2016秋七年级数学上册2.7有理数的乘法第1课时有理数的乘法法则练习(新版)北师大版

合集下载

苏科版数学七年级上册第二章有理数有理数乘法运算法则(习题)

苏科版数学七年级上册第二章有理数有理数乘法运算法则(习题)

1.4.1 有理数乘法运算法则【夯实基础】1.一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零2.若a 与−3的积是一个负数,则a 的值可以是( )A. −15B. −2C. 0D.153.下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数4.如果水位上升为正,水位下降为负,某水库的水位每天下降5cm ,4天后,该水库水位总的变化量是( )A.9 cmB. −9 cmC.20 cmD. −20 cm4.−114的倒数乘14的相反数,其值为( )A.5B.−5C.15D.−155.下列说法,正确的有( )①一个数同1相乘,仍得这个数;②一个数同−1相乘,得这个数的相反数;③一个数同0相乘,仍得0;④互为倒数的两个数的积为1.A.1个B.2个C.3个D.4个6.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A.a >0,b >0B.a <0,b >0D.a,b 同号 C. a,b 异号,且正数的绝对值较大7.的倒数的相反数是___。

8.|−12|的倒数是______.9.小明有5张写着不同数字的卡片:−5,+1,0,−2,+6,他从中任取三张卡片,−23计算卡片上数字的乘积,其中最小的乘积是______.10.已知|x +2|+|y −3|=0,则4xy =______.11.计算:(1)15×(−6) (2)(−0.24)×0 (3)(−8)×(−14)(4)(−0.8)×(−134) (5)135×(−334) (6)(−3.48)×(−0.7)12.甲水库的水位每天升高3cm ,乙水库的水位每天下降5cm ,4天后,甲、乙水库水位总的变量各是多少?13.今抽查10袋盐,每袋盐的标准质量是500克,超出部分记为正,统计成下表: 问:这10袋盐一共有多重?14.已知a ,b 互为相反数, c ,d 互为倒数,x 的绝对值为5,求a +b +cd −2x 的值.【能力提升】15.正整数x,y满足(2x−5)(2y−5)=25,则x+y等于()A.18或10B.18C.10D.2616.下列说法正确的是()①两个正数中倒数大的反而小;②两个负数中倒数大的反而小;③两个有理数中倒数大的反而小;④两个符号相同的有理数中倒数大的反而小.A.①②④B.①C.①②③D.①④17.在数轴上的三点A,B,C所表示的数分别为a,b,c,根据图中各点的位置,判断下列各式正确的是()A.(a−1)(b−1)>0B.(b−1)(c−1)>0C.(a+1)(b+1)<0D.(b+1)(c+1)<018.已知|x|=2,|y|=3,且xy<0,求4x−2y的值.【思维挑战】19.若x是不等于1的数,我们把11−x 称为x的差倒数,如2的差倒数是11−2=−1,−1的差倒数是11−(−1)=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差。

北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)

北师大版七年级数学上册 (有理数的乘法)有理数及其运算课件(第1课时)
一个数同两个数的和相乘,等于把这个数 分别同这两个数相乘,再把积相加.
乘法分配律:a(b+c)=ab+ac
知2-导
根据分配律可以推出:一个数同几个数的和相 乘,等于把这个数分别同这几个数相乘,再把 积相加.
知2-讲
例3 计算:
(1)

5 6

3 8
-24;
(2)
-7

4 3
5 14
.
解: (1)
倒数的性质: (1)如果a,b互为倒数,那么ab=1; (2)0没有倒数(因为0与任何数相乘都不为1); (3)正数的倒数是正数,负数的倒数是负数; (4)倒数等于它本身的数是±1; (5)倒数是成对出现的.
1.必做: 完成教材P51-52,随堂练习(1)、 (3), 习题T1(1)-(4)、2、3、4
知1-练
(来自《典中点》)
知1-练
3 若五个有理数相乘的积为正数,则五个数中负
数的个数是( D )
A.0 B.2 C.4 D.0或2或4
4
(中考·台湾)算式
-1
1 2
-3
1 4
2 3

值为何?( D )
A. 1 B. 11 C. 11 D. 13
4
12
4
4
(来自《典中点》)
知识点 2 有理数的乘法运算律
知1-讲
要点精析: (1)在有理数乘法中,每个乘数都叫做一个因数. (2)几个有理数相乘,先确定积的符号,然后将绝对
值相乘. (3)几个有理数相乘,如果有一个因数为0,那么积
就等于0;反之,如果积为0,那么至少有一个因 数为0.
知1-讲
例2 计算:
(1)(-5)×(-4)×(-2)×(-2);

1.4.1 第1课时 有理数的乘法法则 习题精讲 课件(新人教版七年级上)

1.4.1 第1课时 有理数的乘法法则 习题精讲 课件(新人教版七年级上)

1 1 1 1 1 1 ( -1)( -1)( -1)......( -1)( -1)( -1). 21.(9分)计算: 50 49 48 4 3 2 1 1 1 1 1 1 解: ( 50 -1)( 49 -1)( 48 -1)......( 4 -1)( 3 -1)( 2 -1)
= 49 48 47 3 2 1 ...... 50 49 48 4 3 2
1 4 (1) 3 2 ; 4 5
三、解答题(共39分) 18.(12分)计算:
91 解:原式=9.1或 10
3 (2)8 (-4) (-2); 4
解:原式=-48
1 1 (3)8.976×(-143)×0×|-24|; 4 2.5 1 (- ) 5 3 解:原式=0 解:原式=-1
1 50
谢谢观看!
这两个有理数的积( A ) A.一定为正 B.一定为负 C.为0 D.可能为正,也可能为负 12.如果两个数的积为0,那么这两个数( B ) A.互为相反数 B.至少有一个为0 C.两个都为0 D.都不为0
13.已知两个有理数a,b,如果ab<0,且a+b<0, 那么( D ) A.a>0,b>0 B.a<0,b>0 C.a,b异号 D.a,b异号,且负数的绝对值较大
19.(10分)若我们定义a*b=4ab-(a+b),其中符 号“*”是我们规定的一种运算符号.例如6*2= 4×6×2-(6+2)=40.求值: (1)(-4)*(-2);(2)(-1)*2. 解:(1)38 (2)-9 20.(8分)若|a|=5,|b|=2,且ab<0,求a+b和a-b 的值. 解:由|a|=5,|b|=2得a=±5,b=±2.因为ab<0, 所以当a=5时,b=-2,则a+b=3,a-b=7; 当a =-5时,b=2,则a+b=-3,a-b=-7

2.7.1有理数的乘法北师大版七年级数学上册点拨训练习题PPT课件

2.7.1有理数的乘法北师大版七年级数学上册点拨训练习题PPT课件
第1课时 有理数的乘法 第二章 有理数及其运算
B.负数
第二章 有理数及其运算
C.零 第二章 有理数及其运算
第二章 有理数及其运算
D.无法确定
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第1课时 有理数的乘法
第二章 有理数及其运算
第二章 有理数及其运算
6.如图,数轴上的 A,B,C 三点所表示的数分别为 a,b,c.根 据图中各点的位置,下列式子正确的是( D )
18.一辆出租车在一条东西走向的大街上营运.一天上午,这辆车 一共连续送客 10 次,其中 4 次向东行驶,每次行驶 10 km;6 次向西行驶,每次行驶 7 km.问:
(1)该出租车连续送客 10 次后,停在离出发点的什么地方? 解:规定向东为正,则 10×4+(-7)×6=40+(-42)=-2(km). 所以该出租车停在出发点的西边 2 km 处.
2.(2019·温州)计算:(-3)×5 的结果是( A )
A.-15
B.15
C.-2
D.2
3.下列运算结果为负数的是( C )
A.-11×(-2)
B.0×(-2 019)
C.(-6)-(-4)
D.(-7)+18
4.一个有理数和它的相反数之积为负
C.一定不大于 0
第二章 有理数及其运算
2.7 有理数的乘法 第1课时 有理数的乘法
提示:点击 进入习题
1 见习题 2 A
3C
4C
答案显示
5B
6 D 7 A 8 -20;15 9 1;0;±1 10 A
11 D
12 B
13 C
14 D
15 见习题
16 见习题 17 见习题 18 见习题 19 见习题

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

有理数的加减、乘除及乘方运算有理数的加减混合运算一、基础知识知识点1 有理数加减法统一成加法的意义1. 有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2. 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33. 和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1 把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2 有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2 计算:(-47111)-(-5)+(-4)-(+3)分析:加减混合运算应注意有条理按步骤进行,把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1 把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.(二)知识应用题例2 从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:(1)第50个整数是什么?(2)你能巧妙地运用规律计算这50个整数的和吗?小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.(三)学科综合题例3 小彬和小丽在一起玩游戏,游戏规则是:(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬抽到了下面的4张卡片:红-13,白7,红-5,白4,小丽抽到了下面的4张卡片:白3.2,白-2.7,红-6,白-2问:获胜的是谁?(四)拓展创新题例4 埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为190个埃及分数:你能从中挑出10个,加上正负号,使他们的和等于-1吗?分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运用有理数的加减混合运算.(三)培优练习1.下列化简正确的是( )A.(-7)-(-3)+(-2)=-7-3-2B.(-7)-(-3)+(-2)=-7+3-2C.(-7)-(-3)+(-2)=-7-3+2D.(-7)-(-3)+(-2)=-7+3+22.下列各式中与a-b-c的值不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)3.负数a减去它的相反数的差的绝对值是( )A.0B.2aC.-2aD.以上都可能4.使等式|-7+x|=|-7|+|x|成立的有理数x是( )A.任意一个正数B.任意一个非正数C.小于1的有理数D.任意一个有理数5.在数轴上,点x表示到原点的距离小于3的那些点,那么|x-3|+|x+3|等于( )A.6B.-2xC.-6 D2x6.填空题(1)小于5而大于-4的所有偶数之和是________;(2)-14的绝对值的相反数与5的相反数的差是________;(3)若|x-3|+|y-2|=0,则x+y=________,x-y=________.7计算①(-1.5)+1.4-(-3.6)-4.3+(-5.2) ②(-1)-1+(-2)-(-3)-(-1)③-12-[10+(-8)-3] ④(-4)-(-2)-{(-5)-[(-7)+(-3)-(-8)]}⑤|-0.1|-|-0.2|+|-0.4|-|-0.2|-|+0.1|+0.48、在数1,2,3,4,……,2003,2004前添加“+”或“-”,然后求代数和,使求得的结果为最小的非负数;9.定义新运算a*b=a+b-1,如3*(-2)=3+(-2)-1=0.请你计算(-1)*(-3)*2=_________.10.定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则,计算-2☆3的值 .11.已知有理数x 、y 满足|x -2y|=-2|x -4|,求4x 2-3y 的值.12.已知|a|=6,|b|=3,|c|=5,且c <0,a+c >0,求a+b+c 的值.有理数的乘除及乘方运算一、基础知识点1.有理数的乘法法则:2.有理数的除法法则:3.乘方:4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。

七年级数学北师大版上册课时练第2章《2.7有理数的乘法法则》(含答案解析)(1)

七年级数学北师大版上册课时练第2章《2.7有理数的乘法法则》(含答案解析)(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练2.7有理数的乘法一.选择题1.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大2.若ab>0,a+b<0,则()A.a、b都为负数B.a、b都为正数C.a、b中一正一负D.以上都不对3.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个4.有理数a、b在数轴上的位置如图所示,下列各式正确的是()A.ab>0B.a+b<0C.a﹣b>0D.b﹣a>05.计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.26.如果a+b<0,并且ab>0,那么()A.a<0,b<0B.a>0,b>0C.a<0,b>0D.a>0,b<0 7.下列说法:①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数,其中正确的个数是()A.2个B.3个C.4个D.5个8.与的积为1的数是()A.2B.C.﹣2D.9.有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab >0;③b+c<0;④b﹣a>0.上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④二.填空题10.绝对值小于π的所有整数的积是.11.绝对值大于2而小于5的所有整数的积是.12.已知1×1=1;11×11=121;111×111=12321;1111×1111=1234321,则111111×111111=.13.给出下列判断:①若a,b互为相反数,则a+b=0②若a,b互为倒数,则ab=1③若|a|>|b|,则a>b④若|a|=|b|,则a=b⑤若|a|=﹣a,则a<0其中正确结论的个数为个.14.小亮有6张卡片,上面分别写有﹣5,﹣3,﹣1,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为.15.某种衬衫每件的标价为150元,如果每件以8折(即按标价的80%)出售,那么这种衬衫每件的实际售价应为元.16.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=.17.原价2500元的手机打八五折销售,现在的售价为元.18.绝对值不大于5的所有负整数的积是19.直接写出计算结果:(﹣8)×(﹣2020)×(﹣0.125)=.20.下列5个数:﹣3,﹣2,1,4,5中取出三个不同的数,其和最大是,其积最大是.三.解答题21.(﹣8)×(﹣)×(﹣1.25)×.22.阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求的值;(2)已知a,b,c是有理数,当abc≠0时,求的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.23.简便方法计算:①(﹣﹣)×(﹣27);②﹣6×+4×﹣5×.24.观察下列各式:×=××=×××=…(1)猜想×××…×=;(2)根据上面的规律,计算:(﹣1)×(﹣1)×(﹣1)×…×(﹣1).25.定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n喜数”,因为25≠n (2+5).(1)判断44和72是否是“n喜数”?请说明理由;(2)请求出所有的“7喜数”之和.26.计算:29×(﹣12).参考答案一.选择题1.D.2.A.3.B.4.D.5.A.6.A.7.A.8.A.9.C.二.填空题10.0.11.144.12.12345654321.13.2.14.﹣120.15.120元.16.﹣4或﹣1.17.2125.18.﹣120.19.﹣2020.20.10;30三.解答题21.解:原式=﹣8×1.25××=﹣.22.解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a,b异号,+=0.故+的值为±2或0.(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a,b,c两负一正,++=﹣1﹣1+1=﹣1;④a,b,c两正一负,++=﹣1+1+1=1.故++的值为±1,或±3.(3)已知a,b,c是有理数,a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以++=++=﹣[++]=﹣1.23.解:①原式==﹣6+9+2=5.②原式=×(﹣6+4﹣5)=(﹣7)=﹣3.24.解:(1)×××…×=;故答案为:;(2)(﹣1)×(﹣1)×(﹣1)×…×(﹣1)=﹣×(﹣)×(﹣)×…×(﹣)=﹣.25.解:(1)44不是一个“n喜数”,因为44≠n(4+4),72是一个“8喜数”,因为72=8×(2+7),(2)设存在“7喜数”,设其个位数字为a,十位数字为b,(a,b为1到9的自然数),由定义可知:10b+a=7(a+b),化简得:b=2a,因为a,b为1到9的自然数,∴a=1,b=2;a=2,b=4;a=3,b=6;a=4,b=8.四种情况,∴“7喜数”有4个:21、42、63、84,∴它们的和=21+42+63+84=210.26.解:=(30﹣)×(﹣12)=30×(﹣12)﹣×(﹣12)=﹣360+0.5=﹣359.5.。

北师大版七年级数学上册 第2章 有理数 2.7.2 有理数的乘法运算律 同步练习

北师版七年级上册第二章有理数 2.7.2 有理数的乘法运算律同步测试一.选择题(共10小题,3*10=30) 1.算式(16-12-13)×24的值为( )A .-16B .16C .24D .-242. 下列运算过程中,错误的个数是( ) ①(3-412)×2=3-412×2;②-4×(-7)×(-125)=-(4×125×7); ③[3×(-2)]×(-5)=3×2×5. A .0个 B .1个 C .2个 D .3个3.在2×(-9)×5=-9×(2×5)中,运用了( ) A .乘法交换律 B .乘法结合律 C .乘法分配律D .乘法交换律和乘法结合律4.运用分配律计算(-3)×(-8+2-3),有下列四种不同的结果,其中正确的是( ) A .-3×8-3×2-3×3 B .(-3)×(-8)-3×2+3×3 C .(-3)×(-8)+3×2-3×3 D .-3×(-8)-3×2-3×35.计算25×(-4125)时,可转化为下列算式:①25×(-4+125);②-25×(4+125);③-25×(4-125);④25×(-4-125).其中正确的个数是( )A .1个B .2个C .3个D .4个6.利用分配律计算(-1009899)×99时,正确的方案可以是( )A .-(100+9899)×99B .-(100-9899)×99C .(100-9899)×99D .(-101-199)×997.117×(-3)+117×(-7)=117×(-10) 这是应用了________进行简便运算.( ) A .乘法分配律 B .乘法结合律 C.乘法交换律 D .加法结合律 8.下列计算中,错误的是( ) A .(-6)×(-5)×(-3)×(-2)=180 B .(-36)×(16-19-13)=-6+4+12=10C .(-15)×(-4)×(+15)×(-12)=6D .-3×(-5)-3×(-1)-(-3)×2=24 9.算式(-66317)×13可化为( )A .-66×13+317×13B .-66×13-317×13C .-66×3+317×3D .-66×3-317×310.下列变形不正确的是( ) A .5×(-6)=(-6)×5B .(14-12)×(-12)=(-12)×(14-12)C .(-16+13)×(-4)=(-4)×(-16)+13×4D .(-25)×(-16)×(-4)=[(-25)×(-4)]×(-16) 二.填空题(共8小题,3*8=24)11. 计算:(1)3.26×(-5.6)+3.26×3.6=__________;(2)16.8×732+7.6×716=_________ ;12. 计算(-55)×99+(-44)×99-99=__________.13.计算:(1)1.25×(-8120)×(-8)=___________;(2)991213×(-13)=___________.14.式子(13-315+25)×3×5=(13-315+25)×15=5-3+6中,运用的运算律是_________________.15. (-0.25)×21×(-8)×(-17)=[(-0.25)×(_____)]×[____×(-17)].16. 计算:25×(-0.125)×(-4)×(-45)×(-8)×114=____.17. 计算:(1-2)×(2-3)×(3-4)×(4-5)×…×(2 018-2 019)=____.18.如图,是一个简单的数值运算程序,当输入的数值x 为-3时,其输出的结果是__________ . 输入x →×(-4)→×14→×x →输出三.解答题(共6小题,46分) 19. (6分) 用简便方法计算: (1)(-8)×(-5)×(-0.125);(2)(-112-136+16)×(-36);(3)(-5)×(+713)+7×(-713)-(+12)×(-713).20. (6分) 计算下列各题,能简便计算要简便计算: (1)(-12)×(34-78-512);(2)34×(-9)+34×(-28)+34;(3)-991718×9.21. (6分) “⊗”表示一种新运算,它的意义是a ⊗b =ab -(a +b) (1)求(-2)⊗(-3); (2)求(3⊗4)⊗(-5).22. (6分) 某校体育器材室有60个篮球,一天课外活动,有3个班分别计划借篮球总数的12,13,14.请你算一算,这60个篮球够借吗?如果够,还剩几个篮球?如果不够,还缺几个?23. (6分) 对于两个整数a ,b ,有a ⊗b =(a +b)a ,a ⊕b =a·b +1,求[(-2)⊗(-5)]⊕(-4).24. (8分) 学习有理数的乘法后,老师给同学们这样一道题目:计算:492425×(-5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=-124925×5=-12495=-24945;明明:原式=(49+2425)×(-5)=49×(-5)+2425×(-5)=-24945.(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来; (3)用你认为最合适的方法计算:291516×(-8).25. (8分) 阅读下列材料: 1×2=13(1×2×3-0×1×2);2×3=13(2×3×4-1×2×3);3×4=13(3×4×5-2×3×4);……(1)将以上三个等式相加,可得:_____________________. (2)根据上述现象请你计算: 1×2+2×3+3×4+…+10×11. 参考答案1-5 ABDBB 6-10 AACBC 11. -6.25,7 12. -9900 13.812,-1299 14.乘法结合律及分配律 15. -8,21, 16. 100 17. 118. -919. 解:(1)原式=-(8×0.125)×5=-5(2)原式=(-112)×(-36)-136 ×(-36)+16×(-36)=3+1-6=-2(3)原式=[(-5)-7+(+12)]×(713)=0 ×(-103)=020. 解:(1)原式=(-12)×34-(-12)×78-(-12)×512)=-9+212+5=612(2)原式=34×[(-9)+ (-28)+1]= 34×(-36)=-27(3)原式=-(99+1718)×9=-[(100-1)+ 1718]×9=-[900-9+812]=-8991221. 解:(1)(-2)⊗(-3)=(-2)×(-3)-[(-2)+(-3)]=6-(-5)=6+5=11(2)(3⊗4)⊗(-5)=[3×4-(3+4)]⊗(-5)=(12-7)⊗(-5)=5⊗(-5)=5×(-5)-[5+(-5)]=-25-0=-25. 22. 解:60×(12+13+14)=65,因为65>60,所以不够,65-60=5,故还缺5个23. 解:原式=[(-2-5)×(-2)]⊕(-4)=14⊕(-4)=14×(-4)+1=-55 24. 解:(1)明明解法较好(2)还有更好的解法,如下:原式=(50-125)×(-5)=-250+15=-24945(3)原式=(30-116)×(-8)=-240+12=-2391225. 解:(1)1×2+2×3+3×4=13×3×4×5;(2)原式=13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+…+13(10×11×12-9×10×11)=13(1×2×3-0×1×2+2×3×4-1×2×3+…+10×11×12-9×10×11)=13×10×11×12=440。

人教版数学七年级上册第一章有理数《有理数的乘法(一)》学习任务单(公开课学案)及课后练习作业设计

人教版数学七年级上册第一章有理数《有理数的乘法(一)》学习任务单及课后练习【学习目标】理解有理数的乘法法则,能运用乘法法则准确、熟练地进行有理数的乘法运算, 并初步理解有理数乘法法则的合理性.【课前学习任务】预习课本第 28 页至第 30 页,类比有理数加法运算,思考如何进行有理数乘法运算的问题.【课上学习任务】学习任务一:在小学所学的正数与正数,正数与零相乘运算的基础上,通过老师给出的问题和思考,通过观察、类比、归纳、概括探究得到有理数乘法法则。

通过举例的两道题目加深有理数乘法法则的理解,归纳总结有理数乘法运算的基本步骤。

通过例 1 巩固法则的应用,规范做题步骤。

思考有理数乘法和有理数加法之间的联系。

学习任务二:完成课后练习,并通过以下4道题目的计算,思考3个或者更多的有理数相乘,该如何计算呢?(1)2×3×4×(-5)(2)2×3×(-4)×(-5)(3)2×(-3)×(-4)×(-5)(4 )(-2)×(-3)×(-4)×(-5)有理数乘法(一)课后练习1. 计算-3×2 的结果为( )A. -1B. -5C. -6D.12. 下列运算中错误的是( )3.填表(想法则,写结果):因数因数积的符号积的绝对值积8 -6-10 +8-9 -420 84.计算:5.用正、负数表示气温的变化量:上升为正、下降为负。

某登山队攀登一座山峰,每登高 1km 气温的变化量为-6℃。

攀登 3km 后,气温有什么变化?。

七年级数学上册第二章有理数及其运算2.7有理数的乘法课件新版北师大版


拓展提升
解:∵a与b互为相反数, ∴a+b=0, ∵c与d互为倒数, ∴cd=1, ∵e为绝对值最小的数, ∴e=0,
体验收获
今天我们学习了哪些知识?
1.有理数的乘法法则 2.倒数 3.有理数乘法运算
布置作业
教材54页习题第1,3题。
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
4个 -3相加
活动探究
(-3)×4= -12 (-3)×3= -9 (-3)×2= -6
(-3)×1= -3
一个因数减小 1时,积怎样变
化?
(-3)×(-1)= 3
(-3)×0= 0
(-3)×(-2)= 6
一个因数减少1时,积增大3.
(-3)×(-3)= 9
你能写出右边各式的 结果吗?
(-3)×(-4)= 12
Q
-12 -9 -6 -3 0 3 6 9 12
3 ×(-4)= -12
在Q点左侧12cm处
讲授新知 3×4=12 (-3)×(-4)=12
正数乘正数积为_正_数 负数乘负数积为_正_数
同号 得正
3×(-4)= -12 (-3)×4= -12
负数乘正数积为_负_数 正数乘负数积为_负_数
异号 得负
= +(5×7) 同号得正,绝对值相乘 =35
观察(3)(4)小题的结果,你发现了什么?
讲授新知 如果两个有理数的乘积为1,那么称其中一个数是 另一个的倒数,也称这两个有理数互为倒数。

人教版七年级数学上册1.有理数的乘法法则(第1课时)课件


1.计算: (1)(-5)×-215;
解:(-5)×-215=15. (2)127×-19;
解:127×-19=-97×19=-17.
14
15
(3)[-(+2.5)]×(-4); 解:[-(+2.5)]×(-4)=(-2.5)×(-4)=10.
(4)-134×-267. 解:-134×-267=-74×-270=5.
),………___得__负________
7 4 28 , …………__把___绝__对__值___相__乘__
所以 (7) 4 —-—2—8—.
思考:通过上题,你认为:非零两数相乘, 关键是什么?
有理数乘法的步骤:
两个有理数相乘,先确定积的__符__号_, 再确定积的绝__对__值__.
有理数乘法法则
(2)因为|a|=3,|2+b|=4,所以 a=±3,b=2 或-6. 因为 ab<0,所以 a=3,b=-6 或 a=-3,b=2. 当 a=3,b=-6 时,|a-b|=|3-(-6)|=9; 当 a=-3,b=2 时,|a-b|=|-3-2|=5. 综上所述,|a-b|的值为 5 或 9.
36
议一议
判断下列各式的积是正的还是负的?
2×3×4×(-5)

2×3×(-4)×(-5)

2×(-3)×(-4)×(-5)

(-2)×(-3)×(-4)×(-5) 正
7.8×(-8.1)×0×(-19.6) 零
思考:几个有理数相乘,因数都不为 0 时,积 的符号怎样确定? 有一因数为 0 时,积是多少?
ቤተ መጻሕፍቲ ባይዱ
31
随堂检测
1.【易错题】一个有理数和它的相反数的积( D )
A.必为正
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.7 有理数的乘法
第1课时 有理数的乘法法则
01 基础题
知识点1 有理数的乘法法则
1.(安徽中考)计算(-2)×3的结果是( )
A .-5
B .1
C .-6
D .6
2.已知a 、b 在数轴上的位置如图所示,则a×b 的结果是( )
A .正数
B .负数
C .零
D .无法确定
3.两个互为相反数的有理数相乘,积为( )
A .正数
B .负数
C .零
D .负数或零
4.计算:-4×(-12
)=________,8×(-9)=________,(-2 013)×0=________. 5.计算:
(1)15×(-6); (2)(-0.24)×0;
(3)(-8)×(-0.25); (4)57×(-415
).
知识点2 倒数
6.(海南中考)-2 015的倒数是( )
A .-12 015 B.12 015
C .-2 015
D .2 015
7.写出下列各数的倒数:
3,-1,0.3,-23,14,-312
.
知识点3 有理数乘法的应用
8.“五一”期间,某服装商店举行促销活动,全部商品八折销售,一件标价为100元的运动服,打折后的售价应是________元.
9.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2 ℃,用了退烧药后,以每10分钟下降0.1 ℃的速度退烧,则两小时后,欢欢的体温是________℃.
知识点4 多个有理数相乘
10.计算(-1)×2×(-3)×4×(-5)的结果的符号是________.
11.计算:
(1)3×(-1)×(-13
);
(2)(-37)×(-45)×(-712
).
02 中档题
12.若两数的积为0,则一定有( )
A .两数中最少有一个为0
B .两数中最多有一个为0
C .两数同时为0
D .两数互为相反数
13.三个有理数相乘积为负数,则其中负因数的个数有( )
A .1个
B .2个
C .3个
D .1个或3个
14.如果 ×(-25
)=1,那么 内应填的数是( ) A.52 B.25 C .-25 D .-52
15.如图是一个简单的数值运算程序,当输入x 的值为1时,则输出的数值为________. 输入x →x ×(-1)→+3→输出
16.在-3,3,4,-5这四个数中,任取两个数相乘,所得的积中最大的是________.
17.如果高度每增加1千米,气温大约下降6 ℃,现在地面的气温是23 ℃,某飞机在该地上空5千米处,则此时飞机所在高度的气温是________℃.
18.计算:
(1)0×(-0.125);
(2)1 000×(-0.1);
(3)135×(-334
);
(4)(-1.2)×5×(-3)×(-4);
(5)(-2 014)×2 015×0×(-2 016).
19.甲水库的水位每天升高3 cm ,乙水库的水位每天下降5 cm ,4天后,甲、乙水库水位总的变化量各是多少?
03 综合题
20.规定一种新运算“※”,两数a 、b 通过“※”运算得(a +2)×2-b ,即a ※b =(a +2)×2-b ,例如:3※5=(3+2)×2-5=10-5=5.根据上面规定解答下题:
(1)求7※(-3)的值;
(2)7※(-3)与(-3)※7的值相等吗?
参考答案
基础题
1.C 2.B 3.D 4.2 -72 0 5.(1)原式=-90. (2)原式=0. (3)原式=2. (4)原式=-421
. 6.A 7.各数的倒数分别为:13,-1,103,-32,4,-27. 8.80 9.38 10.负 11.(1)原式=3×1×13=1. (2)原式=-(37×45
×712)=-15.
中档题
12.A 13.D 14.D 15.2 16.15 17.-7
18.(1)原式=0.
(2)原式=-(1 000×0.1)=-100.
(3)原式=-(135×334)=-6.
(4)原式=-1.2×5×3×4=-72.
(5)原式=0.
19.3×4=12(cm ),-5×4=-20(cm ).
答:4天后,甲水库水位上升12 cm ,乙水库水位下降20 cm .
综合题
20.(1)7※(-3)=(7+2)×2-(-3)=21.
(2)因为(-3)※7=[(-3)+2]×2-7=-9,
所以7※(-3)与(-3)※7的值不相等.。

相关文档
最新文档