球的体积与表面积
球的表面积与体积的计算

球的表面积与体积的计算球是一种几何图形,具有许多有趣的性质。
在数学和物理学中,计算球的表面积和体积是非常重要的。
本文将介绍球的表面积和体积的计算方法,并通过示例进行详细说明。
一、球的表面积计算球的表面积是指球体外侧的曲面总面积。
为了计算球的表面积,我们需要知道球的半径。
公式:球的表面积= 4πr²其中,π是圆周率,约等于3.14159;r是球的半径。
示例一:假设半径为5厘米的球的表面积应该怎么计算呢?解答:根据公式,我们代入r = 5厘米进行计算:表面积= 4π × 5² = 4π× 25 ≈ 314.16平方厘米。
所以,半径为5厘米的球的表面积约为314.16平方厘米。
二、球的体积计算球的体积是指球内部可以容纳的三维空间大小。
要计算球的体积,同样需要知道球的半径。
公式:球的体积= (4/3)πr³示例二:如果球的半径为8厘米,那么它的体积是多少?解答:根据公式,我们代入r = 8厘米进行计算:体积= (4/3)π × 8³ = (4/3)π × 512 ≈ 2144.66立方厘米。
所以,半径为8厘米的球的体积约为2144.66立方厘米。
综上所述,球的表面积和体积的计算方法如上所示。
了解和掌握这些公式可以帮助我们更好地理解球体的特性,以及在实际问题中应用数学知识进行计算。
需要注意的是,在应用这些公式进行计算时,应该保持输入数据的一致性,确保使用相同的单位进行计算。
此外,还要注意精度的问题,结果应适当进行四舍五入或保留小数位数,以满足实际需求。
希望本文对你理解球的表面积和体积的计算方法有所帮助,如果有任何疑问,请随时向我提问。
球体的体积与表面积关系推导

球体的体积与表面积关系推导在数学中,球体是一种具有无限多个对称中心的几何体。
球体的特点是其表面上的每一点到中心的距离都相等,这个距离被称为半径。
通过研究球体的体积与表面积之间的关系,我们可以更深入地了解球体的性质和特点。
一、球体的定义及基本公式球体是由三维空间中所有到中心点距离小于等于给定半径的点构成的集合。
球体的体积和表面积可以通过以下公式计算得出:1. 球体的体积公式:V = (4/3)πr^3其中,V表示球体的体积,π是圆周率,r是球体的半径。
2. 球体的表面积公式:A = 4πr^2其中,A表示球体的表面积,π是圆周率,r是球体的半径。
二、推导球体体积与表面积的关系我们可以通过对球体的切割和展开来推导球体的体积与表面积之间的关系。
1. 切割与展开球体将球体沿着两个垂直于彼此的坐标轴切割,并沿着这两个切割面将球体展开。
2. 形成球冠和圆盘我们可以看到,切割后的球体被分成许多球冠和圆盘。
球冠是由球的表面和两个切割面构成的部分,圆盘是由两个切割面和球的表面构成的部分。
3. 计算球冠的体积对于一个球冠,它的体积可以通过计算一个圆台的体积得出。
圆台的体积公式为:Vc = (1/3)π(h^2)(R + r)其中,Vc表示球冠的体积,h表示球冠的高度,R表示球冠的大半径,r表示球冠的小半径。
4. 计算圆盘的面积对于一个圆盘,它的面积可以通过计算一个矩形的面积得出。
矩形的面积公式为:Ac = 2πr * h其中,Ac表示圆盘的面积,r表示圆盘的半径,h表示圆盘的周长。
5. 求和计算球体的体积将所有球冠的体积相加,可以得到整个球体的体积。
同理,将所有圆盘的面积相加,可以得到整个球体的表面积。
V = Vc1 + Vc2 + Vc3 + ... + VcnA = Ac1 + Ac2 + Ac3 + ... + Acn三、结论与应用通过上述的推导过程,我们可以得出一个结论:球体的体积与表面积之间存在着特殊的关系。
球的体积和表面积

1.3.2 球的体积和表面积考点 学习目标核心素养 球的表面积与体积记准球的表面积和体积公式,会计算球的表面积和体积数学运算 与球有关的组合体 能解决与球有关的组合体的计算问题数学运算、直观想象问题导学预习教材 P27-P28 的内容,思考以下问题: 1.球的表面积公式是什么? 2.球的体积公式什么?1.球的表面积设球的半径为R ,则球的表面积S =4πR 2. 2.球的体积设球的半径为R ,则球的体积V =43πR 3.■名师点拨对球的体积和表面积的几点认识(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R 都有唯一确定的S 和V 与之对应,故表面积和体积是关于R 的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.判断正误(正确的打“√”,错误的打“×”) (1)决定球的大小的因素是球的半径.( )(2)球面被经过球心的平面截得的圆的半径等于球的半径.( ) (3)球的体积V 与球的表面积S 的关系为V =R3S .( )答案:(1)√ (2)√ (3)√ 半径为 3 的球的体积是( )A .9πB .81πC .27πD .36π解析:选 D . V =43π×33=36π.若一个球的直径为 2,则此球的表面积为( ) A .2π B .16π C .8πD .4π解析:选 D .因为球的直径为 2,所以球的半径为 1,所以球的表面积 S =4πR 2=4π. 把球的表面积扩大到原来的 2 倍,那么体积扩大到原来的( ) A .2 倍 B .22倍 C .2倍D .32倍解析:选 B .设原球的半径为 R ,表面积扩大 2 倍,则半径扩大2倍,体积扩大 22倍.如果三个球的半径之比是 1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的________倍.解析:设小球半径为 1,则大球的表面积 S 大=36π,S 小+S 中=20π,36π20π=95. 答案:95球的表面积与体积(1)(2020·高考天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π【解析】 (1)设外接球的半径为R ,易知2R =3×23=6,所以R =3,于是表面积S =4πR 2=36π,故选C.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r , 故78×43πr 3=283π, 所以r =2,表面积S =78×4πr 2+34πr 2=17π,选A.【答案】 (1)C (2)A(变条件)若将本例(2)中的三视图换为如图所示的图形,且圆的半径为1,则如何求解?解:由已知可得,该几何体是四分之三个球,其表面积是四分之三个球的表面积和两个半径与球的半径相等的半圆的面积之和.因为R =1,所以S =34×4×π×12+2×12×π×12=4π.球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R 或者通过条件能求出半径R ,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.(3)由三视图计算球或球与其他几何体的组合体的表面积或体积,最重要的是还原组合体,并弄清组合体的结构特征和三视图中数据的含义.根据球与球的组合体的结构特征及数据计算其表面积或体积.此时要特别注意球的三种视图都是直径相同的圆.1.若一个球的表面积与其体积在数值上相等,则此球的半径为________. 解析:设此球的半径为 R ,则 4πR 2=43πR 3,R =3.答案:32.两个球的半径相差 1,表面积之差为 28π,则它们的体积和为________. 解析:设大、小两球半径分别为 R ,r ,则⎩⎪⎨⎪⎧R -r =1,4πR 2-4πr 2=28π,所以⎩⎪⎨⎪⎧R =4,r =3.所以体积和为 43πR 3+43πr 3=364π3.答案:364π3球的截面问题如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( )A .500π3 cm 3B .866π3 cm 3C .1 372π3cm 3D .2 048π3cm 3【解析】 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =12×8=4(cm).设球的半径为R cm ,则 R 2=OM 2+MB 2 =(R -2)2+42, 所以R =5,所以V 球=43π×53=5003π (cm 3).【答案】 A球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πC .46πD .63π解析:选B .如图,设截面圆的圆心为O ′, M 为截面圆上任一点, 则OO ′=2,O ′M =1. 所以OM =(2)2+1= 3.即球的半径为 3. 所以V =43π(3)3=43π.与球有关的切、接问题 角度一 球的外切正方体问题将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( ) A .4π3B .2π3C .3π2D .π6【解析】 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】 A角度二 球的内接长方体问题一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为 1,2,3,则此球的表面积为________.【解析】 长方体外接球直径长等于长方体体对角线长,即 2R =12+22+32=14,所以球的表面积 S =4πR 2=14π. 【答案】 14π角度三 球的内接正四面体问题若棱长为 a 的正四面体的各个顶点都在半径为 R 的球面上,求球的表面积. 【解】 把正四面体放在正方体中,设正方体棱长为 x ,则 a =2x ,由题意 2R =3x =3×2a 2=62a , 所以 S 球=4πR 2=32πa 2.角度四 球的内切圆锥问题(2020·高考全国卷Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.【解析】 易知半径最大的球即为该圆锥的内切球.圆锥PE 及其内切球O 如图所示,设内切球的半径为R ,则sin ∠BPE =R OP =BE PB =13,所以OP =3R ,所以PE =4R =PB 2-BE 2=32-12=22, 所以R =22,所以内切球的体积V =43πR 3=23π,即该圆锥内半径最大的球的体积为23π.【答案】23π 角度五 球的内接直棱柱问题设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2【解析】 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝⎛⎭⎫33a 2+⎝⎛⎭⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2. 【答案】 B(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a2,过在一个平面上的四个切点作截面如图(1).(2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为 a ,b ,c ,过球心作长方体的对角线,则球的半径为 r 2=12a 2+b 2+c 2,如图(2).(3)正四面体的外接球正四面体的棱长 a 与外接球半径 R 的关系为:2R =62a . 一个高为16的圆锥内接于一个体积为972π的球,在圆锥里又有一个内切球.求:(1)圆锥的侧面积; (2)圆锥里内切球的体积.解:(1)如图所示,作出轴截面,则等腰△SAB 内接于⊙O ,而⊙O 1内切于△SAB .设⊙O 的半径为R , 则有43πR 3=972π,所以R 3=729,R =9. 所以SE =2R =18.因为SD =16,所以ED =2.连接AE ,又因为SE 是直径,所以SA ⊥AE ,SA 2=SD ·SE =16×18=288, 所以SA =12 2. 因为AB ⊥SD ,所以AD 2=SD ·DE =16×2=32, 所以AD =4 2.所以S 圆锥侧=π×42×122=96π. (2)设内切球O 1的半径为r ,因为△SAB 的周长为2×(122+42)=322, 所以12r ×322=12×82×16.所以r =4.所以内切球O 1的体积V 球=43πr 3=2563π.1.直径为 6 的球的表面积和体积分别是( ) A .36π,144π B .36π,36π C .144π,36πD .144π,144π解析:选 B .球的半径为 3,表面积 S =4π·32=36π,体积 V =43π·33=36π.2.一个正方体的表面积与一个球的表面积相等,那么它们的体积比是( ) A .6π6 B .π2C .2π2D .3π2π解析:选 A .设正方体棱长为 a ,球半径为 R ,由 6a 2=4πR 2 得aR =2π3,所以V 1V 2=a 343πR 3=34π⎝⎛⎭⎫2π33=6π6.3.(2021·重庆七校联考)已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( )A .18B .12C .63D .4 3解析:选B.如图,由题意知,球心在三棱锥的高PE 上,设内切球的半径为R ,则S 球=4πR 2=16π,所以R =2.所以OE =OF =2,OP =4.在Rt △OPF 中,PF =OP 2-OF 2=2 3.因为△OPF ∽△DPE ,所以OF DE =PF PE ,得DE =23,AD =3DE =63,AB =23 AD =12.故选B.4.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为6 cm ,深为1 cm 的空穴,则该球半径是________cm ,表面积是________cm 2.解析:设球心为O ,OC 是与冰面垂直的一条球半径,冰面截球得到的小圆圆心为D ,AB 为小圆D 的一条直径,设球的半径为R ,则OD =R -1,则(R -1)2+32=R 2,解得R =5 cm ,所以该球表面积为S =4πR 2=4π×52=100 π(cm 2). 答案:5 100 π5.已知过球面上 A ,B ,C 三点的截面和球心的距离为球半径的一半,且 AB =BC =CA =2,求球的表面积.解:设截面圆心为O ′,球心为 O ,连接 O ′A ,OA ,OO ′, 设球的半径为 R .因为O ′A =23×32×2=233.在 Rt △O ′OA 中,OA 2=O ′A 2+O ′O 2, 所以R 2=⎝⎛⎭⎫2332+14R 2, 所以 R =43,所以 S 球=4πR 2=649π.[A 基础达标]1.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C .2∶ 3D .8∶27解析:选B .设两个球的半径分别为r ,R ,则⎝⎛⎭⎫43πr 3∶⎝⎛⎭⎫43πR 3=r 3∶R 3=8∶27, 所以r ∶R =2∶3,所以S 1∶S 2=r 2∶R 2=4∶9.2.已知球的表面积为16π,则它的内接正方体的表面积S 的值是( ) A .4π B .32 C .24D .12π解析:选B .设球的内接正方体的棱长为a ,由题意知球的半径为2,则3a 2=16,所以a 2=163,正方体的表面积S =6a 2=6×163=32.3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A .32π3B .8π3C .82πD .82π3解析:选D .设截面圆的半径为r ,则πr 2=π,故r =1, 由勾股定理求得球的半径为1+1=2,所以球的体积为43π(2)3=82π3,故选D .4.把一个铁制的底面半径为r ,高为h 的实心圆锥熔化后铸成一个铁球,则这个铁球的半径为( )A .r h2B .r 2h 4C . 3r 2h 4D .r 2h 2解析:选C .设铁球的半径为 R ,因为13πr 2h =43πR 3,所以R = 3r 2h4.5.一个四面体的顶点都在球面上,该四面体与球的组合体的正视图、侧视图、俯视图都是如图所示的图形.图中圆内有一个以圆心为中心,1为边长的正方形(含对角线).则这个四面体的外接球的表面积是( )A .πB .3πC .4πD .6π解析:选B.由三视图可知,该四面体是棱长为1的正方体的一个内接正四面体ABCD ,如图所示.所以此四面体的外接球的直径为正方体的体对角线长 3.所以此四面体的外接球的表面积为4π×⎝⎛⎭⎫322=3π.故选B. 6.已知球面上的四点P 、A 、B 、C ,P A 、PB 、PC 的长分别为3、4、5,且这三条线段两两垂直,则这个球的表面积为______.解析:球面上的四点P 、A 、B 、C ,P A 、PB 、PC 的长分别为3、4、5,且这三条线段两两垂直,是长方体的一个角,扩展为长方体,两者的外接球相同,长方体的对角线长为32+42+52=52,外接球的半径为522.外接球的表面积为4π⎝⎛⎭⎫5222=50π.答案:50π7.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为S 1、S 2,则S 1S 2=________.解析:由题意可得圆柱的底面直径和高都与球的直径相等,设球的半径为1,则S 1=6π,S 2=4π.所以S 1S 2=6π4π=32.答案:328.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.解析:设球的半径为x cm ,由题意得πx 2×8=πx 2×6x -43πx 3×3,解得x =4.答案:49.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:该组合体的表面积S=4πr2+2πrl=4π×12+2π×1×3=10π,该组合体的体积V=43πr3+πr2l=43π×13+π×12×3=13π3.10.若一个底面边长为62,侧棱长为6的正六棱柱的所有顶点都在一个球面上,求该球的体积和表面积.解:如图,在底面正六边形ABCDEF中,连接BE,AD交于O,连接BE1,则BE=2OE=2DE,所以BE=6,在Rt△BEE1中,BE1=BE2+E1E2=23,所以2R=23,则R=3,所以球的体积V球=43πR3=43π,球的表面积S球=4πR2=12π.[B能力提升]11.若等边圆柱(轴截面是正方形)、球、正方体的体积相等,则它们的表面积的大小关系是()A.S球<S圆柱<S正方体B.S正方体<S球<S圆柱C.S圆柱<S球<S正方体D.S球<S正方体<S圆柱解析:选A.设等边圆柱底面圆半径为r,球半径为R,正方体棱长为a,则πr2·2r=43πR3=a3,⎝⎛⎭⎫Rr 3=32,⎝⎛⎭⎫ar3=2π,S圆柱=6πr2,S球=4πR2,S正方体=6a2,S球S圆柱=4πR26πr2=23·⎝⎛⎭⎫Rr2=323<1,S正方体S圆柱=6a26πr2=1π·⎝⎛⎭⎫ar2=34π>1.故选A.12.(2020·高考全国卷Ⅱ)已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A. 3B.32 C .1D.32解析:选C.由等边三角形ABC 的面积为934,得34AB 2=934,得AB =3,则△ABC 的外接圆半径r =23×32AB =33AB = 3.设球O 的半径为R ,则由球O 的表面积为16π,得4πR 2=16π,得R =2,则球心O 到平面ABC 的距离d =R 2-r 2=1,故选C.13.如图是某几何体的三视图.(1)求该几何体外接球的体积; (2)求该几何体内切球的半径.解:(1)由三视图可知,该几何体是三条侧棱两两垂直的三棱锥,如图,以DC ,DB ,DA 为长、宽、高构造一个长方体,则该长方体的外接球就是该三棱锥的外接球,即外接球的半径R =1222+22+12=32,所以该几何体外接球的体积V =43πR 3=92π.(2)设内切球的球心为O ,半径为r , 则V A -BCD =V O -ADB +V O -ADC +V O -DCB +V O -ABC . 即13×12×2×2×1 =13×12×2×2r +13×12×2×r +13×12×2×r +13×12×22×3r ,得r =24+6=4-65.所以该几何体内切球的半径为4-65.14.(选做题)已知球与圆台的上、下底面及侧面都相切,且球的表面积与圆台的侧面积之比为3∶4,求球的体积与圆台的体积之比.解:如图所示,作圆台的轴截面等腰梯形ABCD ,O 1,O 2分别为圆台上、下底面圆的圆心,球的截面圆O 内切于梯形ABCD .作OE ⊥AB 于点E ,连接OA ,OB ,则∠AOB =90°.设球的半径为R ,圆台的上、下底面半径分别为r 1,r 2,易知圆台的高为2R ,母线长为r 1+r 2.因为∠AOB =90°,OE ⊥AB ,所以R 2=OE 2=AE ·BE =r 1r 2. 因为S 球∶S 圆台侧=4πR 2∶π(r 1+r 2)2=3∶4,所以(r 1+r 2)2=163R 2,所以V 球V 圆台=43πR 313π(r 21+r 1r 2+r 22)·2R =2R 2(r 1+r 2)2-r 1r 2=2R 2163R 2-R 2=613, 所以球的体积与圆台的体积之比为6∶13.。
球的表面积与体积求法

球的表面积与体积求法简介球是一种常见的几何体,具有许多独特的性质。
在几何学中,球的表面积和体积是求解球体特征的重要指标。
本文将介绍如何计算球的表面积和体积,并提供求解公式和示例。
球的表面积球的表面积是指球体外部各点构成的集合的总面积。
求解球的表面积需要知道球的半径。
下面将介绍两种常用的方法来计算球的表面积。
方法一:使用球的半径如果已知球的半径r,可以使用以下公式来计算球的表面积S:S = 4πr^2其中,π约等于3.14159。
根据该公式,表面积与半径的平方成正比,表明球体的表面积随半径的增加而增加。
这个公式非常简单,适用于一般情况下的表面积计算。
方法二:使用球的直径另一种常用的方法是使用球的直径D计算表面积。
直径是连接球体两个相对点的线段的长度,等于半径的两倍。
因此,球的直径D等于2r。
在这种情况下,球的表面积计算公式为:S = πD^2这个公式可以通过将半径r的两倍代入第一种方法中的公式来得到。
无论使用半径还是直径,只要参数给定正确,都可以得到正确的表面积结果。
球的体积球的体积是指球体内部的三维空间容量大小,也是球内放满液体的容积。
求解球的体积同样需要知道球的半径。
下面将介绍球的体积计算方法。
方法:使用半径我们可以使用以下公式来计算球的体积V:V = (4/3)πr^3根据该公式,体积与半径的立方成正比,说明球体的体积相对于半径的增长要更快。
这是由于球的体积是三维空间的量度,增加半径会带来更多的体积空间。
示例下面是一个计算球的表面积和体积的示例:假设球的半径为5cm。
1.计算表面积:根据方法一,使用半径计算,可以得到:S = 4πr^2≈ 4 * 3.14159 * 5^2≈ 314.159 cm^2根据方法二,使用直径计算,可得:D = 2r = 2 * 5 = 10 cmS = πD^2≈ 3.14159 * 10^2≈ 314.159 cm^22.计算体积:根据方法一,使用半径计算,可得:V = (4/3)πr^3≈ (4/3) * 3.14159 * 5^3≈ 523.599 cm^3可以看到,不论使用哪种方法,计算结果都接近。
球的表面积与体积

1. 球的体积
4 3 定理:半径为R的球的体积是 V R 3
知识新授
例1.有一种空心钢球,质量为142g,测得 外径等于5.0cm,求它的内径(钢 的密度为7.9g/cm3,精确到0.1cm).
答案:4.5
2. 球的表面积
o
定理:半径为ห้องสมุดไป่ตู้的球的表面积是
S 4 R
2
例2.如图,圆柱的底面直径与高都等于球的直径,求证:
(1)球的表面积等于圆柱的侧面积. (2)球的表面积等于圆柱全面积的三分之二.
O (2)
例3.一个正方体的顶点在球面上,它的棱长 为4cm,求这个球的体积和表面积。
C′
o
A
课堂练习
P32 练习
1, 2 , 3
课后作业
P33 习题1.3
B组
1
; /xs/0/738/ 女主播的修真高手
nrx05ksp
欢,蚰蜒蝎子赶上山!这句俗语寓意着,三月三是一个万象更新的好日子!这一日的到来,预示着整整一个严冬已经过 去,新的一年从此开始了!那一日,故乡的天空湛蓝湛蓝的,不时有成群的鸽子飞过。金色的阳光暖暖地普照着大地。 大路边上一排排的杨树和柳树,已经冒出了碧绿的新芽,漂亮的大喜鹊成双成对地雀跃在枝头上欢唱着。远处的几棵杏 子树,已经穿上了淡粉色的盛装;更远处的一大片桃树,似乎都在含苞待放了„„随着阵阵微风轻柔地拂面而来,让人 能够闻得到漫山遍野上飘逸着的那复苏泥土沁人心肺的清香。路旁田埂上齐刷刷新出土的小草在微风中轻轻地摆动着, 一丛丛一片片迎春的二月兰已经绽放开了她们那淡紫色的笑脸,黄澄澄的蒲公英花儿安逸地点缀在绿茸茸的草地间„„ 这一切,曾经是耿正兄妹三人最喜欢的乡野风景啊!但今天,他们却无心欣赏„„日头即将到半上午时,骡车终于慢慢 悠悠地走到了右转弯路口。只要转过这个路口,就走上五道庙前的那条西行大道了!“喔—”耿正轻抖缰绳吆喝一声, 大白骡驾着骡车转上宽阔的东西向大道,依然还是慢慢地向东走去„„骡车走得太慢了,徒步跟在车后的一高一中一矮 三个中年男人只能慢慢地走着才不至于超过去。事实上,今儿一早耿正兄妹三人乘坐大骡车离开客栈之后仅走了几十步 远时,这三个人就从后面左侧的岔道上追上来了。不过,要说“追”也并不恰当,只是他们三个人走路的速度比大白骡 还要快很多,所以,他们与骡车之间相隔的距离就越来越近了而已。到相隔仅有十多步远的时候,其中的那个矮个子说: “真晦气,怎么是挂送灵车。咱们快些走,超过去!”说着,就甩膀子迈大步要快走的样子。那个高个子赶快伸手拉住 他,并且低声说:“嘘,小声点儿说话!你们看,这挂车看上去不轻,后面还装了两袋草料,还有那把铁锹,看起来是 赶远路的呢!”矮个子也放低了声音说:“管他是赶近路的还是赶远路的,反正是一挂晦气的送灵车„„”不等他继续 说下去,高个子就皱起眉头有些不耐烦地瞪了他一眼,低声说:“你怎么就不用脑子想一想啊,这天气已经热起来了, 拉个死人,还不早臭了!”听他这么说,一直没有开口说话的那个中个子男人就伸长脖子张大鼻孔用劲吸了几下,然后 放低嗓音对高个子说:“是啊,大哥,怎么一点儿味儿也没有啊?”矮个子也赶快用劲吸几下,恍然大悟一般悄声说: “真是没有臭味儿,难道说他们拉的不是死人!”高个子摇摇手不让他们继续说下去,小声说:“咱们就跟在后面,看 他们去哪里。等晚上住进了客栈以后,咱再想办法看个究竟。依我看,说不准儿是一桩大买卖呢!”三个家伙会心地相 互眨眨眼轻轻地窃笑了一下,就放慢脚步跟在骡车的后面,看似很轻松地溜
球体的体积与表面积计算方法

球体的体积与表面积计算方法球体是一种常见的几何体,球体的体积和表面积是我们经常需要计算的量。
本文将介绍球体的体积与表面积计算方法及其推导过程。
一、球体的体积计算方法要计算一个球体的体积,我们需要知道球的半径。
球体的体积可以通过以下公式来计算:V = (4/3)πr³其中,V表示球体的体积,π近似为3.14159,r表示球体的半径。
这个公式是根据球体的几何性质推导出来的。
具体计算过程如下:1. 确定球体的半径r;2. 将半径r的值代入公式V = (4/3)πr³中;3. 按照计算器的要求进行计算,得到球体的体积V。
例如,如果球体的半径r为10cm,那么根据公式V = (4/3)πr³,计算得到该球体的体积为:V = (4/3) × 3.14159 × 10³ ≈ 4188.79 cm³所以,球体的体积约为4188.79 cm³。
二、球体的表面积计算方法球体的表面积也是通过球的半径来计算的。
球体的表面积可以通过以下公式来计算:A = 4πr²其中,A表示球体的表面积,π近似为3.14159,r表示球体的半径。
具体计算过程如下:1. 确定球体的半径r;2. 将半径r的值代入公式A = 4πr²中;3. 按照计算器的要求进行计算,得到球体的表面积A。
例如,如果球体的半径r为10cm,那么根据公式A = 4πr²,计算得到该球体的表面积为:A = 4 × 3.14159 × 10² ≈ 1256.64 cm²所以,该球体的表面积约为1256.64 cm²。
综上所述,球体的体积与表面积计算方法基于球的半径,通过相应的公式进行计算。
需要注意的是,在计算过程中要保留足够的小数位数,以提高计算的准确性。
值得一提的是,这些计算方法不仅适用于正规球体,对于近似球体(如地球)同样适用。
球的表面积与体积
球的表面积与体积在数学中,球体是一个非常常见的几何形状。
球体的两个重要属性是其表面积和体积。
本文将探讨球的表面积和体积的计算方法以及它们与球半径之间的关系。
一、球的表面积计算方法球的表面积是指球体外部的总面积。
要计算球的表面积,可以使用下列公式:S = 4πr²其中,S代表球的表面积,r代表球的半径,π是一个常数,近似值为3.14159。
举个例子,如果一个球的半径是5厘米,那么它的表面积可以通过以下计算得到:S = 4 × 3.14159 × 5² = 314.159平方厘米所以,该球的表面积为314.159平方厘米。
二、球的体积计算方法球的体积是指球体内部的总空间。
要计算球的体积,可以使用下列公式:V = (4/3)πr³其中,V代表球的体积,r代表球的半径,π是一个常数,近似值为3.14159。
继续以上例,如果一个球的半径是5厘米,那么它的体积可以通过以下计算得到:V = (4/3) × 3.14159 × 5³ ≈ 523.599立方厘米所以,该球的体积约为523.599立方厘米。
三、表面积与体积之间的关系球的表面积和体积之间存在一定的联系。
例如,如果我们知道球的半径,我们可以通过半径计算出球的表面积和体积。
另外,我们还可以通过表面积的计算公式推导出体积的计算公式。
从表面积的计算公式可以看出,球的表面积与球的半径的平方成正比。
这意味着,当球的半径增加时,其表面积也随之增加。
因此,较大半径的球通常比较小半径的球具有更大的表面积。
同样地,从体积的计算公式可以看出,球的体积与球的半径的立方成正比。
因此,当球的半径增加时,其体积也随之增加。
这意味着,较大半径的球通常比较小半径的球具有更大的体积。
结论通过上述分析,我们了解到了球的表面积和体积的计算方法,并研究了它们与球半径之间的关系。
在实际应用中,球的表面积和体积的计算对于建筑设计、物理学、工程学等领域都有重要意义。
球的表面积体积计算公式及推导过程
球的表面积体积计算公式及推导过程球的表面积公式是什么球体的计算公式半径是R的球的体积计算公式是:V=(4/3)πR^3(三分之四乘以π乘以半径的三次方)V=(1/6)πd^3 (六分之一乘以π乘以直径的三次方)半径是R的球的表面积计算公式是:S=4πR^2(4倍的π乘以R的二次方) 球体体积计算公式V=(4/3)πr^3解析:三分之四乘圆周率乘半径的三次方。
球体:“在空间内一中同长谓之球。
”定义:(1)在空间中到定点的距离等于或小于定长的点的集合叫做球体,简称球。
(从集合角度下的定义)(2)以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体(solid sphere),简称球。
(从旋转的角度下的定义)(3) 以圆的直径所在直线为旋转轴,圆面旋转180°形成的旋转体叫做球体(solid sphere),简称球。
(从旋转的角度下的定义)(4)在空间中到定点的距离等于定长的点的集合叫做球面即球的表面。
这个定点叫球的球心,定长叫球的半径。
推导过程球体表面积公式S(球面)=4πr^2运用第一数学归纳法:把一个半径为R的球的上半球横向切成n份,每份等高并且把每份看成一个圆柱,其中半径等于其底面圆半径则从下到上第k个圆柱的侧面积S(k)=2πr(k)×h其中h=R/n,r(k)=√[R^2;-﹙kh^2;]=2πR^2;×√[1/n^2;-(k/n^2)^2;] 则S(1)+S(2)+……+S(n)当n取极限(无穷大)的时候,半球表面积就是2πR^2;球体乘以2就是整个球的表面积4πR^2;球体性质用一个平面去截一个球,截面是圆面。
球的截面有以下性质:1球心和截面圆心的连线垂直于截面。
2球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。
在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。
球的体积表面积公式
球的体积表面积公式球体表面积计算公式为:S=4πR²球体体积计算公式为:V=(4/3)πR³设球的半径为r,则球的表面积公式和体积公式分别如下:(1)表面积S=4πr^2。
(2)体积V=(4/3)πr^3。
一、球(“球体”)的两种常见定义“球”是“球体”的简称,既包含球表面上的所有点,也包含球内部的所有点。
常见的两种定义形式如下。
1、空间中,到一个定点的距离小于或等于定长的点的集合是球体,简称球。
其中的“定点”为球的球心,“定长”为球的半径。
【注】“小于、等于”缺一不可,“小于”对应的是球内部的点,“等于”对应的是球表面的点。
球心、半径、直径、旋转轴示意图2、半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体(solid sphere),简称球。
其中,半圆的圆心叫做叫做球的球心,连接球心和球面上任意一点的线段叫做球的半径;连接球面上两点并且经过球心的线段叫做球的直径。
【注】球常用表示球心的字母来表示。
如球心为“O”的球,记作“球O”。
二、球的两要素“球心”和“半径”是球的两要素。
其中,“球心”定位置,“半径”定大小。
因为球的大小只跟球的半径有关,所以,球的表面积公式和体积公式中只有球的半径这一个变量。
球的表面积、体积公式三、球的表面和体积(1)球的表面积=“圆周率π”乘以“半径平方的4倍”,即S=4πr^2。
(2)球的体积=“圆周率π”乘以“半径立方的三分之四倍”,即V=(4/3)πr^3。
球的面积公式,半径是R的球的表面积计算公式是:S=4πR²。
球的体积公式,半径是R的球的体积计算公式是:V=(4/3)πR³,公式中R为球的半径,V为球的体积。
球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,也叫做球体。
球的表面是一个曲面,这个曲面就叫做球面,球的中心叫做球心。
球的面积公式,半径是R的球的表面积计算公式是:S=4πR²。
球的体积与表面积的计算
球的体积与表面积的计算在数学中,球是一个非常重要的几何体,它具有许多独特的性质和特点。
球的体积和表面积是我们经常需要计算的问题之一。
在本文中,我将向大家介绍如何计算球的体积和表面积,并通过一些实例来加深理解。
一、球的体积计算球的体积是指球内部所包含的空间大小。
我们可以使用以下公式来计算球的体积:V = (4/3)πr³其中,V表示球的体积,π是一个数学常数,约等于3.14,r表示球的半径。
举个例子,如果一个球的半径为5厘米,那么我们可以使用上述公式来计算它的体积:V = (4/3) ×3.14 × 5³ ≈ 523.33立方厘米所以,这个球的体积约为523.33立方厘米。
二、球的表面积计算球的表面积是指球的外部曲面的总面积。
我们可以使用以下公式来计算球的表面积:A = 4πr²其中,A表示球的表面积,π是一个数学常数,约等于3.14,r表示球的半径。
让我们通过一个例子来计算球的表面积。
假设一个球的半径为10厘米,我们可以使用上述公式来计算它的表面积:A = 4 × 3.14 × 10² ≈ 1256平方厘米所以,这个球的表面积约为1256平方厘米。
三、实际应用举例球的体积和表面积的计算在日常生活中有许多实际应用。
例如,当我们购买一个水池或者鱼缸时,我们需要知道它的容量,这就需要计算出一个球形容器的体积。
另外,当我们制作一个球形蛋糕或者球形巧克力时,我们需要知道表面积来确定所需的材料。
举个例子,假设我们要制作一个直径为20厘米的巧克力球,我们可以先计算出它的体积:V = (4/3) × 3.14 × 10³ ≈ 4188.79立方厘米然后,我们可以计算出它的表面积:A = 4 × 3.14 × 10² ≈ 1256平方厘米通过这些计算,我们可以确定所需的巧克力量和材料,以便制作出完美的巧克力球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球的体积与表面积
(2015高考数学)10.已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点。
若三棱锥ABC O -体积的最大值为36,则球O 的表面积为
A 、π36
B 、 π64
C 、π144
D 、 π256
(2013高考数学)(15)已知正四棱锥O ABCD -的体积为
2
,则以O 为球心,OA 为半径的球的表面积为________。
知识点
习题
一、选择题
1.若球的大圆面积扩大为原来的4倍,则球的表面积比原来增加( ) A .2倍 B .3倍 C .4倍 D ,8倍
2.若生成球的圆周长是C ,则这个球的表面积是( )
A .π42c
B .π42c
C .π2c
D .2πc 2
3.生成球的圆面积增大为原来的4倍,那么球的体积增大为原来的( ) A .4倍 B .8倍 C .16倍 D .32倍 4.三个球的半径之比为1∶2∶3,那么最大球的体积是其余两个球的体积和的( ) A .1倍 B .2倍 C .3倍 D .4倍
5.棱长为1的正方体内有一个球与正方体的12条棱都相切,则球的体积为( ) A .4π B .4π C .π32 D .4
2π 6.圆柱形烧杯内壁半径为5cm ,两个直径都是5 cm 的铜球都浸没于烧杯的水中,若取出这两个铜球,则烧杯内的水面将下降( )
A .35cm
B .310cm
C .340cm
D .6
5cm 7.长方体一个顶点上的三条棱的长度分别为3、4、5,且它的8个顶点都在同一球面上,这个球的表面积为( )
A .202π
B .252π
C .50π
D .200π 8.等体积的球与正方体,其表面积的大小关系为( )
A .S 球>S 正方体
B .S 球=S 正方体
C .S 球<S 正方体
D .大小关系不确定
二、填空题
9.已知三个球的表面积之比为1∶4∶9,若它们的体积依次为V 1、V 2、V 3,则V 1+V 2=
_____V 3.
10.将一个玻璃球放人底面面积为64πcm 2的圆柱状容器中,容器水面升高3
4cm ,则玻璃球的半径为__________.
11.将一个半径为R 的木球削成一个尽可能大的正方体,则此正方体的体积为______. 12.国际乒乓球比赛已将“小球”改为“大球”,“小球”的外径为38 mm ,“大球”的外径
为40 mm ,则“小球”与“大球”的表面积之比为__________.
三、解答题
13.已知正三棱柱的底面边长为1,侧棱长为2,则这样的三棱柱内能否放进一个体积为16π
的小球?
14.表面积 为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积. 平面基本性质
1.判断下列命题的真假,真的打“√”,假的打“×”
(1)空间三点可以确定一个平面 ( )
(2)两条直线可以确定一个平面 ( )
(3)两条相交直线可以确定一个平面 ( )
(4)一条直线和一个点可以确定一个平面 ( )
(5)三条平行直线可以确定三个平面 ( )
(6)两两相交的三条直线确定一个平面 ( )
(7)两个平面若有不同的三个公共点,则两个平面重合 ( )
(8)若四点不共面,那么每三个点一定不共线 ( )
画出图形
(1)A α∈,B β∈,A l ∈,B l ∈;
(2)a α⊂,b β⊂,//a c ,b c p =,αβ=
例2 将下列文字语言转化为符号语言:
(1)点A 在平面α内,但不在平面β内;(2)直线a 经过平面α外一点M ;
(3)直线l 在平面α内,又在平面β内(即平面α和β相交于直线l )。