2016---2017年七年级数学期末练习题及答案

合集下载

2016-2017学年度北师大版七年级下册数学期末试卷及答案

2016-2017学年度北师大版七年级下册数学期末试卷及答案

2016-2017学年度北师大版七年级下册数学期末试卷及答案2016-2017学年度七年级下册数学期末试卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列各组长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.1cm,1cm,2cmC.1cm,2cm,2cm;D.1cm,3cm,5cm;2.下面是一位同学做的四道题:①a+a=a;②(xy)=xy;③x•x=x;④(﹣a)÷a=﹣a.其中做对的一道题是()A①.3.下列乘法中,能运用完全平方公式进行运算的是()A.(x+a)(x-a)B.(b+m)(m-b)。

C.(-x-b)(x-b)。

D.(a+b)(-a-b)4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△XXX的是()A.∠A=∠CB.AD=CBCC.BE=DFD.AD∥BC5.如图,一只蚂蚁以均匀的速度沿台阶A1A2A3A4A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A.tOB.tOC.tOD.t6.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)7.计算(2)3=_______88.如图有4个冬季运动会的会标,其中不是轴对称图形的有2个9.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为16.10.已知:a b22,a b=11,则2a2b6311.如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2=90°.12.如图所示,∠XXX∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是1,2,3,4.13.XXX是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是∠2和∠3.14.如果 $a+b+2c+2ac-2bc=0$,求 $xxxxxxxa+b$ 的值。

2016-2017学年度第一学期七年级数学期末试卷含答案

2016-2017学年度第一学期七年级数学期末试卷含答案

2016-2017学年度第一学期七年级数学期末试卷含答案不超过40m,超过20m的部分每立方米收费3元;若用水不超过60m,超过40m的部分每立方米收费4元;若用水超过60m,超过60m的部分每立方米收费5元。

某户家庭一个月用水共65m,应缴纳的水费为()元。

答案:1.C。

2.B。

3.A。

4.C。

5.D。

6.D。

7.A。

8.C9.21.10.2x^2y^3z。

11.6.12.3.32×10^4.13.-11.14.-315.210元1.超过20立方米的部分每立方米加收1元,XXX家11月份用水64元,则他家该月用水为x立方米。

2.按照XXX所示的规律,第8个图形的小圆的个数是40个。

3.如图所示,棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为20平方厘米。

4.若大于1的正整数的三次方可以分解为若干个连续奇数的和,且分解后最后一个奇数为109,则该正整数为33.5.计算:①8+(-10)-(-5)+(-2)=-1;②(-2)-(1-4/3)=1/3.6.化简:①(5x-3y)-(2x-y)=3x-2y;②a-a-[2a-(3a+a)]=-a。

7.解方程:①2(2x-2)+1=2x-(x-3),解得x=3;②-2/(x-1)=1,解得x=-3.8.根据右边的数值转换器,当输入的x与y满足x+1+(y-2)/2=2时,输出的结果为3.9.已知B=x-x-1,且A+B=3x-3x+5,求A-B的值。

解得A=2x+4,故A-B=3x-x+6.10.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,则:1)出发5小时后两车相遇;2)出发2小时后两车相距80km。

11.XXX用50元钱买了10支钢笔,记录如下:0.5,0.7,-1,-1.5,0.8,1,-1.5,-2,1.9,0.9.最高售价为1.9元,最低售价为-2元,XXX卖完全部笔后亏损0.3元。

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。

2016--2017学年度下期末七年级数学试题及答案

2016--2017学年度下期末七年级数学试题及答案

2016~2017学年度第二学期期末考试七年级数学试卷一.选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑. 1.64的算术平方根是( ) A .8 B .-8 C .4 D .-4 2.在平面直角坐标系中,点P (-3,-4)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列调查中,适宜采用全面调查方式的是( )A .调查春节联欢晚会在武汉市的收视率B .调查某中学七年级三班学生视力情况C .调查某批次汽车的抗撞击能力D .了解一批手机电池的使用寿命 4.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( ) A .x >2 B .x ≤4 C .2≤x <4 D .2<x ≤45.如图,若CD ∥AB ,则下列说法错误的是( ) A .∠3=∠A B .∠1=∠2 C .∠4=∠5 D .∠C +∠ABC =180°6.点A (﹣1,4)关于y 轴对称的点的坐标为( ) A .(1,4) B .(﹣1,﹣4) C .(1,﹣4) D .(4,﹣1) 7.若x >y ,则下列式子中错误的是( ) A .31+x >31+y B . x -3>y -3 C .3x >3yD .-3x >-3y 8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”若设有鸡x 只,有兔y 只,则可列方程组正确的是( ) A .⎩⎨⎧=+=+942235y x y xB .⎩⎨⎧=+=+942435y x y xC .⎩⎨⎧=+=+944235y x y xD .⎩⎨⎧=+=+94235y x y x9.下列说法:① 3.14159是无理数;② -3是-27的立方根;③ 10在两个连续整数a 和b 之间,那么a +b =7;④如果点P (3-2n ,1)到两坐标轴的距离相等,则n =1;其中正确说法的个数为( )A .1个B .2个C .3个D .4个 10.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023102y x y mx 有整数解,则12+m的值为( )A .5或50B .49C .4或49D . 5二.填空题(共6小题,每小题3分,共18分) 11.若x +2有意义,则x 的取值范围是 .12.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,∠COB =145°, 则∠DOE =__________13.如图,将王波某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为 .33%43%4%长途话费短信费本地话费月基本费14.一艘轮船从长江上游的A 地匀速驶到下游的B 地用了10h , 从B 地匀速返回A 地用了不到12h ,这段江水流速为3km /h ,轮船在静水里的往返速度vkm /h 不变,则v 满足的条件是 . 15.如图, AB ∥CD ,直线EF 与直线AB ,CD 分别交于点E ,F , ∠BEF <150°,点P 为直线EF 左侧平面上一点,且 ∠BEP =150°,∠EPF =50°,则∠DFP 的度数是 .16.在等式c bx ax y ++=2中,当x =-1时,y =0;当x =2时,y =3;当x =5时,y =60;则a +b +c 的值分别为_______.三.解答题(共8小题,共72分) 17.(本题10分)解方程组:(1)⎩⎨⎧=--=1376y x y x (2)⎪⎪⎩⎪⎪⎨⎧-=-=+312612174332y x y x18.(本题8分)解不等式332-x ≤153+-x ,并在数轴上表示其解集.19.(本题8分)某校为了调查学生书写汉字能力,从八年级400名学生中随机抽选50名学生参加测试,这50名学生同时听写50个常用汉字,每正确听写出一个汉字得1分.根据测试成绩绘制频数分布图表. 频数分布表 频数分布直方图请结合图表完成下列各题:(1)表中a 的值为 ;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于35分为合格,请你估计该校八年级汉字书写合格的人数为 .Cx20.(本题7分)养牛场原有15头大牛和5头小牛,每天约用饲料325kg ;两周后,养牛场决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg .问每头大牛和每头小牛1天各需多少饲料?21.(本题8分)如图,线段CD 是线段AB (1)若点A 与点C 、点B 与点D 是对应点. 在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示)(2)若点A 与点D 、点B 与点C 、是对应点,在这种变换下,第一象限内的点M 的坐标为(m ,n ),点M的对应点N 坐标为 ;(用含m 、n 的式子表示) (3)连接BD ,AC ,直接写出四边形ABDC 的面积为22. (本题9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,经调查:购买一套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m 、n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,有哪几种购买方案?为了节约资金,请你为公司设计一种最省钱的购买方案.图2 x y M C B A 12345–1–2–3–4–512345–1o x y123456–1–2123456–1–2o 23.(本题10分)如图1,将线段AB 平移至CD ,使点A 与点D 对应,点B 与点C 对应,连AD 、BC (1) 填空:AB 与CD 的位置关系为__________,BC 与AD 的位置关系为__________; (2) 点G 、E 都在直线DC 上,∠AGE =∠GAE ,AF 平分∠DAE 交直线CD 于F . ①如图2,若G 、E 为射线DC 上的点,∠F AG =30°,求∠B 的度数;②如图3,若G 、E 为射线CD 上的点,∠F AG =α,求∠C 的度数.24.(本题12分)如图,点A 的坐标为(4,3),点B 的坐标为(1,2),点M 的坐标为(m ,n ).三角形ABM 的面积为3.(1)三角形ABM 的面积为3.当m=4时,直接写出点M 的坐标 ; (2)若三角形ABM 的面积不超过3.当m=3时,求n 的取值范围;(3)三角形ABM 的面积为3.当1≤m ≤4时,直接写出m 与n 的数量关系 .图3 图1y 123456–1–2123456–1–2o 备用图硚口2016—2017学年度下学期期末考试七年级数学答案11.x ≥-2 12.55° 13.72° 14.v >33 15.100°或160° 16.-4. 17.(1)解:把①代入②得:6y -7-y =13 y =4 ……3分把y =4代入①得:x =17 ………………………………………4分 ∴原方程组的解是⎩⎨⎧==417y x ………………………………………5分(2)解:原方程组可化为: ⎩⎨⎧-=-=+231798y x y x ………7分∴原方程组的解是⎩⎨⎧==11y x ………10分18.解:去分母得: 5(2x -3)≤3(x -3)+15 ………………2分去括号得: 10x -15 ≤3x -9+15 ………………3分 移项得: 10x -3x ≤15-9+15 ………………4分 合并同类项得:7x ≤21 ………………5分 系数化为1得:x ≤ 3 ………………6分………………8分19.(1) a=12 …………………………………………………2分 (2)16,12 (图略)作出一个正确的条形给2分 ………………… 6分 (3)304人 …………… …… …………… ……………………8分 20.(1)解:设每头大牛1天需饲料x kg ,每头小牛1天需饲料y kg . ………1分 依题意得:⎩⎨⎧=+++=+550)515()1015(325515y x y x ……2分解方程组得:⎩⎨⎧==520y x …………3分答: 每头大牛1天需饲料20 kg ,每头小牛1天需饲料5 kg . …………4分(2) 解:设大牛购进a 头,小牛购进b 头. ………. . …………………………5分 根据题意可列方程: 20a +5b =110b =22-4a ………. . ………………………7分∵根据题意a 与 b 为非负整数,∴b ≥0 ∴22-4a ≤0 ∴a ≤5.5∴a 最大取5 ………. . …………………………8分 答: 大牛最多还能购进5头. ………. . …………………………9分 21.(1)(m -5,n -5);…2分 (2)(-m ,-n );……4分 (3)10 .………8分 22.(1)解:根据题意可列方程组:{nm n m =-=+6103,解方程组得:{71==m n ……………3分答:m 的值为7,n 的值为1. …………………………4分 (2) 解:设购买甲型设备x 套,购买乙型设备)10(x -套, ……………5分根据题意列不等式组:{26)10(71020)10(100120≤-+≥-+x x x x , ……………6分解不等式组得:381≤≤x∵x 为整数,∴x 为1或2 ……………7分所以购买方案有:方案1、甲型设备1套,乙型设备9套;方案2、甲型设备2套,乙型设备8套.……8分所需费用:方案1、7+9=16万元,方案2、14+8=22万元, 方案1最省钱.………………9分 23.(1)AB ∥ CD, BC ∥ AD ………………………………………………………2分 (2)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………3分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠EAF +∠GAE )=∠EAD +∠BAE =∠BAD ……………………5分 又∵∠F AG =30° ∴∠BAD =60°又∵BC ∥ AD ∴∠B+∠BAD =180° ∴∠B =120°………………6分 (3)∵AB ∥ CD ∴∠AGE =∠BAG又∵∠AGE =∠GAE ∴∠BAG =∠GAE ∴2∠GAE =∠BAE …………………7分 ∵AF 平分∠DAE ∴2∠EAF =∠EAD∴2∠F AG =2(∠GAE —∠EAF )=∠BAE —∠EAD =∠BAD又∵∠F AG =α ∴∠BAD =2α …………………………………9分 ∵BC ∥ AD ∴∠B+∠BAD =180° ∵AB ∥ CD ∴∠B+∠C =180° ∴ ∠C =∠BAD =2α …………10分24.(1) (4,5)或(4,1) ………………………………………………………2分(2)作AD ⊥x 轴于D ,作BC ⊥x 轴于C ,作ME ⊥x 轴于E 交AB 于F ,设F 点坐标为(3,a ) 则点E 为(3,0)、点D 为(4,0),∴BC =2, EF =a , AD =3,CE =2,DE =1,CD =3,又∵FEDA BCEF S S S 梯形梯形梯形+=ABCD ∴ )38,3(,38)32(321)3(121)2(221F a a a =+⨯⨯=+⨯++⨯……………6分作AP ⊥MF 于P ,作BQ ⊥MF 于Q ,23)(213≤≤+≤+=∆∆∆MF MF AP BQ S S S MFA MFB MAB …………7分∵点M 的坐标为(3,n ), 点F 的坐标为(3,38) ∴238≤-n , ∴n -38≤2且-(n -38)≤2,三点共线,(舍去),,时,当M B A 38=n∴当32≤n ≤314且n ≠38时,三角形ABM 的面积不超过3 ………………………………9分(3)当1≤m ≤4时,直接写出m 与n 的数量关系为:3n -m =11或3n -m =-1. …………12分。

2016-2017学年七年级下期末数学试卷及答案解析

2016-2017学年七年级下期末数学试卷及答案解析

2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。

2016-2017学年最新人教版七年级数学第一学期期末试卷和答案

2016-2017学年最新人教版七年级数学第一学期期末试卷和答案

2016-2017学年七年级数学第一学期期末试卷一、数与式1.的相反数是()A.3 B.C.D.﹣32.化简:﹣(﹣3)=.3.﹣5的绝对值是.4.|﹣|=.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣36.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需元.7.当x=﹣1时,代数式(x﹣1)2的值为.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.二、方程与不等式11.3与﹣4的大小关系是.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.213.数a、b在数轴上对应点的位置如图所示,则①a0,②b0,③a b(填“>”、“<”或“=”)14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□16.解方程(1)15+x=50;(2)2x﹣3=11.17.下列图案中,不是轴对称图形的是()A.B.C.D.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B ()、C()、D().20.长方形的周长为12cm,长是宽的2倍,则长为cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是;(2)体重正常比体重偏重的职工多占%;(3)体重偏轻的职工有人.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是%.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高℃.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?参考答案与试题解析一、数与式1.的相反数是()A.3 B.C.D.﹣3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故选:C.2.化简:﹣(﹣3)=3.【考点】相反数.【分析】根据相反数的性质,负负为正化简求解即可.【解答】解:本题是求﹣3的相反数,根据概念(﹣3的相反数)+(﹣3)=0,则﹣3的相反数是3.故化简后为3.3.﹣5的绝对值是5.【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.4.|﹣|=.【考点】绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣|=.故答案为:.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.6.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需2a+3b 元.【考点】列代数式.【分析】用买2千克龙眼的钱数加上3千克香蕉的钱数即可.【解答】解:买2千克龙眼和3千克香蕉共需(2a+3b)元;故答案为:2a+3b.7.当x=﹣1时,代数式(x﹣1)2的值为4.【考点】代数式求值.【分析】将x的代入,然后先算括号内的减法,再算乘方即可.【解答】解:当x=﹣1时,原式=(﹣1﹣1)2=(﹣2)2=4.故答案为:4.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是﹣1.【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故答案为:﹣1.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=【考点】有理数的混合运算.【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式利用同号两数相加的法则计算即可得到结果;(5)原式利用减法法则变形,计算即可得到结果;(6)原式利用同号两数相乘的法则计算即可得到结果;(7)原式利用异号两数相除的法则计算即可得到结果;(8)原式利用乘方的意义计算即可得到结果;(9)原式利用乘方的意义计算即可得到结果.【解答】解:(1)原式=﹣(2﹣1)=﹣1;(2)原式=(﹣5)+(﹣7)=﹣12;(3)原式=16+4=20;(4)原式=﹣(+)=﹣1;(5)原式=5.6+3.8=9.4;(6)原式=1;(7)原式=﹣9;(8)原式=﹣;(9)原式=﹣1﹣1=﹣2.10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.【考点】有理数的混合运算.【分析】(1)先去括号,然后合并同类项即可解答本题;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘除法法则可以解答本题;(4)根据有理数的乘除法法则和幂的乘方,负整数指数幂可以解答本题.【解答】解;(1)﹣5+(﹣0.25)+14﹣(﹣)=﹣5﹣0.25+14+0.25=9;(2)(+﹣1)×(﹣12)==﹣9﹣10+12=﹣7;(3)1÷(﹣)×(﹣4)==;(4)2﹣60÷(﹣2)3×(﹣)﹣1=2﹣60÷(﹣8)×(﹣5)=2﹣=﹣.二、方程与不等式11.3与﹣4的大小关系是>.【考点】有理数大小比较.【分析】根据正数大于负数,即可解答.【解答】解:∵正数大于负数,∴3>﹣4,故答案为:>.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.2【考点】实数大小比较.【分析】根据实数比较大小的法则进行比较即可.【解答】解:∵﹣1<0,1>0,2>0,∴可排除B、C、D,∵﹣2<0,|﹣2|>|﹣1|,∴﹣2<﹣1.故选A.13.数a、b在数轴上对应点的位置如图所示,则①a<0,②b>0,③a<b(填“>”、“<”或“=”)【考点】数轴.【分析】数轴上右边表示的数总大于左边表示的数.原点左边的数为负数,原点右边的数为正数.【解答】解:根据题意得,a<0,b>0,a<b.故答案为:<,>,<.14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:3x﹣2=7,移项合并得:3x=9,解得:x=3,故选C九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□【考点】解一元一次方程.【分析】根据解方程的方法可以求得各个方程的解,从而可以解答本题.【解答】解:(1)x﹣18=60x﹣18+18=60+18x=78;(2)x+21=54x+21﹣21=54﹣21x=33;(3)x=315;(4)4x=484x÷4=48÷4x=12;故答案为:(1)+,18,78;(2)﹣,21,33;(3)×,3,315;(4)÷,4,12.16.解方程(1)15+x=50;(2)2x﹣3=11.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项即可;(2)先移项,再合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,x=50﹣15,合并同类项得,x=35;(2)移项得,2x=11+3,合并同类项得,2x=14,x的系数化为1得,x=7.17.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故选:C.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B (7,8)、C(9,3)、D(3,4).【考点】坐标与图形性质.【分析】由坐标与图形性质容易得出结果.【解答】解:根据题意得:B(7,8),C(9,3),D(3,4);故答案为:7,8;9,3;3,4.20.长方形的周长为12cm,长是宽的2倍,则长为4cm.【考点】一元一次方程的应用.【分析】设长方形的宽是xcm.根据周长,得长方形的长与宽的和是6cm,即可列方程求解.【解答】解:设长方形的宽是xcm.根据题意得:x+2x=6,解得:x=2.则2x=4.答:长方形的长是4cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)【考点】完全平方公式的几何背景.【分析】根据图形可以求得拼成的长方形的另一边长,从而可以求得拼成的长方形的面积.【解答】解:由图可得,拼成的长方形一边长为2,它的另一边长为:a+2+a=2a+2,则拼成的长方形的面积是:(2a+2)×2=2(2a+2),故选A.统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是54%;(2)体重正常比体重偏重的职工多占16%;(3)体重偏轻的职工有28人.【考点】扇形统计图.【分析】(1)由图直接可得;(2)将体重正常与体重偏重的百分比相减可得;(3)先根据三者百分比之和等于1求得体重偏轻的百分比,再用其百分比乘以总人数350即可.【解答】解:(1)由图可知,体重正常的职工占的百分比是54%,故答案为:54%;(2)体重正常比体重偏重的职工多占54%﹣38%=16%,故答案为:16;(3)∵体重偏轻的职工占的百分比是1﹣54%﹣38%=8%,∴体重偏轻的职工有350×8%=28(人),故答案为:28.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性大于摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是62.5%.【考点】可能性的大小.【分析】(1)哪种球的只数多哪种球的可能性就大;(2)用白球的只数除以所有球的总只数即可;【解答】解:(1)∵红球有3只,白球有5只,∴白球的只数大于红球的只数,∴摸出白球的可能性大,故答案为:大于;(2)∵红球3只,白球5只,∴摸到白球的可能性为=62.5%,故答案为:62.5.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高6℃.【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:5﹣(﹣1)=5+1=6(℃),故答案为:6.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【考点】一元一次方程的应用.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.2016年10月24日。

人教版 2016-2017学年七年级上册初一数学期末考试卷及答案

人教版 2016-2017学年七年级上册初一数学期末考试卷及答案

人教版 2016-2017学年七年级上册初一数学期末考试卷及答案2016-2017学年度第一学期期末数学试题七年级数学一、选择题(共20分)1.零不属于()A。

正数集合 B。

有理数集合 C。

整数集合 D。

非正有理数集合2.已知下列各数-8,2.1,3,0,-2.5,10,-1中,其中非负数的个数是()A。

2个 B。

3个 C。

4个 D。

5个3.下列各组数中,互为相反数的是()A。

|3|和-3 B。

|1|和-3 C。

|3|和3 D。

|1|和14.甲、乙、丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高()A。

10米 B。

25米 C。

35米 D。

5米5.质检员抽查某零件的质量,超过规定尺寸的记为正数,不足规定尺寸的记为负数,结果第一个.13mm,第二个-0.12mm,第三个0.15mm,第四个0.11mm,则质量最好的零件是()A。

第一个 B。

第二个 C。

第三个 D。

第四个6.绝对值相等的两数在数轴上对应两点的距离为8,则这两个数为()A。

±8 B。

0和-8 C。

0和8 D。

4和-47.下列判断正确的是()A。

比正数小的数一定是负数 B。

零是最小的有理数 C。

有最大的负整数和最小的正整数 D。

一个有理数所对应的点离开原点越远,则它越大8.一个数的平方仍然得这个数,则此数是()A。

0 B。

±1 C。

±1和0 D。

1和-19.圆柱的侧面展开图是()A。

圆形 B。

扇形 C。

三角形 D。

四边形10.下列说法正确的是()A。

两点之间的距离是两点间的线段;B。

同一平面内,过一点有且只有一条直线与已知直线平行;C。

同一平面内,过一点有且只有一条直线与已知直线垂直;D。

与同一条直线垂直的两条直线也垂直。

二、填空(共24分)1.六棱柱有 8 个顶点,12 个面。

2.如果运进72吨记作+72吨,那么运出56吨记作-56吨。

3.任意写出5个正数,5个负数,并且分别填入所属集合里,正数集合{1.2.3.4.5},负数集合{-1.-2.-3.-4.-5}。

2016-2017学年度七年级数学下期末检测(含答案)

2016-2017学年度七年级数学下期末检测(含答案)

2016-2017学年度七年级第二学期期末检测数学试题一.选择题(单项选择,每小题3分,共27分) 1.下列图案是轴对称图形的是( ).2.已知2,1x y =⎧⎨=⎩是二元一次方程3kx y -=的一个解,那么k 的值是( )A .1;B .-1;C .2;D .-2.3。

方程组⎩⎨⎧=++=+32,12y x m y x 中,若未知数x 、y 满足x+y>0,则m 的取值范围是( ) A .m >-4 B .m ≥-4 C .m <-4 D . m ≤-44.下列几种形状的瓷砖中,只用一种不能..够铺满地面的是( ) A .正六边形; B .正五边形; C .正方形; D .正三角形 . 5. 下列长度的各组线段能组成三角形的是( )A .3cm 、8cm 、5cm ;B .12cm 、5cm 、6cm ;C .5cm 、5cm 、10cm ;D .15cm 、10cm 、7cm .7、如果一个多边形的每一个内角都等于144度,则它的边数为 A. 8 B. 12 C. 10 D. 不能确定),8如图,△ABC 与△DEF 关于直线MN 轴对称,则以下结论中错误的是( )9、在△ABC 中,符合下列条件但不能判定它是直角三角形的是( ).(A) ∠A+∠B =90° (B) ∠A 、∠B 、∠C 的度数之比是1:2:3 (C) ∠A =2∠B =3∠C (D) ∠A +∠B =2∠C9、如图,把菱形ABOC 绕点O 顺时针旋转得到菱形DFOE ,则下列角中不是旋转角的为C .∠COED .∠COF 二.填空题 A .∠BOFB .∠AOD10..若a >b ,用“<”号或“>”号填空:-2a -2b . 11.不等式x 2<5的正整数...解为 12三元一次方程组⎪⎩⎪⎨⎧=+=+=+895x z z y y x 的解是13如果一个多边形的内角和是其外角和的3倍,则这个多边形的边数是___ 14.等腰三角形的一个角为100°,则它的底角为15,如图3,△ABC ≌△BAD ,若AB=6、AC=4、BC=5,则AD 的长为 . 16等腰三角形边长是3和6,则这个等腰三角形的周长是17.如图,△A ′B ′C ′是由△ABC 沿射线AC 方向平移 得到,已知∠A=55°,∠B=60°,则∠C ′=18.如图,在三角形纸片ABC 中,AB=10,BC=7,AC=6 沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边 上的点E 处,折痕为BD ,则△AED 的周长等于 . CEBAD 第18题.三、解答题: 19分)解方程(组):10 (1) 1323=-x (2) ⎩⎨⎧=+=21322y x yx、21,9分如图1,D 是△ABC 的BC 边上一点,∠B =∠BAD ,∠ADC =80°,∠BAC =70°.求: (1)∠B 的度数; (2)∠C 的度数.解 (1)∵∠ADC 是△ABD 的外角(已知)∴∠ADC =∠ +∠BAD (三角形的一个外角等于 ).又∵∠B =∠BAD ,∠ADC =80°( ) ∴∠B =80°÷ = °.(2)在△ABC 中,∵∠B +∠ +∠C =180°(三角形的 ),∴∠C =180°-∠B -∠BAC=180°- - 70° =20.(12分) 解下列不等式(组),并把它们的解集在数轴上表示出来:()(2)⎩⎨⎧-≥+<+6)2(214x x图1每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.(1)在网格中画出△ABC向下平移3个单位得到的△A′B′C′;(2)在网格中画出△ABC绕点C顺时针旋转90°后的图形.(7分) 学校大扫除,某班原分成两个小组,第一组26人打扫教室,第二组22人打扫包干区.这次根据工作需要,要使第二组人数是第一组人数的2倍,那么应从第一组调多少人到第二组?24.(12分)某商店决定购进A 、B 两种纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要95元;若购进A 种纪念品5件,B 种纪念品6件,需要80元. (1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种 进货方案?2016-2017学年度七年级第二学期期末检测参考答案一.选择题(单项选择,每小题3分,共21分)1.A ;2.B ;3.C ;4.B ;5.B ;6.D ;7.C. 二.填空题(每小题4分,共40分)8. x >4 ; 9. <;10.3a -2<0;11.720°; 12. ⎪⎩⎪⎨⎧===632z y x ; 13. 15;14. 1,2 ; 15.65; 16. 9; 17.42 ;86. 三、解答题(共89分)18.解方程(组)(每小题6分,共12分) (1) x =5 (2) ⎩⎨⎧==36y x 19.解不等式(组),并把它们的解集在数轴上表示出来(每小题6分,共12分) (1) ≤x 2 4分 解集在数轴上表示出来 6分图2图3(2)⎩⎨⎧-≥-<53x x 2分 不等式组的解集为35-<≤-x 4分解集在数轴上表示出来 6分 20.(1)∠A=50° 3分, ∵(2)BP 平分∠ABC ,∠PBC=40° 5分CP 平分∠ACB ,∠PCB=25° 7分 ∠BPC =115° 8分21.正确画出一个图形 4分 共8分 22.正确画出一个图形 4分 共8分 23.设第一组调x 人到第二组, 1分依题意列方程,得)26(222x x -=+ 4分 解得 10=x 7分答:第一组应调10人到第二组. 8分 24.(1)2 3分(2)当20≤<t 时,S=2t , 5分当102≤<t 时,S=4, 6分当1210≤<t 时,S=2(12-t ), 7分 当12>t 时,S=0, 8分25.解:(1) 设A 、B 两种纪念品的价格分别为x 元和y 元,则⎩⎨⎧=+=+80659538y x y x 1分 解得⎩⎨⎧==510y x 2分 答:A 、B 两种纪念品的价格分别为10元和5元. 3分 (2)设购买A 种纪念品t 件,则购买B 种纪念品(100-t )件,则7645005750≤+≤t 4分 解得526450≤≤t 5分t 为正整数,∴t =50,51,52, 6分 即有三种方案.第一种方案:购A 种纪念品50件,B 种纪念品50件; 第二种方案:购A 种纪念品51件,B 种纪念品49件; 第三种方案:购A 种纪念品52件,B 种纪念品48件; 7分 (3)第一种方案商家可获利250元; 8分第二种方案商家可获利(245+2a )元:第三种方案商家可获利(240+4a )元: 9分当a =2.5时,三种方案获利相同 10分 当0≤a <2.5时,方案一获利最多 11分 当2.5<a ≤5时,方案三获利最多 12分 26.(1)∠B=∠C=45° ∠E=60° 3分 (2)①EF ∥BC∴∠FDC=∠F=30° 4分 旋转的角度为30° 5分在△ABC 中,过A 作AG ⊥BC,垂足为G ∠B=∠C=∠GAC=∠GAB=45° AG=21BC 7分 在△DEF 中,过D 作DH ⊥EF,垂足为H S △DEF =21ED ·DF=21EF ·DH DH=21DF 9分 ∵BC=DF ∴AG=DH∴点A 在EF 上. 10分 ②∠FDC=45° DE ∥AC 11分 AB ∥DF 12分 ∠FDC=75° EF ∥AB 13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省宜城市刘猴中学七年级数学 2016---2017学年度期末练习学校 班级 姓名 成绩一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.2-的绝对值等于A .2B .12C .12- D .2-2.神舟八号于2015年11月1日5时58分由改进型“长征二号”火箭顺利发射升空,此次火箭的起飞质量为497000公斤,数字497000用科学计数法可以表示为 A .349710⨯B .60.49710⨯C .54.9710⨯D .449.710⨯3.下列各式中结果为负数的是A .(3)--B .2(3)-C .3--D .3- 4.下列计算正确的是A .2325a a a +=B.3a 3a -= C .2a 32535a a +=D .2222a b a b a b -+=5.如图,已知点O 在直线 AB 上,90BOC ∠=︒,则AOE ∠的余角是A .COE ∠B .BOC ∠ C .BOE ∠D .AOE ∠6.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是BCE从正面看从左面看从上面看A .圆柱B .圆锥C .球体D .棱锥 7.若关于x 的方程23=+x ax 的解是1=x ,则a 的值是A .1-B .5C .1D .5- 8.如图,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC ,则∠2的度数是A .20°B .25°C .30°D .70°9.若有理数m 在数轴上对应的点为M ,且满足1m m <<-,则下列数轴表示正确的是10.按下面的程序计算:若输入100,x =输出结果是501,若输入25,x =输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 值可能有A .1种B .2种C .3种D .4种二、填空题(本题共18分,每小题3分)11.若一个数的相反数是2,则这个数是 . 12.角1820α'=︒,角630β'=︒,则αβ+= . 13.如图所示,线段AB =4cm ,BC =7cm ,则AC = cm. 14.若23(2)0m n -++=,则2m n +的值为_____________. 15.如果36a b -=,那么代数式53a b -+的值是___________. 16.观察下面两行数第一行:4,-9, 16,-25, 36,… 第二行:6,-7, 18,-23, 38,…则第二行中的第6个数是 ;第n 个数是.AC1BMxD1C M xM1Amxm三、解答题(本题共24分,第19题8分,其他题每题4分)17.计算:10(1)38(4)-⨯+÷-.18.化简:2537x x++-.19.解方程:(1)2953x x-=+; (2)5731164x x--+=.20.先化简,再求值:已知222(24)2()x x y x y--+-,其中1x=-,12y=.21.画一画:如下图所示,河流在两个村庄A、B的附近可以近似地看成是两条折线段(图中l),A、B分别在河的两旁. 现要在河边修建一个水泵站,同时向A、B两村供水,为了节约建设的费用,就要使所铺设的管道最短. 某人甲提出了这样的建议:从B 向河道作垂线交l于P,则点P为水泵站的位置.(1)你是否同意甲的意见?(填“是”或“否”);(2)若同意,请说明理由,若不同意,那么你认为水泵站应该建在哪?请在图中作出来,并说明作图的依据.四、解答题(本题共 28分,第22题5分,第23题5分,第24题6分,第25题6分,第26题6分)22.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,且∠AOC =40°,求∠COD 的度数.23.列方程解应用题油桶制造厂的某车间主要负责生产制造油桶用的的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套. 生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?24.关于x 的方程(1)30n m x --=是一元一次方程.(1)则m ,n 应满足的条件为:m ,n ; (2)若此方程的根为整数,求整数m 的值.25.已知线段AB 的长为10cm ,C 是直线AB 上一动点,M 是线段AC 的中点,N 是线段BC 的中点.(1)若点C 恰好为线段AB 上一点,则MN = cm ;(2)猜想线段MN 与线段AB 长度的关系,即MN =________AB ,并说明理由.AOBDC26.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是12-=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入3,4,5,则最后输出的结果是_______;(2)若小明将1到2015这2015个整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m ,则m 的最大值为_______;(3)若小明将1到n (n ≥3)这n 个正整数随意地一个一个的输入,全部输入完毕后显示的最后结果设为m . 探究m 的最小值和最大值.参考答案及评分标准说明: 合理答案均可酌情给分,但不得超过原题分数 一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)11.-2 12.2450'︒ 13.11 14.-1 15.-116.-47; 2)1()1(21++-+n n (注:此题第一个空1分,第二个空2分)三、解答题(本题共24分,第19题8分,其他题每题4分)17.解:原式48-31÷⨯= ………………………………2分2-3= ………………………………3分1=.………………………………4分18.解:原式)75()32(-++=x x ………………………………3分25-=x . ………………………………4分19.(1)解:原方程可化为9352+=-x x .………………………………2分 123=-x .………………………………3分 4-=x .………………………………4分(2)解:两边同时乘以12,得)13(312)75(2-=+-x x .………………………………1分 39121410-=+-x x .………………………………2分 12143910-+-=-x x .………………………………3分 1-=x .………………………………4分20.解:原式y x y x x 2242222-++-= ………………………………1分)24()22(222y y x x x -++-=y x 22+=.………………………………2分当1x =-,12y =时,原式212)1(2⨯+-= ………………………………3分 11+=2=.………………………………4分21.解:(1)否;………………………………1分 (2)连结AB ,交l 于点Q ,………………………………2分则水泵站应该建在点Q 处;………………………………3分 依据为:两点之间,线段最短.………………………………4分注:第(2)小题可以不写作法,在图中画出点Q 给1分,写出结论给1分,写出作图依据给1分.四、解答题(本题共 28分,第22题5分,第23题5分,第24题6分,第25题6分,第26题6分)22.解:∵∠BOC =2∠AOC ,∠AOC =40°,∴∠BOC =2×40°=80°, ……………………………1分 ∴∠AOB =∠BOC +∠AOC = 80°+ 40°=120°,……………………………2分 ∵OD 平分∠AOB , ∴∠AOD =601202121=⨯=∠AOB , ……………………………4分 ∴∠COD =∠AOD -∠AOC = 60°- 40°=20°. ……………………………5分23.解:设生产圆形铁片的工人为x 人,则生产长方形铁片的工人为42-x 人,………………………………1分可列方程)42(802120x x -⨯=. ………………………………2分解得:x =24.………………………………3分则42-x =18. ………………………………4分 答:生产圆形铁片的有24人,生产长方形铁片的有18人. ………………5分 24.解:(1)1≠, 1=;…………………………2分(2)由(1)可知方程为03)1(=--x m ,则13-=m x ………………3分 ∵此方程的根为整数, ∴13-m 为整数. 又m 为整数,则3,1,1,31--=-m ∴42,0,2,-=m ………………6分 注:最后一步写对一个的给1分,对两个或三个的给2分,全对的给3分. 25.解:(1)5; ………………………………1分(2)21; ………………………………2分 证明:∵M 是线段AC 的中点,∴,21AC CM =∵N 是线段BC 的中点,∴,21BC CN = ………………………………3分以下分三种情况讨论(图略), 当C 在线段AB 上时,AB BC AC BC AC CN CM MN 21)(212121=+=+=+=; ………………………………4分当C 在线段AB 的延长线上时,AB BC AC BC AC CN CM MN 21)(212121=-=-=-=; ………………………………5分当C 在线段BA 的延长线上时,AB AC BC AC BC CM CN MN 21)(212121=-=-=-=; ………………………………6分综上:AB MN 21=.26. 解:(1)4;………………………………1分 (2)2018;………………………………3分(3)对于任意两个正整数1x ,2x ,21x x -一定不超过1x 和2x 中较大的一个,对于任意三个正整数1x ,2x ,3x ,321-x x x -一定不超过1x ,2x 和3x 中最大的一个,以此类推,设小明输入的n 个数的顺序为,,,n x x x 21则,||||||||321n x x x x m ----= m 一定不超过,,,n x x x 21中的最大数,所以n m ≤≤0,易知m 与12n +++的奇偶性相同;1,2,3可以通过这种方式得到0:||3-2|-1|=0; 任意四个连续的正整数可以通过这种方式得到0:0|2)-(|3)(|)1(|||=+++-a a -a a (*);下面根据前面分析的奇偶性进行构造,其中k 为非负整数,连续四个正整数结合指的是按(*)式结构计算.当k n 4=时,12n +++为偶数,则m 为偶数,连续四个正整数结合可得到0,则最小值为0,前三个结合得到0,接下来连续四个结合得到0,仅剩下n ,则最大值为n ; 当14+=k n 时,12n +++为奇数,则m 为奇数,除1外,连续四个正整数结合得到0,则最小值为1,从1开始连续四个正整数结合得到0,仅剩下n ,则最大值为n ; 当24+=k n 时,12n +++为奇数,则m 为奇数,从1开始连续四个正整数结合得到0,仅剩下n 和n -1,则最小值为1,从2开始连续四个正整数结合得到0,仅剩下1和n ,最大值为n -1;当34+=k n 时,12n +++为偶数,则m 为偶数,前三个结合得到0,接下来连续四个正整数结合得到0,则最小值为0,从3开始连续四个正整数结合得到0,仅剩下1,2和n ,则最大值为n -1.………………………………6分注:最后一问写对一种的给1分,对两种或三种的给2分,全对的给3分.。

相关文档
最新文档