并画出函数图象.y=【例 6】A 城有肥料 200 吨, B 城有肥料 300 吨,现要把这些肥料全部运往 C、 D 两乡.从 A 城往 C、 D 两乡运肥料的费用分别为每吨 20 元和 25 元;从 B 城往 C、D•两乡运肥料的费用分别为每吨 15 元和 24 元,现 C 乡需要肥料 240 吨, D 乡需要肥料 260 吨,•怎样调运总运费至少?解:设总运费为 y 元,A 城往运 C 乡的肥料量为 x 吨,则运往 D 乡的肥料量为(200-x)吨.B 城运往 C、D 乡的肥料量分别为(240-x)吨与 (60+x) 吨 .y 与 x 的关系式为:y=•20x+25(200-x)+15(240-x)+24(60+x) ,即y=4x+10040(0≤x≤200).由图象可看出:当 x=0 时, y 有最小值 10040 ,因此,从 A 城运往 C 乡0 吨,运往 D•乡200 吨;从 B 城运往 C 乡240 吨,运往 D 乡 60 吨,此时总运费至少,总运费最小值为 10040 元.拓展:若 A 城有肥料 300 吨, B 城有肥料 200 吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本 P119 练习.三、课堂总结,发展潜能由学生自我评价本节课的表现.四、布置作业,专题突破课本 P120 习题 14.2 第 9,10,11 题.板书设计14.2.2 一次函数(4)1、一次函数的应用例:初中数学八年级教案案例 3二次根式一、教学目标1.了解二次根式的意义;2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3. 掌握二次根式的性质和,并能灵便应用;4.通过二次根式的计算培养学生的逻辑思维能力;5. 通过二次根式性质和的介绍渗透对称性、规律性的数学美.二、教学重点和难点重点: (1)二次根的意义;(2)二次根式中字母的取值范围.难点:确定二次根式中字母的取值范围.三、教学方法启示式、讲练结合.四、教学过程(一)复习提问1.什么叫平方根、算术平方根?2.说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式.对于请同学们讨论论应注意的问题,引导学生总结:(1)式子惟独在条件a≥0 时才叫二次根式,是二次根式吗? 呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部份.(2) 是二次根式,而,提问学生: 2 是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态” .请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.例 1 当 a 为实数时,下列各式中哪些是二次根式?例 2 x 是怎样的实数时,式子在实数范围故意义?解:略.说明:这个问题实质上是在 x 是什么数时, x-3 是非负数,式子故意义.例 3 当字母取何值时,下列各式为二次根式:(1) (2) (3) (4)分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式.解:(1)∵a、 b 为任意实数时,都有a2+b2≥0,∴当 a、 b 为任意实数时,是二次根式.(2)-3x≥0,x≤0,即x≤0 时,是二次根式.(3) ,且x≠0,∴x 0,当 x 0 时,是二次根式.(4) ,即,故 x-2≥0 且 x-2≠0, ∴x 2.当 x 2 时,是二次根式.例 4 下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义, .即:惟独在条件 a≥0 时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.解: (1)由2a+3≥0,得 .(2)由,得 3a-1 0 ,解得 .(3)由于 x 取任何实数时都有|x|≥0,因此, |x|+0.1 0,于是,式子是二次根式. 所以所求字母 x 的取值范围是全体实数.(4)由-b2≥0 得b2≤0,惟独当 b=0 时,才有 b2=0 ,因此,字母 b 所满足的条件是: b=0.初中数学八年级教案案例 4探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探索的习惯,进一步体味数学与现实生活的紧密联系。
八年级数学下册《反证法》优秀教学案例

1.培养学生对数学的热爱,激发他们学习数学的兴趣和积极性;
2.培养学生的逆向思维,让他们明白事物具有多面性,学会从不同角度看待问题;
3.培养学生勇于探索、敢于创新的精神,增强他们面对困难时的自信心;
4.培养学生的批判性思维,使他们学会质疑、善于思考,形成独立见解。
三、教学策略
(一)情景创设
3.教师简要介绍反证法的概念,让学生对反证法有一个初步的认识。
(二)讲授新知
1.教师详细讲解反证法的定义、原理和应用步骤,结合具体例题进行分析,使学生明白反证法的思路和关键点。
2.通过多媒体展示反证法的思维过程,让学生更加直观地理解反证法的特点。
3.引导学生总结反证法的关键步骤:假设结论不成立,推出矛盾,从而证明原结论成立。
八年级数学下册《反证法》优秀教学案例
一、案例背景
在我国初中数学教育中,八年级的学生已经具备了一定的逻辑推理能力。在此基础上,本教学案例以人教版八年级数学下册《反证法》为主题,旨在引导学生运用反证法解决数学问题,提高他们的逻辑思维能力和解决问题的策略。反证法作为数学证明的重要方法,对于培养学生的逆向思维、拓展解题思路具有重要意义。本案例通过设计丰富多样的教学活动,让学生在实践中掌握反证法的要领,激发他们的学习兴趣,使他们在探索与实践中不断提高自身的数学素养。在教学过程中,教师将以学生为主体,关注个体差异,充分调动学生的积极性与主动性,营造一个充满活力、富有挑战的课堂氛围。
(四)反思与评价
1.教学过程中,教师及时对学生的学习情况进行反馈,帮助学生发现自身在反证法学习中的不足,指导他们进行有针对性的改进;
2.鼓励学生进行自我反思,总结自己在解决问题过程中成功和失败的经验,形成自己的学习策略;
北师大版八年级数学(下册)优秀教学案例:4.1因式分解

三、教学策略
(一)情景创设
为了让学生更好地理解因式分解的概念和意义,我将通过创设丰富多样的教学情景,引导学生从生活中发现数学的影子。例如,通过实际生活中的物品购买问题,让学生体会因式分解在简化计算方面的作用;或者通过设计有趣的数学故事,将因式分解融入其中,激发学生的学习兴趣。此外,利用多媒体教学手段,如动画、图片等,形象直观地展示因式分解的过程,帮助学生形成直观的认识。
1.例题1:(a+b)×(a+b)
例题2:(x+y)×(x-y)
例题3:a^2+2ab+b^2
2.讨论要求:
(1)各小组讨论并确定解题方法。
(2)各小组派代表展示解题过程及答案。
(3)讨论过程中,鼓励学生提问、质疑,分享解题心得。
(四)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学的因式分解方法,总结各方法的优缺点及适用场景。
2.因式分解的意义:因式分解可以帮助我们简化计算,解决实际问题。
3.因式分解的方法:介绍提取公因式法、十字相乘法、平方差公式等常用的因式分解方法。
在讲解过程中,结合具体例题,让学生直观地感受因式分解的过程,并强调各方法的适用条件及注意事项。
(三)学生小组讨论
在学生小组讨论环节,我会给出几个具有代表性的例题,让学生分组讨论,共同完成因式分解的任务。
北师大版八年级数学(下册)优秀教学案例:4.1因式分解
一、案例背景
初二数学教案案例(精选7篇)

初二数学教案案例(精选7篇)初二数学教案案例(精选篇1)一、课堂导入回顾平行四边的性质定理及定义1.什么叫平行四边形?平行四边形有什么性质?2.将以上的性质定理,分别用命题形式叙述出来。
(如果……那么……)根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?二、新课讲解平行四边形的判定:(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。
活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。
(平行四边形判定定理):(一)两组对边分别相等的四边形是平行四边形。
设问:这个命题的前提和结论是什么?已知:四边形ABCD中,AB=CD,BC=DA。
求证:四边ABCD是平行四边形。
分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。
连结BD。
易证三角形全等。
板书证明过程。
小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。
)初二数学教案案例(精选篇2)学习重点:函数的概念及确定自变量的取值范围。
人教版数学八年级上册12.2第4课时斜边、直角边优秀教学案例
(三)学生小组讨论
1.分组讨论:将学生分成小组,让他们在小组内进行讨论,共同探究斜边和直角边的关系,并解决一些实际问题。
2.分享与交流:让学生分享自己的小组讨论成果,促进学生之间的交流和思维碰撞。
(四)反思与评价
1.引导学生自我反思:让学生回顾自己的学习过程,思考自己在探究斜边和直角边关系时的优点和不足。
2.同伴评价:鼓励学生互相评价,互相学习,共同提高。
3.教师评价:教师对学生的学习过程和成果进行评价,给予肯定和鼓励,并提出改进建议。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个实际问题:展示一个建筑物的高度需要测量,但是直接测量有困难,引导学生思考如何使用斜边和直角边的关系来解决问题。
3.培养学生运用数学知识解决实际问题的意识,提高学生对数学学科的实用性和价值的认识。
三、教学策略
(一)情景创设
1.以实际问题引入:通过展示一个实际问题,如测量一个物体的高度,引导学生思考如何使用斜边和直角边的关系来解决问题。
2.利用多媒体展示:利用多媒体课件展示斜边和直角边的实际应用场景,如建筑设计、物理实验等,让学生感受到数学与现实的联系。
在教学过程中,我将注重启发式教学,通过引导学生观察、思考和讨论,让学生主动发现斜边和直角边的关系,并能够运用这一关系解决实际问题。同时,我还会运用多媒体教学手段,为学生提供丰富的学习资源,激发学生的学习兴趣,提高学生的学习积极性。
希望通过本节课的教学,学生能够更好地理解斜边和直角边的关系,提高他们的数学思维能力和解决问题的能力。同时,我也将不断反思和总结教学过程,不断提高自己的教学水平,为学生提供更好的教学服务。
八年级数学教案(优秀6篇)
八年级数学教案(优秀6篇)作为一名老师,往往需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。
那么你有了解过教案吗?旧书不厌百回读,熟读精思子自知,以下是小编帮助大家收集整理的八年级数学教案(优秀6篇)。
八年级数学教案篇一一、教学内容:本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。
二、教材分析:完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。
完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。
本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。
完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。
使学生了解到完全平方公式是有力的数学工具。
重点:掌握完全平方公式,会运用公式进行简单的计算。
难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。
三、教学目标(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。
(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。
(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。
(4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。
四、学情分析与教法学法学情分析:课程标准提出数学教学活动须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。
初中数学教研员评课案例(3篇)
第1篇一、背景为了提高初中数学教学质量,促进教师专业成长,我校开展了初中数学教研活动。
本次活动邀请了市教研员王老师担任评课专家,对四位数学老师的课堂教学进行了点评。
以下是王老师对四位教师课堂教学的评课案例。
二、案例一:八年级数学《一元一次方程的应用》授课教师:张老师教学目标:掌握一元一次方程的应用,学会分析实际问题,建立方程模型。
教学过程:1. 创设情境,导入新课张老师以生活中的购物问题为情境,引导学生回顾一元一次方程的概念,为新课的学习做好铺垫。
2. 合作探究,解决问题张老师将学生分成小组,让学生在小组内讨论并解决生活中的实际问题,如“小明骑自行车去图书馆,速度为10km/h,图书馆距离小明家5km,小明需要多长时间到达图书馆?”等问题。
3. 交流展示,分享成果各小组派代表展示解题过程,张老师对学生的解答进行点评,并引导学生总结解题方法。
4. 巩固练习,提高能力张老师布置了课后作业,让学生巩固所学知识。
评课意见:1. 教学目标明确,教学过程清晰,能够引导学生积极参与课堂活动。
2. 张老师善于创设情境,激发学生的学习兴趣,提高学生的学习效果。
3. 学生在小组合作探究环节表现积极,能够互相帮助,共同解决问题。
4. 张老师在点评环节注重培养学生的分析问题和解决问题的能力。
三、案例二:九年级数学《圆的切线》授课教师:李老师教学目标:掌握圆的切线的性质和判定方法,能够运用圆的切线解决实际问题。
教学过程:1. 复习旧知,导入新课李老师通过复习圆的半径、直径、圆心角等概念,引导学生回顾圆的性质,为新课的学习做好铺垫。
2. 探究新知,解决问题李老师引导学生探究圆的切线的性质和判定方法,通过实例分析,让学生深刻理解所学知识。
3. 课堂练习,巩固提高李老师布置了课堂练习,让学生巩固所学知识,并能够运用圆的切线解决实际问题。
4. 总结归纳,拓展延伸李老师对课堂所学内容进行总结,并引导学生思考圆的切线在实际生活中的应用。
初中数学八年级上册苏科版4.4近似数优秀教学案例
在教学设计中,注重启发式教学,教师引导学生从生活实际出发,发现近似数的存在,激发学生的探究欲望。同时,通过小组合作、讨论交流等环节,培养学生团队合作精神和语言表达能力。在教学评价方面,采用多元化评价方式,关注学生的学习过程和实际应用能力,充分调动学生的积极性和主动性。
三、教学策略
(一)情景创设
1.生活实例导入:以实际生活中的例子,如购物时的价格估算、天气预报中的温度预测等,引发学生对近似数的关注,激发学生的学习兴趣。
2.创设问题情境:设计一系列与近似数相关的问题,如“如何估算一张纸的厚度?”、“如何计算教室的面积?”等,引导学生思考和探究近似数的概念和应用。
3.利用多媒体手段:运用多媒体课件、视频等教学资源,形象生动地展示近似数的概念和实例,帮助学生更好地理解和接受近似数的概念。
2.采用小组合作、讨论交流等教学方法,培养学生的团队合作精神和语言表达能力。
3.运用实践活动、操作实验等教学手段,培养学生的动手操作能力和实际应用能力。
4.引导学生通过观察、分析、归纳等思维活动,总结近似数的求法及其应用,培养学生的逻辑思维能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性和主动性。
2.理解有效数字的概念,能够确定一个数的有效数字,并对其进行近似。
3.掌握近似数在实际生活中的应用,能够将所学知识运用到实际问题中,解决相关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行四边形的性质》教学案例
北岳中学张士强
《平行四边形的性质》承接上一章的内容,课本的设计意图是利用图形平移和旋转的特征来得出平行四边形的性质。
我在设计本节课时就遵循着这个原则,先让学生看图片,体会到平行四边形在日常生活中的广泛应用,给出平行四边形的定义,从定义出发得到第一个性质,再由学生动手操作平移和旋转得到其他性质。
考虑到对角线互相平分这一性质在得出平行四边形是中心对称图形后即可推导出,所以我对教材进行了整合,把下一节的内容提前讲了,并在课堂上加上相应的练习。
因为本章课标明确要求学生能够严格说理过程,所以我在得出平行四边形性质的同时加上几何语言的描述,在练习中也注意规范学生的说理过程。
上完课后,总体感觉还可以,主线突出,学生通过动手操作的过程和自制教具、多媒体课件的演示,得出并掌握性质,效果比较好。
例题能够引导学生用不同的方法去解决问题,能根据学生的具体情况在练习的过程中及时发现问题,并通过投影指出错误,规范说理过程,反馈工作做得较到位。
但需要改进的地方确是更多的。
在得出平行四边形定义的时候花了不少时间让学生回忆四边形的定义,其实是没什么用的,只需把本节课需用到的四边形内角和等于360°带过便足够。
直接的引入应该可以更节省时间,把本节课要研究的问题直接摆出来,让学生明确自己的任务。
学生根据学案上的步骤画图时是有些麻烦的,困难在于不理解文字想要表达的意思,不知道该怎样做,这时可以更灵活地利用实物投影给学生做示范,但要注意作图规范(尤其是线段的平移)。
性质的探索所花的时间也较长,从三个过程才得出几个性质。
其实由平行四边形是中心对称图形可以一次过把所有的性质都得出,这样学生还是需要动手做,但可以更快地得到结果。
引导学生得出平行四边形对角线互相平分时,有学生回答对角相等且互相平分,这时应及时强调一般的平行四边形的对角线是不相等的,即明确指出
≠
OA=
=。
对角线互相平分的几何语言表示还可以是OB
OC
OD
BD2
=。
OB
2=
2=
OC
OA
AC2
=,OD
另外,因为学生有平行线性质和全等图形的知识铺垫,也可以由两个全等三角形拼出平行四边形,再利用全等三角形的特征得出平行四边形的性质(但这种方法需要严格的推理过程,没有由中心对称得出性质来得形象)。
由于性质探索部分花了较多时间,导致练习的时间不够多。
应该让学生在练习的时候有更多的时间讨论,说得更多。
可把练习的1、2、3题放在例题前,先填空,再学着说理,增强练习的梯度性;第4题作为例题的类型题可放在例题后面,巩固对性质的运用;第5题作为对角线互相平分性质的运用,应更注意提醒学生怎样思考。
还可以多加一道综合应用各个性质的题,让学生学会灵活运用性质解决问题。
小结部分也做得较匆忙,如果时间充裕的话,应由学生自己归纳本节课的内容,把性质按边、角、对角线作归纳,配以图表方便记忆。
总体来说,或许是教师和学生的心理都较紧张,课堂气氛不够活跃,引导学生思维的语言不够精练,时间把握得不够好,课堂不够紧凑,这些都是在今后的教学
中要多加注意和需要不断改进的。