2018-2019年七年级上期末数学试题(附答案)

合集下载

山西省太原市2018-2019学年七年级上期末数学试卷含答案解析

山西省太原市2018-2019学年七年级上期末数学试卷含答案解析

山西省太原市2019~2019学年度七年级上学期期末数学试卷一、选择题:共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求.请选出并将其字母代码填入表格相应的位置1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.12.为完成下列任务,最适合用普查的是()A.了解全国2019~2019学年度七年级学生的视力情况B.对乘坐高铁的乘客进行安检C.了解一批电视机的使用寿命D.检测汾河某段水域的水质情况3.如图的立体图形是由7个完全相同的小立方体组成的,从正面看这个立体图形得到的形状图是()A.B.C.D.4.下列四个数中,是负数的是()A.|﹣2| B.(﹣2)2C.﹣(﹣2)D.﹣|﹣2|5.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.16.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生7.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为()A.xy B.x+y C.10y+x D.10x+y8.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.5+3=8 B.﹣5+3=﹣2 C.5﹣3=2 D.﹣5﹣3=﹣89.下列解方程的步骤中正确的是()A.由13﹣x=﹣5,得13﹣5=xB.由﹣7x+3=﹣13x﹣2,得13x+7x=﹣3﹣2C.由﹣7x=1,得x=﹣7D.由=2,得x=610.如图是甲、乙两公司近年销售收入情况的折线统计图,根据统计图得出下列结论,其中正确的是()A.甲公司近年的销售收入增长速度比乙公司快B.乙公司近年的销售收入增长速度比甲公司快C.甲、乙两公司近年的销售收入增长速度一样快D.不能确定甲、乙两公司近年销售收入增长速度的快慢二、填空题:本题共5个小题,每小题3分,共15分.只要求写出最后结果11.计算:2ab+3ab=.12.太阳的半径约为696000000米,用科学记数法表示为米.13.某地区随机抽查了一部分市民进行法律知识测试,测试成绩(得分取整数,每组数据含最小值不含最大值)整理后,得到如图所示的频数分布直方图,写出一条你从图中所获得的信息:.14.若方程4x﹣1=□x+2的解是x=3,则“□”处的数为.15.如图,用黑白两色正方形瓷砖按一定的规律铺设地图案,第n个图案中白色瓷砖有块(用含n的式子表示)16.家电经销部某品牌一种电视机的进价为800元/台,为了促销准备按标价的6折销售,若要使卖出一台这种电视机就能获利400元,则这种电视机的标价应为元/台.三、解答题:本大题共8小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤17.计算:(1)(﹣5)﹣2×4+(﹣3)(2)(﹣2)2+(﹣)×24.18.先化简,再求值:3(x2y+xy2)+(2x2y﹣3xy2),其中x=﹣2,y=3.19.解方程:(1)3x+1=9﹣x(2)=1﹣.20.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为,BD的长度为.21.某区环保部门为了提高宣传垃圾分类的实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,进行整理后,绘制了如下两幅不完整的统计图:根据统计图解答下列问题:(1)求抽样调查的生活垃圾的总吨数以及其中的有害垃圾的吨数;(2)求扇形统计图中,“D”部分所对应的圆心角的度数,并将条形统计图补充完整;(3)调查发现,在可回收物中废纸垃圾约占,每回收1吨废纸可再造0.85吨的再生纸,假设该城市每月生产的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可制成再生纸多少吨?22.某文具店中一种铅笔的售价为2元/支,一种圆珠笔的售价为3元/支,某一天该文具店卖出这两种笔共60支,卖的金额165元,求该文具店这一天卖出的这两种笔各多少支.23.已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为°,∠CON的度数为°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为°;(3)请从下列(A),(B)两题中任选一题作答.我选择:.(A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为°;∠DOC 与∠BON的数量关系是∠DOC∠BON(填“>”、“=”或“<”);(B)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON 的度数为°;∠AOM﹣∠CON的度数为°.24.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:(1)当快车与慢车相遇时,求慢车行驶的时间;(2)请从下列(A),(B)两题中任选一题作答.我选择:.(A)当两车之间的距离为315千米时,求快车所行的路程;(B)①在慢车从乙地开往甲地的过程中,求快慢两车之间的距离;(用含x的代数式表示)②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.山西省太原市2019~2019学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题:共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求.请选出并将其字母代码填入表格相应的位置1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.1【考点】有理数大小比较.【分析】根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.【解答】解:比﹣2小的数是应该是负数,且绝对值大于2的数;分析选项可得,只有A符合.故选:A.【点评】本题考查实数大小的比较,是基础性的题目.2.为完成下列任务,最适合用普查的是()A.了解全国2019~2019学年度七年级学生的视力情况B.对乘坐高铁的乘客进行安检C.了解一批电视机的使用寿命D.检测汾河某段水域的水质情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全国2019~2019学年度七年级学生的视力情况,调查范围广,适合抽样调查,故A错误;B、对乘坐高铁的乘客进行安检是事关重大的调查,适合普查,故B正确;C、了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,故C错误;D、检测汾河某段水域的水质情况,无法普查,适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图的立体图形是由7个完全相同的小立方体组成的,从正面看这个立体图形得到的形状图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看从下面第一层是三个小正方形,第二层左右各一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,把从正面看到的图形画出是解题关键.4.下列四个数中,是负数的是()A.|﹣2| B.(﹣2)2C.﹣(﹣2)D.﹣|﹣2|【考点】正数和负数.【分析】先化简,再利用负数的意义判定.【解答】解:A、|﹣2|=2,是正数;B、(﹣2)2=4,是正数;C、﹣(﹣2)=2,是正数;D、﹣|﹣2|=﹣2,是负数.故选:D.【点评】此题考查绝对值、相反数以、乘方以及负数的意义等基础知识.5.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.1【考点】专题:正方体相对两个面上的文字.【分析】把图中所示的展开图折叠成立体图形,标有数字1的面与标有数字4的面相对,标有数字2的面与标有数字6的面相对,标有数字3的面与标有数字5的面相对.【解答】解:根据题意和图示可知:“1”的对面是4,“6”的对面是2,“3”的对面是5.故选:C.【点评】本题考查了正方体相对两个面上的文字,关键是灵活运用正方体的相对面特点解答问题,立意新颖,是一道不错的题.6.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生【考点】全面调查与抽样调查.【专题】应用题.【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:因为要了解初中的视力情况范围较大、难度较大,所以应采取抽样调查的方法比较合适,本题考查的是调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,故只有D符合实际并具有普遍性,故选:D.【点评】本题考查了调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,难度适中.7.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为()A.xy B.x+y C.10y+x D.10x+y【考点】列代数式.【分析】把十位上的数字y乘以10后加上x即可.【解答】解:这个两位数表示为10x+y.故选D.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键是十位数的表示方法.8.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.5+3=8 B.﹣5+3=﹣2 C.5﹣3=2 D.﹣5﹣3=﹣8【考点】数轴.【专题】推理填空题.【分析】把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,根据“左减右加”的法则,用算式表示上述过程与结果,正确的是:﹣5+3=﹣2,据此解答即可.【解答】解:把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是:﹣5+3=﹣2.故选:B.【点评】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确“左减右加”的法则.9.下列解方程的步骤中正确的是()A.由13﹣x=﹣5,得13﹣5=xB.由﹣7x+3=﹣13x﹣2,得13x+7x=﹣3﹣2C.由﹣7x=1,得x=﹣7D.由=2,得x=6【考点】解一元一次方程.【分析】去分母,去括号时一定要注意:不要漏乘方程的每一项,移项要变号.【解答】解:A、移项﹣5没有变号,错误;B、﹣7x改变了符号,错误;C、系数化为1是两边同时除以﹣7,错误;D、正确.故选D.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.10.如图是甲、乙两公司近年销售收入情况的折线统计图,根据统计图得出下列结论,其中正确的是()A.甲公司近年的销售收入增长速度比乙公司快B.乙公司近年的销售收入增长速度比甲公司快C.甲、乙两公司近年的销售收入增长速度一样快D.不能确定甲、乙两公司近年销售收入增长速度的快慢【考点】折线统计图.【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2010年的销售收入约为50万元,2019年约为90万元,则从2010~2019年甲公司增长了90﹣50=40万元;乙公司2010年的销售收入约为50万元,2019年约为70万元,则从2010~2019年甲公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.二、填空题:本题共5个小题,每小题3分,共15分.只要求写出最后结果11.计算:2ab+3ab=5ab.【考点】合并同类项.【专题】常规题型.【分析】这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(2+3)ab=5ab.故答案为:5ab.【点评】本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.12.太阳的半径约为696000000米,用科学记数法表示为 6.96×108米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:696 000 000=6.96×108,故答案为:6.96×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.某地区随机抽查了一部分市民进行法律知识测试,测试成绩(得分取整数,每组数据含最小值不含最大值)整理后,得到如图所示的频数分布直方图,写出一条你从图中所获得的信息:分数在70~80之间的人数最多;成绩低于60分的有3人;成绩90分及其以上的有6人;参加测试的共有48人等.【考点】频数(率)分布直方图.【分析】根据频数分布直方图进行解答即可.【解答】解:分数在70~80之间的人数最多;成绩低于60分的有3人;成绩90分及其以上的有6人;参加测试的共有48人等,故答案为:分数在70~80之间的人数最多;成绩低于60分的有3人;成绩90分及其以上的有6人;参加测试的共有48人等.【点评】此题考查频数分布直方图问题,关键是根据频数分布直方图得出信息.14.若方程4x﹣1=□x+2的解是x=3,则“□”处的数为3.【考点】一元一次方程的解.【分析】根据方程解的定义,将x=3代入即可得出答案.【解答】解:∵方程4x﹣1=□x+2的解是x=3,∴12﹣1=3□+2,∴“□”处的数为3,故答案为3.【点评】本题考查了一元一次方程的解,根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.15.如图,用黑白两色正方形瓷砖按一定的规律铺设地图案,第n个图案中白色瓷砖有3n+2块(用含n的式子表示)【考点】规律型:图形的变化类.【分析】由图形可知:第1个图案是5个.第二个图案是8个,多了3个…依此类推,发现后一个图案中的白色瓷砖总比前一个多3个,即第n个图案中白色瓷砖块数是5+3(n﹣1)=3n+2.【解答】解:∵第n个图案中白色瓷砖有1+3+1=5块,第n个图案中白色瓷砖有1+3×2+1=5块,第n个图案中白色瓷砖有1+3×3+1=11块,…∴第n个图案中白色瓷砖有1+3n+1=3n+2块.故答案为:3n+2.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律:后一个图案中的白色瓷砖总比前一个多3个解决问题.16.家电经销部某品牌一种电视机的进价为800元/台,为了促销准备按标价的6折销售,若要使卖出一台这种电视机就能获利400元,则这种电视机的标价应为2000元/台.【考点】一元一次方程的应用.【分析】根据题意,设这种电视机的标价为x元,按照等量关系“标价×0.6﹣进价=400元,列出一元一次方程即可求解.【解答】解:设这种电视机的标价为x元,依题意有0.6x﹣800=400,解得x=2000.答:这种电视机的标价应为2000元/台.故答案为:2000.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题:本大题共8小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤17.计算:(1)(﹣5)﹣2×4+(﹣3)(2)(﹣2)2+(﹣)×24.【考点】有理数的混合运算.【分析】(1)先算乘法,再算加减即可;(2)根据乘法分配律进行计算即可.【解答】解:(1)原式=﹣5﹣8﹣3=﹣16;(2)原式=×4+×24﹣×24=2+9﹣4=7.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.18.先化简,再求值:3(x2y+xy2)+(2x2y﹣3xy2),其中x=﹣2,y=3.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2y+3xy2+2x2y﹣3xy2=5x2y,当x=﹣2,y=3时,原式=60.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.解方程:(1)3x+1=9﹣x(2)=1﹣.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去分母,再去括号,移项,合并同类项,最后化系数为1,从而得到方程的解.【解答】解:(1)移项得:3x+x=9﹣1,合并同类项得:4x=8,化系数为1得:x=2;(2)去分母得:3(2x﹣1)=12﹣4(x+2),去括号得:6x﹣3=12﹣4x﹣8,移项合并得:10x=7,系数化为1得:得x=.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为12,BD的长度为18.【考点】两点间的距离;直线、射线、线段.【专题】作图题.【分析】(1)根据题意画出图形即可;(2)由AC=2AB,AD=AC,以及DB=AD+AB求解即可.【解答】解:(1)如图所示;(2)∵AB=BC,∴AC=2AB=2×6=12.∵AD=AC=12,∴BD=AD+AB=12+6=18.故答案为:12;18.【点评】本题主要考查的是两点间的距离,掌握图形间线段之间的长度关系式解题的关键.21.某区环保部门为了提高宣传垃圾分类的实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,进行整理后,绘制了如下两幅不完整的统计图:根据统计图解答下列问题:(1)求抽样调查的生活垃圾的总吨数以及其中的有害垃圾的吨数;(2)求扇形统计图中,“D”部分所对应的圆心角的度数,并将条形统计图补充完整;(3)调查发现,在可回收物中废纸垃圾约占,每回收1吨废纸可再造0.85吨的再生纸,假设该城市每月生产的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可制成再生纸多少吨?【考点】条形统计图;扇形统计图.【分析】(1)根据D类垃圾的数量是5吨,所占的百分比是10%,据此即可求得总数,然后根据百分比的意义求得有害垃圾的数量;(2)利用360°乘以对应的百分比即可求得圆心角的度数,根据百分比的意义求得B类垃圾的数量;(3)利用总吨数乘以54%,再乘以,最后乘以0.85即可求解.【解答】解:(1)抽样调查的生活垃圾的总吨数是5÷10%=50(吨),其中的有害垃圾的吨数是:500(1﹣54%﹣30%﹣10%)=3(吨);(2)扇形统计图中,“D”部分所对应的圆心角的度数是360×10%=36°.B类的垃圾吨数是50×30%=15(吨).;(3)每月回收的废纸可制成再生纸的数量是:10000×54%××0.85=918(吨).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某文具店中一种铅笔的售价为2元/支,一种圆珠笔的售价为3元/支,某一天该文具店卖出这两种笔共60支,卖的金额165元,求该文具店这一天卖出的这两种笔各多少支.【考点】一元一次方程的应用.【分析】设文具店这一天卖出这种铅笔x支,圆珠笔(60﹣x)支.根据“铅笔的售价为2元/支,圆珠笔的售价为3元/支,卖的金额165元”列出方程并解答.【解答】解:设文具店这一天卖出这种铅笔x支,圆珠笔(60﹣x)支.根据题意得:2x+3(60﹣x)=165,解这个方程,得x=15.60﹣x=45.答:文具店这一天卖出这种铅笔15支,圆珠笔45支.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为120°,∠CON的度数为150°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为30°;(3)请从下列(A),(B)两题中任选一题作答.我选择:A(或B).(A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为30°;∠DOC与∠BON 的数量关系是∠DOC=∠BON(填“>”、“=”或“<”);(B)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON 的度数为150°;∠AOM﹣∠CON的度数为30°.【考点】角的计算;角平分线的定义.【分析】(1)利用两角互补,即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据直角三角板MON各角的度数以及图中各角的关系即能得出结论.【解答】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°.故答案为:120;150.(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,∠BOC=120°,∴∠BOM=∠BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为:30°.(3)(A)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(B)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,150∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为:A(或B);30;=;150;30.【点评】本题考查了角的计算,解题的关键是利用角间的各种关系,利用互余、互补即可解决问题.24.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:(1)当快车与慢车相遇时,求慢车行驶的时间;(2)请从下列(A),(B)两题中任选一题作答.我选择:(A).(A)当两车之间的距离为315千米时,求快车所行的路程;(B)①在慢车从乙地开往甲地的过程中,求快慢两车之间的距离;(用含x的代数式表示)②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.【考点】一元一次方程的应用.【分析】(1)设慢车行驶的时间为x小时,根据相遇时,快车行驶的路程+慢车行驶的路程=900,依此列出方程,求解即可;(2)(A)当两车之间的距离为315千米时,分三种情况:①两车相遇前相距315千米,快车行驶的路程+慢车行驶的路程=900﹣315;②两车相遇后相距315千米,快车行驶的路程+慢车行驶的路程=900+315;③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在;(B)分三种情况:①慢车与快车相遇前;慢车与快车相遇后;快车到达乙地时;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢车行驶的时间为4++=5小时.设第二列快车行驶y小时与慢车相遇,根据相遇时,快车行驶的路程+慢车行驶的路程=900,求出y的值,进而求解即可.【解答】解:(1)设慢车行驶的时间为x小时,由题意得120(x+)+90x=900,解得x=4.答:当快车与慢车相遇时,慢车行驶了4小时;(2)(A)当两车之间的距离为315千米时,有两种情况:①两车相遇前相距315千米,此时120(x+)+90x=900﹣315,解得x=2.5.120(x+)=360(千米);②两车相遇后相距315千米,此时120(x+)+90x=900+315,解得x=5.5.120(x+)=720(千米);③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在.答:当两车之间的距离为315千米时,快车所行的路程为360千米或720千米;(B)①当慢车与快车相遇前,即0≤x<4时,两车的距离为900﹣120(x+)﹣90x=840﹣210x;当慢车与快车相遇后,快车到达乙地前,即4≤x<7.5时,两车的距离为120(x+)+90x﹣900=210x﹣840;当快车到达乙地时,即7.5≤x≤10时,两车的距离为90x;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢车行驶的时间为4++=5小时.设第二列快车行驶y小时与慢车相遇,由题意,得120y+×90=900,解得y=4,。

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

人教版2018-2019学年第一学期七年级数学期末测试题(含答案)

2018-2019学年七年级(上)期末数学试卷一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是,﹣的倒数是.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为平方千米.10.计算:15°37′+42°51′=.11.根据图提供的信息,可知一个杯子的价格是元.12.用6根火柴最多组成个一样大的三角形,所得几何体的名称是.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=cm.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.52018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共6个小题,每小题3分,共18分.)1.设a是一个负数,则数轴上表示数﹣a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【考点】数轴.【分析】根据数轴的相关概念解题.【解答】解:因为a是一个负数,则﹣a是一个正数,二者互为相反数,﹣a在原点的右边.故选B.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.如图所示的几何体,从上面看得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据所看位置,找出此几何体的三视图即可.【解答】解:从上面看得到的平面图形是两个同心圆,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.5.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.【考点】点、线、面、体.【专题】常规题型.【分析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.【解答】解:A、是直角梯形绕底边旋转形成的圆台,故A错误;B、是直角梯形绕垂直于底的腰旋转形成的圆台,故B正确;C、是梯形底边在上形成的圆台,故C错误;D、是梯形绕斜边形成的圆台,故D错误.故选:B.【点评】本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.6.某商店把一种洗涤用品按标价的九折出售,仍可获利20%,若该洗涤用品的进价为21元,则标价为()元.A.26 B.27 C.28 D.29【考点】一元一次方程的应用.【分析】设该商品的标价为x,则商品的售价为0.9x元,根据售价﹣进价=利润为等量关系建立方程求出其解即可.【解答】解:设该商品的标价为x,则商品的售价为0.9x元,由题意,得0.9x﹣21=21×20%,解得:x=28故选C.【点评】本题考查了销售问题的数量关系在生活实际问题的中的运用,一元一次方程的解法的运用,解答时运用售价﹣进价=进价×利润率建立方程是关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)7.﹣5的相反数是5,﹣的倒数是﹣2.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的相反数是5,﹣的倒数是﹣2,故答案为:5,﹣2.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.若a3﹣2n b2与5a3n﹣2b2是同类项,则n=1.【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:a3﹣2n b2与5a3n﹣2b2是同类项,3﹣2n=3n﹣2,n=1,故答案为:1.【点评】本题考查了同类项,相同的字母的指数也相同是解题关键.9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将它的面积用科学记数法表示应为 2.5×106平方千米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】把一个大于10的数写成科学记数法a×10n的形式时,将小数点放到左边第一个不为0的数位后作为a,把整数位数减1作为n,从而确定它的科学记数法形式.【解答】解:2 500 000=2.5×106平方千米.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.10.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.11.根据图提供的信息,可知一个杯子的价格是8元.【考点】二元一次方程组的应用.【分析】仔细观察图形,可知本题存在两个等量关系,即一个水壶的价格+一个杯子的价格=43,两个水壶的价格+三个杯子的价格=94.根据这两个等量关系可列出方程组.【解答】解:设水壶单价为x元,杯子单价为y元,则有,解得.答:一个杯子的价格是8元.故答案为:8.【点评】解题关键是弄清题意,找到合适的等量关系,列出方程组.12.用6根火柴最多组成4个一样大的三角形,所得几何体的名称是三棱锥或四面体.【考点】认识立体图形.【分析】用6根火柴,要使搭的个数最多,就要搭成立体图形,即三棱锥.【解答】解:要使搭的个数最多,就要搭成三棱锥,这时最多可以搭4个一样的三角形.图形如下:故答案为:4,三棱锥或四面体.【点评】此题主要考查了认识立体图形,本题要打破思维定势,不要只从平面去考虑,要考虑到立体图形的拼组.13.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=11或5cm.【考点】比较线段的长短.【专题】分类讨论.【分析】分点B在点A、C之间和点C在点A、B之间两种情况讨论.【解答】解:(1)点B在点A、C之间时,AC=AB+BC=8+3=11cm;(2)点C在点A、B之间时,AC=AB﹣BC=8﹣3﹣5cm.∴AC的长度为11cm或5cm.【点评】分两种情况讨论是解本题的难点,也是解本题的关键.14.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是158.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是14.【解答】解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158.故答案为:158.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.三、解答题(本大题共10个小题;共78分)15.计算(1)(﹣76)+(+26)+(﹣31)+(+17)(2)2(2b﹣3a)﹣3(2a﹣3b).【考点】有理数的加法;整式的加减.【分析】(1)根据有理数的加法法则,即可解答.(2)先去括号,再合并同类项,即可解答.【解答】解:(1)(﹣76)+(+26)+(﹣31)+(+17)=﹣76﹣31+26+17=﹣107+43=﹣64.(2)2(2b﹣3a)﹣3(2a﹣3b)=4b﹣6a﹣6a+9b=13b﹣12a.【点评】本题考查了有理数的加法法则,解决本题的关键是熟记有理数的加法法则.16.解下列方程:(1)x﹣7=10﹣4(x+0.5);(2)﹣=1.【考点】解一元一次方程.【专题】计算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:3x﹣3﹣6﹣4x=6,移项合并得:x=﹣15.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.17.如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).【考点】作图—应用与设计作图.【分析】连接AB,与l的交点就是P点.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.18.(6分)(2015秋太和县期末)一个角的余角比这个角的少30°,请你计算出这个角的大小.【考点】余角和补角.【分析】设这个角的度数为x,根据互余的两角的和等于90°表示出它的余角,然后列出方程求解即可.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),由题意得:x﹣(90°﹣x)=30°,解得:x=80°.答:这个角的度数是80°.【点评】本题考查了余角的定义,熟记概念并列出方程是解题的关键.19.先化简再求值:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.【考点】整式的加减—化简求值;合并同类项;去括号与添括号.【专题】计算题.【分析】本题先将括号去掉,进行同类项合并,然后化简后,将值代入,即可求得结果.【解答】解:﹣2y3+(2x3﹣xyz)﹣2(x3﹣y3+xyz),其中x=1,y=2,z=﹣3.当x=1,y=2,z=﹣3时,原式=﹣3×1×2×(﹣3)=18.…(10分)【点评】本题考查整式的加减及化简求值,将式子进行同类项合并后,然后化简后即可求得结果.20.如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.【考点】角平分线的定义.【专题】计算题.【分析】由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.【解答】解:∵∠AOB=110°,∠COD=70°∴∠AOC+∠BOD=∠AOB﹣∠COD=40°∵OA平分∠EOC,OB平分∠DOF∴∠AOE=∠AOC,∠BOF=∠BOD∴∠AOE+∠BOF=40°∴∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.【点评】解决本题的关键利用角平分线定义得到所求角的两边的角的度数.21.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若C为直线AB上线段AB之外的任一点,且AC=m,CB=n,则线段MN的长为|m﹣n|.【考点】比较线段的长短.【专题】计算题.【分析】(1)点M是线段AC中点,则MC=AC,点N的线段BC中点,所以CN=CB,AC+BC=AB,AB已知,从而可求出MN长度.(2)根据以上分析可得MN=AB,线段MN的长度是线段AB的一半.(3)当点C在线段AB的延长线上时,MN等于MC减去BC=n,而MC=AC=m,从而可求出MN长度;当点C在线段BA的延长线上时,MN等于NC减去MC,NC=BC=n,MC=AC=m,从而可求出MN的长度.【解答】解:(1)MN=MC+CN=AC CB=7cm;(2)MN=MC+CN=AC=;(3)当点C在线段AB的延长线上时,MN=(m﹣n);当点C在线段BA的延长线上时,MN=(n﹣m);综合以上情况得:MN=.【点评】本题前两问主要根据题中图形得到各线段之间的关系,求出MN的长度,而第三问要分情况讨论,M在AB不同侧时有不同的情况,分析各情况得到MN的表达式.22.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.23.如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.【考点】余角和补角.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD和∠COB表示出∠BOD,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.【解答】解:(1)∠AOD与∠COB互补.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD﹣∠AOB=∠AOD﹣90°,∠BOD=∠COD﹣∠COB=90°﹣∠COB,∴∠AOD﹣90°=90°﹣∠COB,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补;(2)成立.理由如下:∵∠AOB、∠COD都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD与∠COB互补.【点评】本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD是解题的关键.24.某天,一蔬菜经营户用60元钱从蔬菜批发市场批了西红柿和豆角共40㎏到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?品名西红柿豆角批发价(单位:元/kg) 1.2 1.6零售价(单位:元/kg) 1.8 2.5【考点】二元一次方程组的应用.【专题】图表型.【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,1.2×西红柿的重量+1.6×豆角的重量=60,根据这两个等量关系可列出方程组.【解答】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有解得10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些西红柿和豆角能赚33元.【点评】注意要先求出西红柿和豆角的重量,再计算利润.。

2018-2019学年浙江省杭州市下城区七年级(上)期末数学试卷(解析版)

2018-2019学年浙江省杭州市下城区七年级(上)期末数学试卷(解析版)

2018-2019学年浙江省杭州市下城区七年级(上)期末数学试卷一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)下列各数是负整数的是()A.﹣20B.﹣C.﹣πD.﹣(﹣2)2.(3分)把1.5952精确到十分位的近似数是()A.1.5B.1.59C.1.60D.1.63.(3分)下列计算正确的是()A.﹣6+4=﹣10B.0﹣7=7C.﹣1.3﹣(﹣2.1)=0.8D.4﹣(﹣4)=04.(3分)下列各式正确的是()A.±=3B.=±3C.±=±3D.=﹣3 5.(3分)如图,点A表示的数可能是()A.﹣0.8B.﹣1.2C.﹣2.2D.﹣2.86.(3分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.求男生有多少人?设男生有x人,则可列方程为()A.2x+3(20﹣x)=52B.3x+2(20﹣x)=52C.2x+3(52﹣x)=20D.3x+2(52﹣x)=207.(3分)下列角度换算错误的是()A.10.6°=10°36″B.900″=0.25°C.1.5°=90′D.54°16′12″=54.27°8.(3分)若代数式x﹣3y+7的值为5,则值一定为7的代数式是()A.x+y+5B.x+3y+2C.2x﹣6y﹣3D.﹣2x+6y+3 9.(3分)设两个锐角分别为∠1和∠2,()A.若∠1的余角和∠2的余角互余,则∠1和∠2互补B.若∠1的余角和∠2的补角互补,则∠1和∠2互补C.若∠1的补角和∠2的余角互补,则∠1和∠2互余D.若∠1的补角和∠2的补角互补,则∠1和∠2互余10.(3分)若=1,其中i =0,1,2……,( )A .当x 0=0时,x 2018=4037B .当x 0=1时,x 2018=4037C .当x 0=2时,x 2018=4037D .当x 0=3时,x 2018=4037二.填空题:本题有6个小题,每小题4分,共24分.11.(4分)﹣的相反数是 ;﹣2的绝对值等于 . 12.(4分)去括号:﹣(a +b ﹣c )= . 13.(4分)计算:﹣= .14.(4分)某种细胞每30分钟由1个分裂成2个,这种细胞由1个分裂成256个需要 小时.15.(4分)若点A ,点B ,点C 在直线l 上,设AB =a ,BC =b ,其中a ≠b ,则AC = (用含a ,b 的代数式表示). 16.(4分)设代数式A =代数式B =,a 为常数.观察当x 取不同值时,对应A 的值,并列表如下(部分):当x =1时,B = ;若A =B ,则x = .三.解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算: (1)21﹣(4﹣10) (2)﹣62×(﹣)18.(8分)解方程:(1)3x +2=3.5x ﹣1 (2)1+=19.(8分)(1)计算:3(a ﹣b +1)﹣4(a ﹣b +1),其中a =+1,b =;(2)先化简,后求值:2(a 2b ﹣ab 2+b 2)﹣3(a 2b ﹣ab 2+b 2),其中a =6,b =﹣.20.(10分)若多项式m2+5m﹣3的常数项是a,次数是b,当m=1时,此多项式的值为c.(1)分别写出a,b,c表示的数,并计算(a+b)+(b+c)+(c+a)的值;(2)设a,b,c在数轴上对应的点分别是点A,点B,点C.若点P是线段AB上的一点,比较与PC的大小,说明理由.21.(10分)如图,小方将一个正方形纸片剪去一个宽为4cm的长方形(记作A)后,再将剩下的长方形纸片剪去一个宽为5cm的长方形(记作B).(1)若A与B的面积均为Scm2,求S的值.(2)若A的周长是B的周长的倍,求这个正方形的边长.22.(12分)小方家住房户型呈长方形,平面图如下(单位:米).现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)求a的值.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低?23.(12分)如图,0°<∠AOB<180°,射线OC,射线OD,射线OE,射线OF均在∠AOB内部,∠AOC=∠BOD=∠EOF,∠COE=∠DOF,∠COD=2∠EOF.(1)若∠COE=20°,求∠EOF的度数;(2)若∠EOF与∠COD互余,找出图中所有互补的角,并说明理由;(3)若∠EOF的其中一边与OA垂直,求∠AOB的度数.2018-2019学年浙江省杭州市下城区七年级(上)期末数学试卷参考答案与试题解析一.选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)下列各数是负整数的是()A.﹣20B.﹣C.﹣πD.﹣(﹣2)【分析】直接利用负整数的定义进而分析得出答案.【解答】解:由﹣(﹣2)=2,再结合负整数的定义可得:﹣20是负整数.故选:A.【点评】此题主要考查了相反数,正确把握负整数的定义是解题关键.2.(3分)把1.5952精确到十分位的近似数是()A.1.5B.1.59C.1.60D.1.6【分析】精确到十分位就是精确到0.1的意思,1后面的数四舍五入就可以1.5952精确到十分位,5还是9,故舍去9后的数字为1.6.【解答】解:把1.5952精确到十分位的近似数是1.6,故选:D.【点评】本题主要考查近似数和有效数字,精确到哪一位,哪一位后的第一个数就四舍五入.3.(3分)下列计算正确的是()A.﹣6+4=﹣10B.0﹣7=7C.﹣1.3﹣(﹣2.1)=0.8D.4﹣(﹣4)=0【分析】根据有理数的加法法则和减法法则逐一计算可得.【解答】解:A.﹣6+4=﹣2,此选项错误;B.0﹣7=﹣7,此选项错误;C.﹣1.3﹣(﹣2.1)=﹣1.3+2.1=0.8,此选项正确;D.4﹣(﹣4)=4+4=8,此选项错误;故选:C.【点评】本题主要考查有理数的加减混合运算,解题的关键是掌握有理数的加法法则和减法法则.4.(3分)下列各式正确的是()A.±=3B.=±3C.±=±3D.=﹣3【分析】根据平方根和算术平方根的定义逐一计算可得.【解答】解:A.=±3,此选项错误;B.=3,此选项错误;C.=±3,此选项正确;D.无意义,此选项错误;故选:C.【点评】本题主要考查算术平方根和平方根,解题的关键是掌握平方根和算术平方根的定义.5.(3分)如图,点A表示的数可能是()A.﹣0.8B.﹣1.2C.﹣2.2D.﹣2.8【分析】先根据数轴判断出点A表示的数的范围,再结合各选项逐一判断可得.【解答】解:由数轴知,点A表示的数大于﹣2,且小于﹣1,而﹣2<﹣1.2<﹣1,故选:B.【点评】本题考查了利用数轴上的数,右边的数总是大于左边的数.6.(3分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.求男生有多少人?设男生有x人,则可列方程为()A.2x+3(20﹣x)=52B.3x+2(20﹣x)=52C.2x+3(52﹣x)=20D.3x+2(52﹣x)=20【分析】设男生有x人,则女生有(20﹣x)人,根据植树的总棵数=3×男生人数+2×女生人数,即可得出关于x的一元一次方程,此题得解.【解答】解:设男生有x人,则女生有(20﹣x)人,根据题意得:3x+2(20﹣x)=52.故选:B.【点评】本题考查了由实际问题抽出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)下列角度换算错误的是()A.10.6°=10°36″B.900″=0.25°C.1.5°=90′D.54°16′12″=54.27°【分析】根据度、分、秒之间的换算关系求解.【解答】解:A、10.6°=10°36',错误;B、900″=0.25°,正确;C、1.5°=90′,正确;D、54°16′12″=54.27°,正确;故选:A.【点评】本题考查了度、分、秒之间的换算关系:1°=60′,1′=60″,难度较小.8.(3分)若代数式x﹣3y+7的值为5,则值一定为7的代数式是()A.x+y+5B.x+3y+2C.2x﹣6y﹣3D.﹣2x+6y+3【分析】先根据已知条件得出x﹣3y=﹣2,将其代入﹣2x+6y+3=﹣2(x﹣3y)+3计算可得.【解答】解:∵x﹣3y+7=5,∴x﹣3y=﹣2,则﹣2x+6y+3=﹣2(x﹣3y)+3=﹣2×(﹣2)+3=4+3=7,故选:D.【点评】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.9.(3分)设两个锐角分别为∠1和∠2,()A.若∠1的余角和∠2的余角互余,则∠1和∠2互补B.若∠1的余角和∠2的补角互补,则∠1和∠2互补C.若∠1的补角和∠2的余角互补,则∠1和∠2互余D.若∠1的补角和∠2的补角互补,则∠1和∠2互余【分析】根据余角和补角的性质即可得到结论.【解答】解:A、若∠1的余角和∠2的余角互余,则∠1和∠2互余,故错误;B、若∠1的余角和∠2的补角互补,则∠1和∠2互余,故错误;C、若∠1的补角和∠2的余角互补,则∠1和∠2互余,故正确;D、若∠1的补角和∠2的补角互补,则∠1和∠2互补,故错误;故选:C.【点评】本题考查了余角和补角的性质,熟练掌握余角和补角的性质是解题的关键.10.(3分)若=1,其中i=0,1,2……,()A.当x0=0时,x2018=4037B.当x0=1时,x2018=4037C.当x0=2时,x2018=4037D.当x0=3时,x2018=4037【分析】根据=1,其中i=0,1,2……,可以求得x i的通式,从而可以判断各个小题中的结论是否陈立.【解答】解:∵=1,其中i=0,1,2……,∴x i+1﹣x i=2,∴x i+1=x i+2,∴x i=x0+2i,当x0=0时,x2018=0+2×2018=4036,故选项A错误,当x0=1时,x2018=1+2×2018=4037,故选项B正确,当x0=2时,x2018=2+2×2018=4038,故选项C错误,当x0=3时,x2018=3+2×2018=4039,故选项D错误,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.二.填空题:本题有6个小题,每小题4分,共24分.11.(4分)﹣的相反数是;﹣2的绝对值等于2.【分析】根据相反数的定义和绝对值的性质求解可得.【解答】解:﹣的相反数是;﹣2的绝对值等于2,故答案为:,2.【点评】本题主要考查绝对值和相反数,解题的关键是掌握相反数的定义和绝对值的性质.12.(4分)去括号:﹣(a+b﹣c)=﹣a﹣b+c.【分析】根据去括号法则即可求出答案.【解答】解:原式=﹣a﹣b+c,故答案为:﹣a﹣b+c.【点评】本题考查去括号法则,解题的关键是运用去括号法则,本题属于基础题型.13.(4分)计算:﹣=﹣4.【分析】直接利用二次根式以及立方根的性质化简得出答案.【解答】解:﹣=﹣2﹣2=﹣4.故答案为:﹣4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.(4分)某种细胞每30分钟由1个分裂成2个,这种细胞由1个分裂成256个需要4小时.【分析】分别求出一个细胞第一次分裂、第二次分裂、第三次分裂、第四次分裂后所需的时间即可.【解答】解:第一次:30分钟变成2个;第二次:1小时变成22个;第三次:1.5小时变成23个;第四次:2小时变成24个;…第8次:4小时变成28=256个,故答案为:4.【点评】本题考查的是有理数的乘方,乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.15.(4分)若点A,点B,点C在直线l上,设AB=a,BC=b,其中a≠b,则AC=a+b 或b﹣a或a﹣b(用含a,b的代数式表示).【分析】分三种情况讨论:①点C在线段AB的延长线上;②当点C在线段BA的延长线上;③当点击在线段AB上.【解答】解:①点C 在线段AB 的延长线上,如图1, AC =AB +BC =a +b ;②当点C 在线段BA 的延长线上(AB <BC ),如图2, AC =BC ﹣AB =b ﹣a ;③当点C 在线段AB 上(AB >BC ),如图3, AC =AB ﹣BC =a ﹣b .故答案为a +b 或b ﹣a 或a ﹣b .【点评】本题考查了列代数式,分情况讨论是解题的关键. 16.(4分)设代数式A =代数式B =,a 为常数.观察当x 取不同值时,对应A 的值,并列表如下(部分):当x=1时,B = 1 ;若A =B ,则x = 4 .【分析】由表格的数据可以代入A 中求出a 的值,即可求出B 的代数式. 【解答】解: 由表格的值可得当x =1时,A =4,代入A 得+1,解得a =4故B 的代数式为: 当x =1时,代入B 得=1 若A =B ,即,解得x =4故答案为1;4【点评】此题主要考查代数式的求值,只要知道表格中x 的值与A 的值是一一对应,即可求解出a 值,从而也可以求出B 的代数式.即可以进行求解,此题相对简单.三.解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:(1)21﹣(4﹣10)(2)﹣62×(﹣)【分析】(1)根据有理数的减法可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)21﹣(4﹣10)=21﹣(﹣6)=21+6=27;(2)﹣62×(﹣)=﹣36×(﹣)=﹣27+12=﹣15.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.(8分)解方程:(1)3x +2=3.5x ﹣1(2)1+=【分析】(1)根据一元一次方程的解法,移项、合并同类项、系数化为1即可得解; (2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)3x +2=3.5x ﹣1,3x ﹣3.5x =﹣1﹣2,﹣0.5x =﹣3,∴x =6;(2)1+=6+2(2﹣x)=3(3x﹣1),﹣11x=﹣13,∴x=.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.(8分)(1)计算:3(a﹣b+1)﹣4(a﹣b+1),其中a=+1,b=;(2)先化简,后求值:2(a2b﹣ab2+b2)﹣3(a2b﹣ab2+b2),其中a=6,b=﹣.【分析】(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:(1)原式=﹣(a﹣b+1)=﹣a+b﹣1,当a=+1,b=时,原式=﹣﹣1+﹣1=﹣2;(2)原式=2a2b﹣2ab2+2b2﹣2a2b+3ab2﹣2b2=ab2,当a=6,b=﹣时,原式=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(10分)若多项式m2+5m﹣3的常数项是a,次数是b,当m=1时,此多项式的值为c.(1)分别写出a,b,c表示的数,并计算(a+b)+(b+c)+(c+a)的值;(2)设a,b,c在数轴上对应的点分别是点A,点B,点C.若点P是线段AB上的一点,比较与PC的大小,说明理由.【分析】(1)根据多项式常数项、次数的规定确定a、b,把m代入多项式计算多项式的值确定c.然后计算含a、b、c的多项式的值.(2)根据选段的和差关系,计算PA+PB与PC,再比较与PC的大小.【解答】解:(1)∵多项式m2+5m﹣3的常数项是﹣3,次数是2,当m=1时,多项式m2+5m﹣3的值为:1+5﹣3=3∴a=﹣3,b=2,c=3.∴(a+b)+(b+c)+(c+a)=a+b+b+c+c+a=2(a+b+c)=2(﹣3+2+3)=4.(2)∵点P是线段AB上的一点,∴PA+PB=5,∴=1.∵点P是线段AB上的一点,当点P与点B重合时,线段PC=3﹣2=1当点P与点B不重合时,线段PC>1∴≤PC.【点评】本题考查了多项式的相关定义、线段的长等知识点.确定线段的长度是解决本题(2)的关键.解决(2)确定PC的长注意分类讨论.21.(10分)如图,小方将一个正方形纸片剪去一个宽为4cm的长方形(记作A)后,再将剩下的长方形纸片剪去一个宽为5cm的长方形(记作B).(1)若A与B的面积均为Scm2,求S的值.(2)若A的周长是B的周长的倍,求这个正方形的边长.【分析】(1)设正方形的边长为xcm,根据题意可得其中一个小长方形的边长分别为5cm 和(x﹣4)cm;另一个小长方形的边长分别为4cm和xcm,根据长方形的面积公式结合关键语句“剪下的两个长条的面积Scm2”可直接列出方程.(2)根据长方形的周长公式,由A的周长是B的周长的倍列方程解出即可.【解答】解:(1)设正方形的边长为xcm,由题意得:4x=5(x﹣4),x=20,∴S=4x=4×20=80,答:S的值80cm2.(2)设正方形的边长为xcm,6(2x+8)=7×2[5+(x﹣4)],x=17,答:这个正方形的边长是17cm.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,分别表示出两个小长方形的长和宽.22.(12分)小方家住房户型呈长方形,平面图如下(单位:米).现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)求a的值.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低?【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积﹣三间卧室的面积,所得的差为地砖的面积;(3)根据卧室2的面积为21平方米求出x,再分别求出所需的费用,然后比较即可.【解答】解:(1)根据题意,可得a+5=4+4,解得a=3;(2)铺设地面需要木地板:4×2x+a[10+6﹣(2x﹣1)﹣x﹣2x]+6×4=8x+3(17﹣5x)+24=75﹣7x;铺设地面需要地砖:16×8﹣(75﹣7x)=128﹣75+7x=7x+53;(3)∵卧室2的面积为21平方米,∴3[10+6﹣(2x﹣1)﹣x﹣2x]=21,∴3(17﹣5x)=21,∴x=2,∴铺设地面需要木地板:75﹣7x=75﹣7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.A种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元),22335>22165,所以小方家应选择B种活动方案,使铺设地面总费用(含材料费及安装费)更低.【点评】本题考查了列代数式,长方形的面积,分别求出铺设地面需要木地板与地砖的面积,理解A,B两种活动方案是解题的关键.23.(12分)如图,0°<∠AOB<180°,射线OC,射线OD,射线OE,射线OF均在∠AOB内部,∠AOC=∠BOD=∠EOF,∠COE=∠DOF,∠COD=2∠EOF.(1)若∠COE=20°,求∠EOF的度数;(2)若∠EOF与∠COD互余,找出图中所有互补的角,并说明理由;(3)若∠EOF的其中一边与OA垂直,求∠AOB的度数.【分析】(1)根据角的和差进行计算便可;(2)根据互余角列出方程解答;(3)分两种情况讨论:OF与OA垂直和OE与OA垂直,进行解答.【解答】解:(1)∵∠COE=20°,∴∠COE=∠DOF=20°,∵∠COD=2∠EOF,即∠COE+∠DOF+∠EOF=2∠EOF,∴∠EOF=∠COE+∠DOF=20°+20°=40°;(2)设∠COE=∠DOF=x,∵∠COD=2∠EOF,∴∠COE+∠DOF+∠EOF=2∠EOF,∴∠EOF=∠COF+∠DOF=2x,∴∠AOC=∠BOD=∠EOF=2x.∵∠EOF与∠COD互余,∴∠EOF+∠COD=90°,即2x+4x=90°,∴x=15°,∴∠COE=∠DOF=15°,∠AOC=∠BOD=∠EOF=30°,∴∠COD=60°,∠AOB=120°,∴∠AOB+∠COD=120°+60°=180°,∴∠COB=90°,∠AOD=90°,∴∠COB+∠AOD=180°,∴互补的角为:∠AOB与∠COD,∠COB与∠AOD.(3)若OF与OA垂直,则∠AOF=∠AOC+∠COE+∠EOF=90°,∴2x+x+2x=90°,∴x=18°,∴∠AOB=8x=144°,若OE与OA垂直,则∠AOE=∠AOC+∠COE=90°,∴2x+x=90°,∴x=30°,∴∠AOB=8x=240°,∵0°<∠AOB<180°,∴这种情况应舍去,综上,∠AOB=144°.【点评】本题主要考查了角的计算,互余角的关系,关键是正确地进行角的计算,正确列出方程.。

2018-2019学年江苏省宿迁市沭阳县七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省宿迁市沭阳县七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省宿迁市沭阳县七年级(上)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)有理数﹣的倒数是()A.B.﹣C.D.﹣2.(3分)计算﹣32的结果是()A.9B.﹣9C.6D.﹣63.(3分)下列说法正确的是()A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大4.(3分)多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,35.(3分)下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.不相交的两条直线叫做平行线C.两点确定一条直线D.两点间的距离是指连接两点间的线段6.(3分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6B.6C.﹣2或6D.﹣2或30 7.(3分)甲从点A出发沿北偏东35°方向走到点B,乙从点A出发沿南偏西20°方向走到点C,则∠BAC等于()A.15°B.55°C.125°D.165°8.(3分)观察下列等式:第一层1+2=3第二层4+5+6=7+8第三层9+10+11+12=13+14+15第四层16+17+18+19+20=21+22+23+24……在上述的数字宝塔中,从上往下数,2018在()A.第42层B.第43层C.第44层D.第45层二、填空题(每小题3分,共30分)9.(3分)南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为3 600 000平方千米.把数3 600 000用科学记数法可表示为.10.(3分)试写出一个解为x=1的一元一次方程:.11.(3分)43°29′+36°31′=.12.(3分)计算=.13.(3分)如图,小明同学用剪刀沿直线将一片平整的树叶减掉一部分,发现剩下树叶的周长比原树叶的周长要小,用已学的数学知识解释这一现象:.14.(3分)如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为.15.(3分)实数a、b在数轴上对应点的位置如图所示,则|a﹣b|=.16.(3分)按照如图所示的操作步骤,若输入的值为4,则输出的值为.17.(3分)一个长方形操场的长是宽的2.5倍,根据需要将它扩建,把它的长和宽各加长20m后,它的长是宽的2倍,求扩建前长方形操场的周长是m.18.(3分)如图,已知OM、OA、ON是∠BOC内的三条射线,ON平分∠AOC,OM平分∠BOC,且∠AOB+∠MON=120°,则∠MON=°.三、解答题(共96分)19.(12分)计算:(1)(﹣6)+18+(﹣14)+3;(2)﹣12018﹣(﹣5).20.(12分)解方程:(1)8y﹣2=5y+4;(2).21.(8分)先化简,再求值:2x2+[x2﹣(3x2+2x﹣1)],其中.22.(10分)小明从家里骑自行车到学校,每小时骑20km,可早到小时,每小时骑15km就会迟到小时,问他家到学校的路程是多少km?23.(8分)由若干个相同的小立方体组成一个几何体,几何体的俯视图如图所示,其中的数字表示在该位置上小立方体的层数,请分别画出它的主视图和左视图(画图痕迹用黑色签字笔加粗加黑).24.(10分)如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD.(1)图中与∠AOF互余的角是,与∠COE互补的角是;(把符合条件的角都写出来)(2)如果∠AOC=∠EOF,求∠EOF的度数.25.(12分)某超市用3400元购进A、B两种文具盒共120个,这两种文具盒的进价、标价如下表:(1)这两种文具盒各购进多少只?(2)若A型文具盒按标价的9折出售,B型文具盒按标价的8折出售,那么这批文具盒全部售出后,超市共获利多少元?26.(12分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若点C在线段AB的延长线上,且满足AC﹣BC=b,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形并写出你的结论(不必说明理由).27.(12分)如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转.(1)直接写出∠DPC的度数.(2)如图②,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,当PC与PB 重合时,求旋转的时间是多少?(3)在(2)的条件下,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请直接写出旋转的时间.2018-2019学年江苏省宿迁市沭阳县七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)有理数﹣的倒数是()A.B.﹣C.D.﹣【分析】根据倒数的定义:乘积是1的两数互为倒数,可得出答案.【解答】解:,故选:D.【点评】本题考查了倒数的知识,属于基础题,解答本题的关键是掌握倒数的定义.2.(3分)计算﹣32的结果是()A.9B.﹣9C.6D.﹣6【分析】根据有理数的乘方的定义解答.【解答】解:﹣32=﹣9.故选:B.【点评】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.3.(3分)下列说法正确的是()A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大【分析】A:根据整数的特征,可得最小的正整数是1,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0,据此判断即可.D:一个非零数的绝对值比0大,0的绝对值等于0,据此判断即可.【解答】解:∵最小的正整数是1,∴选项A正确;∵负数的相反数一定比它本身大,0的相反数等于它本身,∴选项B不正确;∵绝对值等于它本身的数是正数或0,∴选项C不正确;∵一个非零数的绝对值比0大,0的绝对值等于0,∴选项D不正确.故选:A.【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(2)此题还考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.4.(3分)多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,3【分析】根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy2,系数是数字因数,故为﹣3.【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.【点评】此题主要考查了多项式,关键是掌握多项式次数的计算方法与单项式的区别.5.(3分)下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.不相交的两条直线叫做平行线C.两点确定一条直线D.两点间的距离是指连接两点间的线段【分析】根据平行公理及推论,平行线的定义,直线的性质以及两点间的距离的定义对各选项分析判断即可得解.【解答】解:A、应为过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、应为同一平面内,不相交的两条直线叫做平行线,故本选项错误;C、直线公理:经过两点有且只有一条直线,简称:两点确定一条直线,故本选项正确;D、应为两点的距离是指连接两点间线段的长度,故本选项错误;故选:C.【点评】考查了平行公理及推论,直线的性质以及平行线等知识点,属于基础题,熟记相关概念即可解答.6.(3分)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6B.6C.﹣2或6D.﹣2或30【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.7.(3分)甲从点A出发沿北偏东35°方向走到点B,乙从点A出发沿南偏西20°方向走到点C,则∠BAC等于()A.15°B.55°C.125°D.165°【分析】根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合角的关系求解.【解答】解:如图,北偏东35°方向即为东偏北55°,即∠1=55°,∴∠BAC=90°+∠1+∠2=90°+55°+20°=165°.故选:D.【点评】考查了方向角,解答此类题需要从运动的角度,正确画出方位角,再结合角的关系求解.8.(3分)观察下列等式:第一层1+2=3第二层4+5+6=7+8第三层9+10+11+12=13+14+15第四层16+17+18+19+20=21+22+23+24……在上述的数字宝塔中,从上往下数,2018在()A.第42层B.第43层C.第44层D.第45层【分析】由题意得出每层第1个数为层数的平方,据此得出第44层的第1个数为442=1936,第45层的第1个数为452=2025,即可得答案.【解答】解:∵第1层的第1个数为1=12,第2层的第1个数为4=22,第3层的第1个数为9=32,∴第44层的第1个数为442=1936,第45层的第1个数为452=2025,∴2018在第44层,故选:C.【点评】本题主要考查数字的变化规律,根据数列得出每层第1个数为层数的平方是解题的关键.二、填空题(每小题3分,共30分)9.(3分)南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为3 600 000平方千米.把数3 600 000用科学记数法可表示为 3.6×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3 600 000=3.6×106,故答案为:3.6×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)试写出一个解为x=1的一元一次方程:x﹣1=0.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程;它的一般形式是ax+b=0(a,b是常数且a≠0);根据题意,写一个符合条件的方程即可.【解答】解:∵x=1,∴根据一元一次方程的基本形式ax+b=0可列方程:x﹣1=0.(答案不唯一)【点评】本题是一道简单的开放性题目,考查学生的自己处理问题的能力.11.(3分)43°29′+36°31′=80°.【分析】根据“1°=60′,1′=60″”进行即为.【解答】解:43°29′+36°31′=80°.故答案是:80°.【点评】考查了度分秒的换算,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.12.(3分)计算=﹣1.【分析】根据乘法分配律展开,再根据有理数的乘法和加减法运算法则计算.【解答】解:,=×12+×12﹣×12,=3+2﹣6,=5﹣6,=﹣1.【点评】利用乘法分配律使运算更加简便.13.(3分)如图,小明同学用剪刀沿直线将一片平整的树叶减掉一部分,发现剩下树叶的周长比原树叶的周长要小,用已学的数学知识解释这一现象:两点之间,线段最短.【分析】根据线段的性质解答即可.【解答】解:小明同学用剪刀沿直线将一片平整的树叶减掉一部分,发现剩下树叶的周长比原树叶的周长要小,用已学的数学知识解释这一现象:两点之间,线段最短,故答案为:两点之间,线段最短.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.14.(3分)如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为﹣3.【分析】根据正方体的展开图中相对面不存在公共点可找出5对面的数字,从而可根据相反数的定义求得x的值,进一步求得y的值,最后代入计算即可.【解答】解:∵“5”与“2x﹣3”是对面,“x”与“y”是对面,∴2x﹣3=﹣5,y=﹣x,解得x=﹣1,y=1,∴2x﹣y=﹣2﹣1=﹣3.故答案为:﹣3.【点评】本题主要考查的是正方体相对面上的文字,掌握正方体的展开图中相对面不存在公共点是解题的关键.15.(3分)实数a、b在数轴上对应点的位置如图所示,则|a﹣b|=b﹣a.【分析】先比较出a、b的大小,然后得到a﹣b的正负,最后化简绝对值即可.【解答】解:∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a.故答案为:b﹣a.【点评】本题主要考查的是实数与数轴,熟练掌握绝对值的性质是解题的关键.16.(3分)按照如图所示的操作步骤,若输入的值为4,则输出的值为28.【分析】把4代入操作程序中计算即可得到结果输出的值.【解答】解:把4代入得:(42﹣9)×4=28,故答案为:28【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(3分)一个长方形操场的长是宽的2.5倍,根据需要将它扩建,把它的长和宽各加长20m后,它的长是宽的2倍,求扩建前长方形操场的周长是280m.【分析】设扩建前长方形操场的宽为xm,根据:2×扩建后宽=扩建后长,列方程求解,再计算长方形的周长.【解答】解:设扩建前长方形操场的宽为xm,其长为2.5xm,由题意,得2.5x+20=2(x+20),解得,x=40,所以扩建前长方形操场的周长是:2(40+2.5×40)=280(m)故答案为:280.【点评】本题考查了一元一次方程的应用.解决本题的关键是找到等量关系:2×扩建后宽=扩建后长.18.(3分)如图,已知OM、OA、ON是∠BOC内的三条射线,ON平分∠AOC,OM平分∠BOC,且∠AOB+∠MON=120°,则∠MON=40°.【分析】设∠AOB=x°,∠MON=y°,先表示出∠BOC的度数,再根据角平分线的定义表示出∠MOC与∠NOC,然后根据∠MON=∠MOC﹣∠NOC列式整理得出规律,∠MON的度数等于∠AOB的一半,进行求解即可.【解答】解:设∠AOB=x°,∠MON=y°,则∠BOC=∠AOB+∠AOC=x°+∠AOC,因为ON平分∠AOC,OM平分∠BOC.所以∠MOC=∠BOC=∠AOC,∠NOC=∠AOC,所以∠MON=∠MOC﹣∠NOC=x,即y=x,由题意可得:x+=120°,解得x=80°,所以∠MON=40°.故答案为:40【点评】此题主要考查角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化,然后根据已知条件列方程求解.三、解答题(共96分)19.(12分)计算:(1)(﹣6)+18+(﹣14)+3;(2)﹣12018﹣(﹣5).【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、除法和减法可以解答本题.【解答】解:(1)(﹣6)+18+(﹣14)+3=[(﹣6)+(﹣14)]+(18+3)=(﹣20)+21=1;(2)﹣12018﹣(﹣5)=﹣1+5×5=﹣1+25=24.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(12分)解方程:(1)8y﹣2=5y+4;(2).【分析】(1)依次移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)8y﹣5y=4+2,3y=6,y=2;(2)2(x+1)﹣4=8+2﹣x,2x+2﹣4=8+2﹣x,2x+x=8+2﹣2+4,3x=12,x=4.【点评】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.21.(8分)先化简,再求值:2x2+[x2﹣(3x2+2x﹣1)],其中.【分析】本题应先对整式去括号,合并同类项,将整式化为最简,然后再把x的值代入解题即可.【解答】解:原式=2x2+x2﹣3x2+2x+1=﹣2x+1,当时,原式=﹣2×(﹣)+1=2.【点评】此题考查了整式的化简求值.注意根据去括号法则和合并同类项法则解答.去括号法则:++得+,﹣﹣得+,﹣+得﹣,+﹣得﹣;合并同类项法则:把同类项的系数相加减,字母和字母指数的部分不变.化简求值题一定要两步走:先化简,再代值.22.(10分)小明从家里骑自行车到学校,每小时骑20km,可早到小时,每小时骑15km就会迟到小时,问他家到学校的路程是多少km?【分析】方法一:设小明他家到学校的路程为xkm.根据“每小时骑20km所用的时间+=每小时骑15km所用的时间﹣”列出方程,求解即可;方法二:设小明到学校的时间为x小时.根据路程不变列出方程,并解答.【解答】解:方法一:设小明他家到学校的路程为xkm,依题意得:+=﹣,解得x=25.答:他家到学校的路程是25km;方法二:设小明到学校的时间为x小时,20(x﹣)=15(x+),解得x=1.5.他家到学校的路程为20×(1.5﹣)=25(千米).答:他家到学校的路程是25km.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.23.(8分)由若干个相同的小立方体组成一个几何体,几何体的俯视图如图所示,其中的数字表示在该位置上小立方体的层数,请分别画出它的主视图和左视图(画图痕迹用黑色签字笔加粗加黑).【分析】该几何体分左、中、右三列,左边最高叠三个,之间最高叠4个,右边最高叠1个,故正视图为3﹣4﹣1;前后两排,前排最高叠4个,后排最高叠2个,而后排居左,前排居右,故左视图为:4﹣2.【解答】解:从正面看得到的平面图是正视图,从左面看得到的平面图是左视图即:所求正视图与左视图如下图所示:【点评】本题考查了三视图的作法,解题的关键是要理解三视图的概念,并具有立体图形与平面图形的转换、想象能力.24.(10分)如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD.(1)图中与∠AOF互余的角是∠AOC、∠BOD,与∠COE互补的角是∠EOD、∠BOF;(把符合条件的角都写出来)(2)如果∠AOC=∠EOF,求∠EOF的度数.【分析】(1)根据互余及互补的定义,结合图形进行判断即可;(2)设∠AOC=x,则∠BOD=x,∠EOF=4x,根据周角为360度,即可解出x.【解答】解:(1)图中与∠AOF互余的角是:∠AOC、∠BOD;图中与∠COE互补的角是:∠EOD、∠BOF.(2)∵OE⊥AB,OF⊥CD,∴∠EOB=90°,∠FOD=90°,又∵∠AOC=∠EOF,设∠AOC=x,则∠BOD=x,∠EOF=4x,根据题意可得:4x+x+90+90=360°,解得:x=36°.∴∠EOF=4x=144°.【点评】本题考查了余角和补角的知识,注意结合图形进行求解.25.(12分)某超市用3400元购进A、B两种文具盒共120个,这两种文具盒的进价、标价如下表:(1)这两种文具盒各购进多少只?(2)若A型文具盒按标价的9折出售,B型文具盒按标价的8折出售,那么这批文具盒全部售出后,超市共获利多少元?【分析】(1)设A型文具盒购进x只,B型文具盒购进y只,由该超市用3400元购进A,B两种文具盒共120个,可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本,即可求出销售完这批文具盒后获得的利润.【解答】解:(1)设A型文具盒购进x只,B型文具盒购进y只,依题意,得:,解得:.答:A型文具盒购进40只,B型文具盒购进80只.(2)25×0.9×40+50×0.8×80﹣3400=700(元).答:这批文具盒全部售出后,超市共获利700元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.(12分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=8cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a,其它条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;(3)若点C在线段AB的延长线上,且满足AC﹣BC=b,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形并写出你的结论(不必说明理由).【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.【解答】解:(1)点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm.所以线段MN的长为7cm.(2)MN的长度等于a,根据图形和题意可得:MN=MC+CN=AC+BC=(AC+BC)=a.(3)MN的长度等于b,根据图形和题意可得:MN=MC﹣NC=AC﹣BC=(AC﹣BC)=b.【点评】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.27.(12分)如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转.(1)直接写出∠DPC的度数.(2)如图②,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,当PC与PB 重合时,求旋转的时间是多少?(3)在(2)的条件下,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请直接写出旋转的时间.【分析】(1)易得∠DPC=180°﹣∠APC﹣∠BPD即可求(2)只需设旋转的时间是t秒时PC与PB重合,列方程解可得(3)一条射线平分另两条射线的夹角,分三种情况:当PD平分∠BPC时;当PC平分∠BPC时;当PB平分∠DPC时,计算每种情况对应的时间即可.【解答】解:(1)∠DPC=180°﹣∠APC﹣∠BPD=180°﹣60°﹣30°=90°故答案为:90°(2)设旋转的时间是t秒时PC与PB重合,根据题意列方程得5t﹣t=30+90解得t=30又∵180÷5=36秒∴30<36故旋转的时间是30秒时PC与PB重合.(3)设t秒时其中一条射线平分另两条射线的夹角,分三种情况:①当PD平分∠BPC时,5t﹣t=90﹣30,解得t=15②当PC平分∠BPD时,,解得t=26.25③当PB平分∠DPC时,5t﹣t=90﹣2×30,解得t=37.5>36(舍去)故15秒或26.25秒时其中一条射线平分另两条射线的夹角.【点评】此题考查了角平分线的性质及图形的旋转,要掌握图形的旋转特征,直角三角板旋转为常考题型。

安徽省合肥市包河区2018-2019学年七年级(上)期末数学试卷 含解析

安徽省合肥市包河区2018-2019学年七年级(上)期末数学试卷  含解析

2018-2019学年七年级(上)期末数学试卷一、选择题(每题3分,共30分)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.截止2018年11月26日,合肥新桥国际机场年旅客吞吐量达1000万,正式跨入千万级机场行列.“1000万”用科学记数法表示正确的是()A.1×103B.1×107C.l×108D.1×10113.下列代数式b,﹣2ab,,x+y,x2+y2,﹣3,中,单项式共有()A.6个B.5 个C.4 个D.3个4.下列说法正确的是()A.两点之间直线最短B.线段MN就是M、N两点间的距离C.射线AB和射线BA是同一条射线D.将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线5.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣46.如图,一艘轮船行驶在点O处同时测得海岛A、B的方向北分别是北偏东75°和西北方向,则∠AOB的度数是()A.l50°B.135°C.120°D.100°7.二次三项式3x2﹣4x+6的值为9,则的值为()A.18 B.12 C.9 D.78.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.解方程﹣=0.2时,下列变形正确的是()A.﹣=200 B.﹣=20C.﹣=2 D.﹣=0.210.如图,已知正方形的边长为4,甲,乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在边()A.AB上B.BC上C.CD上D.DA上二、填空题(每题4分,计20分)11.方程2x﹣1=3的解是.12.多项式﹣3x2y﹣x3+xy3的次数是次.13.如果两个角互补,并且较大角比较小角大40°20’,则较大角度数是.14.我国古典数学文献《增删算法统宗•六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则甲的羊数量为只.15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF 分别平分∠BOC、∠COD,则∠EOF的度数是.16.王师傅将一根长133毫米的铜管锯成长为8毫米和长为13毫米两种规格的小铜钢管若干根,恰好用完.如果每个锯口都要损耗1毫米铜管.那么他共将铜管锯成了段.三、解答题(计50分)17.计算:(﹣1)5+2×(﹣4)﹣(﹣2)2÷4.18.解方程组.19.求多项式3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中|x﹣1|+(y+2)2=0.20.为了解某校七年级学生每周课外阅读情况,随机抽查了部分七年级学生第一学期每周课外阅读的时间,并用得到的数据绘制了两幅统计图(不完整)请根据图中提供的信息,回答下列问题:(1)本次共抽查了人,请补全条形统计图.(2)a=,并写出每周阅读时间8小时的扇形所对圆心角的度数为.(3)如果该校共有七年级学生800人,请你估计“每周课外阅读时间不少于7小时”的学生人数大约有多少人?21.小明早上从家去学校,如果每分钟走50米,将要迟到2分钟,如果每分钟走70米,将早到2分钟,求小明从家到学校的距离.三、附加题(5分,计入总分,满分不超过100分):22.已知线段MN=2,点Q是线段MN的中点,先按要求画图形,再解决问题.(1)反向延长线段MN至点A,使AM=3MN;延长线段MN至点B,使BN=BM.(2)求线段BQ的长度.(3)若点P是线段AM的中点,求线段PQ的长度.参考答案与试题解析一.选择题(共10小题)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.截止2018年11月26日,合肥新桥国际机场年旅客吞吐量达1000万,正式跨入千万级机场行列.“1000万”用科学记数法表示正确的是()A.1×103B.1×107C.l×108D.1×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1000万=1×107,故选:B.3.下列代数式b,﹣2ab,,x+y,x2+y2,﹣3,中,单项式共有()A.6个B.5 个C.4 个D.3个【分析】直接利用单项式的定义判断得出答案.【解答】解:代数式b,﹣2ab,,x+y,x2+y2,﹣3,中,单项式有:b,﹣2ab,﹣3,共4个.故选:C.4.下列说法正确的是()A.两点之间直线最短B.线段MN就是M、N两点间的距离C.射线AB和射线BA是同一条射线D.将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线【分析】根据两点之间线段最短,数轴上两点间的距离的求解,射线的定义,两点确定一条直线对各小题分析判断即可得解.【解答】解:A、两点之间线段最短,故选项A错误;B、线段MN的长度就是M、N两点间的距离,故选项B错误;C、射线AB和射线BA是两条不同的射线,故选项C错误;D、将一根木条固定在墙上需要两枚钉子,其原理是两点确定一条直线.正确.故选:D.5.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4【分析】将x与y的两对值代入方程计算即可求出m与n的值.【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.6.如图,一艘轮船行驶在点O处同时测得海岛A、B的方向北分别是北偏东75°和西北方向,则∠AOB的度数是()A.l50°B.135°C.120°D.100°【分析】根据A在O北偏东75°,可得A在O东偏北的度数,根据角的和差,可得答案.【解答】解;A在O北偏东75°,A在O东偏北15°,∠AOB=75°+45°=120°.故选:C.7.二次三项式3x2﹣4x+6的值为9,则的值为()A.18 B.12 C.9 D.7【分析】由已知得出等式3x2﹣4x+6=9,再将等式变形,整体代入即可.【解答】解:依题意,得3x2﹣4x+6=9,整理,得x2﹣x=1,则=1+6=7,故选:D.8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.9.解方程﹣=0.2时,下列变形正确的是()A.﹣=200 B.﹣=20C.﹣=2 D.﹣=0.2【分析】根据分式的性质,将分式的分母、分子化为整数即可.【解答】解:分式的分子、分母化为整数,得﹣=0.2,故选:D.10.如图,已知正方形的边长为4,甲,乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2019次相遇在边()A.AB上B.BC上C.CD上D.DA上【分析】因为乙的速度是甲的速度的4倍,所以第1次相遇,甲走了正方形周长××;从第2次相遇起,每次甲走了正方形周长×,从第2次相遇起,5次一个循环,从而不难求得它们第2019次相遇位置.【解答】解:根据题意分析可得:乙的速度是甲的速度的4倍,且AD+DC=正方形周长的一半,故第1次相遇,甲走了正方形周长的××;从第2次相遇起,每次甲走了正方形周长×,从第2次相遇起,5次一个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.故它们第2019次相遇位置与第4次相同,在边CB上.故选:B.二.填空题(共6小题)11.方程2x﹣1=3的解是x=2 .【分析】根据解方程的步骤:移项,移项要变号,合并同类项,把x的系数化为1,进行计算即可.【解答】解:2x﹣1=3,移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故答案为:x=2.12.多项式﹣3x2y﹣x3+xy3的次数是 4 次.【分析】根据多项式的次数解答即可.【解答】解:多项式﹣3x2y﹣x3+xy3的次数是4,故答案为:413.如果两个角互补,并且较大角比较小角大40°20’,则较大角度数是110°10′.【分析】设较大角为x,则其补角为180°﹣x,根据较大角比较小角大40°20’可列出方程,解出即可.【解答】解:设较大角为x,则其补角为180°﹣x,由题意得:x﹣(180°﹣x)=40°20’,解得:x=110°10′;故答案为:110°10′.14.我国古典数学文献《增删算法统宗•六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则甲的羊数量为63 只.【分析】设甲放x只羊,乙放y只羊,根据“如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同”列出方程组解答即可.【解答】解:设甲放x只羊,乙放y只羊,由题意得,解得:.答:甲的羊数量为63只.故答案为63.15.已知∠AOB=90°,射线OC在∠AOB内部,且∠AOC=20°,∠COD=50°,射线OE、OF 分别平分∠BOC、∠COD,则∠EOF的度数是10°或60°.【分析】先根据题意画出图形,再分OD在∠AOB内和OD在∠AOB外,根据角的和差关系和角平分线的定义可求∠EOF的度数.【解答】解:如图1,OD在∠AOB内,∵∠AOB=90°,∠AOC=20°,∴∠BOC=70°,∵射线OE平分∠BOC,∴∠EOC=35°,∵射线OF平分∠COD,∠COD=50°,∴∠FOC=25°,∴∠EOF=10°;如图2,OD在∠AOB外,∵∠AOB=90°,∠AOC=20°,∴∠BOC=70°,∵射线OE平分∠BOC,∴∠EOC=35°,∵射线OF平分∠COD,∠COD=50°,∴∠FOC=25°,∴∠EOF=60°.则∠EOF的度数是10°或60°.故答案为:10°或60°.16.王师傅将一根长133毫米的铜管锯成长为8毫米和长为13毫米两种规格的小铜钢管若干根,恰好用完.如果每个锯口都要损耗1毫米铜管.那么他共将铜管锯成了11 段.【分析】设锯成长为8毫米和长为13毫米两种规格的小铜钢管分别x、y根,由题意得出方程8x+13y+(x+y﹣1)=133,由x、y为正整数,得出符合条件的解为,即可得出答案.【解答】解:设锯成长为8毫米和长为13毫米两种规格的小铜钢管分别x、y根,由题意得:8x+13y+(x+y﹣1)=133,∵x、y为正整数,∴符合条件的解为,∴x+y=4+7=11(段);即王师傅共将铜管锯成了11段;故答案为:11.三.解答题(共6小题)17.计算:(﹣1)5+2×(﹣4)﹣(﹣2)2÷4.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=﹣1﹣8﹣1=﹣10.18.解方程组.【分析】首先对原方程组化简,然后①×2运用加减消元法求解.【解答】解:原方程组可化为:,①×2+②得11x=22,∴x=2,把x=2代入①得:y=3,∴方程组的解为.19.求多项式3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中|x﹣1|+(y+2)2=0.【分析】原式去括号、合并同类项化简,再由非负数的性质得出x和y的值,代入计算可得.【解答】解:原式=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy,∵|x﹣1|+(y+2)2=0,∴x=1,y=﹣2,则原式=﹣6×1×(﹣2)=12.20.为了解某校七年级学生每周课外阅读情况,随机抽查了部分七年级学生第一学期每周课外阅读的时间,并用得到的数据绘制了两幅统计图(不完整)请根据图中提供的信息,回答下列问题:(1)本次共抽查了60 人,请补全条形统计图.(2)a=10 ,并写出每周阅读时间8小时的扇形所对圆心角的度数为36°.(3)如果该校共有七年级学生800人,请你估计“每周课外阅读时间不少于7小时”的学生人数大约有多少人?【分析】(1)由5小时的人数及其所占百分比可得总人数,用总人数减去5、6、7、9小时的人数求得8小时人数即可补全条形图;(2)用8小时的人数除以总人数可得a的值,再用360°乘以每周阅读时间8小时的人数所占比例可得;(3)用总人数乘以阅读时间是7、8、9小时人数和所占比例可得.【解答】解:(1)本次抽查的总人数为24÷40%=60(人),则8小时的人数为60﹣(24+12+15+3)=6(人),补全条形图如下:故答案为:60;(2)a%=×100%=10%,即a=10,每周阅读时间8小时的扇形所对圆心角的度数为360°×10%=36°,故答案为:10,36°;(3)估计“每周课外阅读时间不少于7小时”的学生人数大约有800×=320(人).21.小明早上从家去学校,如果每分钟走50米,将要迟到2分钟,如果每分钟走70米,将早到2分钟,求小明从家到学校的距离.【分析】设小明从家到学校的距离为x米,根据它们之间的时间关系列出方程并解答.【解答】解:设小明从家到学校的距离为x米,依题意得:﹣2=+2解方程得:x=700答:小明从家到学校的距离是700米.22.已知线段MN=2,点Q是线段MN的中点,先按要求画图形,再解决问题.(1)反向延长线段MN至点A,使AM=3MN;延长线段MN至点B,使BN=BM.(2)求线段BQ的长度.(3)若点P是线段AM的中点,求线段PQ的长度.【分析】(1)根据题意作图即可;(2)由线段中点的定义可得NQ=1,再根据BN=BM可得BN的长,根据线段的和差解答即可;(3)根据线段中点的定义求出MQ的长以及PM的长,根据线段的和差解答即可.【解答】解:(1)如图所示:;(2)∵点Q是线段MN的中点,∴NQ=,∵BN=BM,∴BN=MN=2,∴BQ=BN+NQ=2+1=3;(3)∵点Q是线段MN的中点,MQ=,AM=3MN=6,∵点P是线段AM的中点,∴PM=,∴PQ=PM+MQ=3+1=4.。

2018-2019学年七年级上学期期末考试数学试题(含两套)

2018-2019学年七年级上学期期末考试数学试题(含两套)

2018-2019学年七年级(上)期末数学试卷一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5B.5C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2B.4C.8D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE 的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B 看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为度.(2)在(1)旋转过程中,当旋转至图3的位置时,使得OM在∠BOC的内部,ON落在直线AB下方,试探究∠COM与∠BON之间满足什么等量关系,并说明理由.2018-2019学年辽宁省鞍山市七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:∵代数式﹣3a m﹣1b6和ab2n是同类项,∴m﹣1=1,2n=6,∴m=2,n=3,∴m﹣n=2﹣3=﹣1,故选:A.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【分析】根据有理数的分类可得A的正误;根据射线的表示方法可得B的正误;根据相反数的定义可得C的正误;根据线段的性质可得D的正误.【解答】解:①一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;②射线AB与射线BA是同一条射线,说法错误,端点不同;③0的相反数是它本身,说法正确;④两点之间,线段最短,说法正确.故选:B.【点评】此题主要考查了相反数、有理数、线段的性质、射线的表示方法,关键是牢固掌握基础知识.5.【分析】设每本书的进价是x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,此题得解.【解答】解:设每本书的进价是x元,根据题意得:(1+60%)x•﹣x=6.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.6.【分析】由题意得出∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,得出∠DOC+∠BOE=180°即可.【解答】解:∵∠AOB=50°,∠DOE=40°,∠DOC=50°,∠BOE=130°,∴∠DOC+∠BOE=180°;故选:C.【点评】本题考查了余角和补角;根据题意得出各个角的度数是关键.7.【分析】由于在直线AB上画线段BC,那么CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC;②当C在线段AB的延长线上,此时AC=AB﹣BC.然后代入已知数据即可求出线段AC的长度.【解答】解:∵在直线AB上画线段BC,∴CB的长度有两种可能:①当C在AB之间,此时AC=AB﹣BC=6﹣2=4cm;②当C在线段AB的延长线上,此时AC=AB+BC=6+2=8cm.故选:D.【点评】此题主要考查了线段的和差的计算.在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c﹣a>0,a+b<0,根据绝对值的性质化简计算.【解答】解:由数轴可知,b<a<0<c,∴c﹣a>0,a+b<0,则|c﹣a|﹣|a+b|=c﹣a+a+b=c+b,故选:A.【点评】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.9.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:,的相反数是﹣,故答案为:﹣.【点评】本题考查了相反数,先求绝对值,再求相反数.10.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据题意,得﹣2m2n(答案不唯一),故答案为:﹣2m2n(答案不唯一).【点评】本题考查了单项式的定义,解答本题的关键是理解单项式的定义中的单项式的次数的正确含义.11.【分析】观察图形可知,∠BOC=135°,∠COD=45°,根据角平分线的定义可得∠EOC,再根据角的和差关系即可求解.【解答】解:由图形可知,∠BOC=135°,∠COD=45°,∵OE平分∠BOC,∴∠EOC=67.5°,∴∠DOE=67.5°﹣45°=22.5°.故答案为:22.5【点评】此题考查了角的计算,角平分线的定义,关键是观察图形可得∠BOC=135°,∠COD=45°.12.【分析】直接利用非负数的性质以及偶次方的性质得出x,y的值进而得出答案.【解答】解:∵|x+1|+(3﹣y)2=0,∴x+1=0,3﹣y=0,解得:x=﹣1,y=3,则x y的值是:(﹣1)3=﹣1.故答案为:﹣1.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.【分析】观察题中的两个代数式a+b和2﹣3a﹣3b,可以发现,2﹣3a﹣3b=2﹣3(a+b),因此可整体代入a+b=2,求出结果.【解答】解:2﹣3a﹣3b=2﹣3(a+b)因为a+b=2,所以原式=2﹣3×2=2﹣6=﹣4故答案为:﹣4.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,应考虑a+b为一个整体,然后利用“整体代入法”求代数式的值.14.【分析】设这个角为x°,则这个角的补角为(180﹣x)°,根据题意可得方程x﹣(180﹣x)=36.8,再解即可.【解答】解:36°48′=36.8°,设这个角为x°,则这个角的补角为(180﹣x)°,x﹣(180﹣x)=36.8,解得:x=108.4,108.4°=108°24′,故答案为:108;24.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.【分析】根据从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,可以列出相应的方程,从而可以解答本题.【解答】解:设变化后乙组有x人,33+(27﹣x)=3x,解得,x=15,即变化后乙组有15人,故答案为:15.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.16.【分析】根据题意分别计算出x3,x4,x5…,据此可得后面每个数均比前一个数大3,据此求解可得.【解答】解:由题意知=7,解得x3=10,=10,解得x4=13,=13,解得x5=16,……∴第n个数x n为3n+1,故答案为:3n+1.【点评】本题主要考查数字的变化规律,解题的关键是根据题意得出后面每个数均比前一个数大3的规律.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.【分析】(1)先算乘方,再算乘除法,最后加减法即可解答本题;(2)先算中括号里的,再根据有理数的乘法即可解答本题.【解答】解:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019=﹣4+8×(﹣)×﹣(﹣1)=﹣4﹣1+1=﹣4;(2)﹣×[﹣32×(﹣)2﹣2]====9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4x﹣(x﹣1)=4﹣2(3﹣x),去括号得:4x﹣x+1=4﹣6+2x,移项合并得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=3x2y﹣(2x2y﹣x2y﹣3x)=3x2y﹣(x2y﹣3x)=3x2y﹣x2y+3x=2x2y+3x当x=,y=2时,原式=2××2+3×()=1=.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:∵A=x2+2x﹣1,A﹣B=﹣3x2+2x﹣1,∴A+B=2A﹣(A﹣B)=2x2+4x﹣2﹣(﹣3x2+2x﹣1)=2x2+4x﹣2+3x2﹣2x+1=5x2+2x﹣1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.四、解答题(每题8分,共16分)21.【分析】(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=×AC=×12=;(2)根据线段中点的定义得到AN=AC,得到AB=AC=AC,列方程即可得到结论.【解答】解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=×AC=×12=;(2)∵N为线段AC中点,∴AN=AC,∵AM:MB:BC=1:4:3,∴AB=AC=AC,∴BN=AB﹣AN=AC﹣AC=AC=2,∴AC=16.【点评】本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.22.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.【点评】本题考查了垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足,垂线的性质过一点有且只有一条直线与已知直线垂直.五、解答题(23题10分,24题10分,25题10分,共30分)23.【分析】设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据相遇时,两车行驶的路程和等于1180公里列出方程,求解即可.【解答】解:设从北京到上海的G5次列车行驶x小时与G102次列车相遇,根据题意,得200(x+)+280x=1180,解得x=2.25,2.25时=2时15分,7时+2时15分=9时15分.答:两车于9点15分相遇.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【分析】(1)设衬衫的单价为x元,则西装的单价为5x元,由两种产品共39000元为等量关系建立方程求出其解即可;(2)设单价为21元的A种产品为y件,单价为25元的B种产品为(105﹣y)件,根据支出总额为2447元为等量关系建立方程求出其解就可以判断结论.【解答】解:(1)设衬衫的单价为x元,则西装的单价为5x元,根据题意,得30×5x+45x=39000解得:x=200 则:5x=1000答:衬衫的单价为200元,则西装的单价为1000元;(2)设购买衬衫的数量为y件,则购买西装的数量为(55﹣y)件,根据题意,得200y+1000(55﹣y)=32000,解得:y=28.75(不符合题意),所以,帐肯定算错了.【点评】本题考查了列一元一次方程的运用,解答时找准题目的等量关系是解答本题的关键.25.【分析】(1)根据OM的初始位置和旋转后在图2的位置进行分析;(2)依据已知先计算出∠BOC=135°,则∠MOB=135°﹣MOC,根据∠BON与∠MOB互补,则可用∠MOC表示出∠BON,从而发现二者之间的等量关系.【解答】解:(1)OM由初始位置旋转到图2位置时,在一条直线上,所以旋转了180°.故答案为180;(2)∵∠AOC:∠BOC=1:3,∴∠BOC=180°×=135°.∵∠MOC+∠MOB=135°,∴∠MOB=135°﹣∠MOC.∴∠BON=90°﹣∠MOB=90°﹣(135°﹣∠MOC)=∠MOC﹣45°.即∠COM﹣∠BON=45°.【点评】本题主要考查了角之间的和差关系,解题时一定要结合图形分析题目.2018—2019 学年度第一学期期末初一年级学业水平测试数学试卷(考试时间120分钟,全卷满分120分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。

安徽省芜湖市无为县七年级数学2018-2019学年上学期期末试卷(带答案解析)

安徽省芜湖市无为县七年级数学2018-2019学年上学期期末试卷(带答案解析)

2018-2019学年安徽省芜湖市无为县七年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.(4分)﹣3的倒数是( ) A .3B .﹣3C .13D .−132.(4分)下列判断中正确的是( ) A .3a 2bc 与bca 2不是同类项 B .单项式﹣x 3y 2的系数是﹣1 C .3x 2﹣y +5xy 2是二次三项式D .m 3n 5不是整式3.(4分)下列说法中,正确的有( ) ①经过两点有且只有一条直线; ②两点之间,直线最短;③连接两点间的线段叫做这两点的距离; ④若AB =BC ,则点B 是线段AC 的中点. A .1 个B .2 个C .3 个D .4 个4.(4分)请阅读一小段约翰斯特劳斯作品,根据乐谱中的信息,确定最后一个音符的时值长应为( )A .18B .12C .14D .345.(4分)历史上,数学家欧拉最先把关于x 的多项式用记号f (x )来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如x =﹣1时,多项式f (x )=x 2+3x ﹣5的值记为f (﹣1),那么f (﹣1)等于( )A .﹣7B .﹣9C .﹣3D .﹣16.(4分)代数式4y 2﹣2y +5值是7,代数式1﹣y +2y 2值是( ) A .2B .3C .﹣2D .47.(4分)下列方程,以﹣2为解的方程是( ) A .3x ﹣2=2xB .4x ﹣1=2x +3C .5x ﹣3=6x ﹣2D .3x +1=2x ﹣18.(4分)已知互为补角的两个角的差为35°,则较大的角是( ) A .107.5°B .108.5°C .97.5°D .72.5°9.(4分)如图是正方体的平面展开图,每个面上标有一个汉字,与“我”字相对的面上的字是( )A .国B .厉C .害D .了10.(4分)已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利10元C .亏损10元D .盈利50元二、填空题(本题共4小题,每小题5分,满分20分)11.(5分)习近平同志在十九大报告中指出:农业农村农民问题是关系到国计民生的根本性问题,我国现有农村人口约为589000000,将589000000科学记数法表示为 . 12.(5分)上午8点30分,时钟的时针和分针所构成的锐角度数为 .13.(5分)已知线段MM =10cm ,点C 是直线MN 上一点,NC =4cm ,若P 是线段MN 的中点,Q 是NC 的中点,则线段PQ 的长度是 cm .14.(5分)找出图形变化的规律,则第2018个图形中白色正方形的数量是 .三、(本题共2小题,每小题8分,满分16分) 15.(8分)计算:4×(﹣2)3﹣6÷(﹣3). 16.(8分)解方程:y+24−2y−16=1.四、(本题共2小题,每小题8分,满分16分)17.(8分)学校需要添置某种教学仪器,现有两种添置方法方案1:到厂商家购买,每件需要8元和一次性的运费2000元;方案2:学校自己制作,每件4元,另外购置制作工具的费用4200元,请问添置多少件这种教学仪器时两种方案所需费用恰好一样多.18.(8分)如图是由小立方块所搭成的几何体从上面看到的图形,正方形中的数字表示在该位置小立方块的个数,请你在所给出的方格图中画出这个几何体从正面、从左面看到的图形.五、(本题共2小题,每小题10分,满分20分)19.(10分)小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?20.(10分)如图,点O是直线AB上一点,∠AOE=130°,∠EOF=90°,OP平分∠AOE,OQ平分∠BOF,求∠POQ的度数.六、(本题满分12分)21.(12分)根据图中情景,解答下列问题:(1)购买8根跳绳需元;购买11根跳绳需元;(2)小红比小明多买2根,付款时小红反而比小明少7元,你认为有这种可能吗?请结合方程知识说明理由.七、(本题满分12分)22.(12分)按下面的程序计算:如:输入x=100,输出结果是501.若开始输入x的值为正整数,最后输出的结果为506,求输入的x值是多少?八、(本题满分14分)23.(14分)甲、乙两辆车在一条公路上匀速行驶,为了确定汽车的位置.我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧:行程为零,表示汽车位于零千米处.(1)根据题意,填写下列表格;(2)甲、乙两车能否相遇,如果相遇,求相遇时的时刻及在公路上的位置;如果不能相遇,请说明理由;(3)甲、乙汽车能否相距180km?如果能,求相距180km的时刻及其位置;如不能,请说明理由.2018-2019学年安徽省芜湖市无为县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.(4分)﹣3的倒数是( ) A .3B .﹣3C .13D .−13【考点】17:倒数.【解答】解:∵(﹣3)×(−13)=1, ∴﹣3的倒数是−13. 故选:D .2.(4分)下列判断中正确的是( ) A .3a 2bc 与bca 2不是同类项 B .单项式﹣x 3y 2的系数是﹣1 C .3x 2﹣y +5xy 2是二次三项式D .m 3n 5不是整式【考点】34:同类项;41:整式;42:单项式;43:多项式. 【解答】解:A 、3a 2bc 与bca 2是同类项,故错误; B 、单项式﹣x 3y 2的系数是﹣1,正确; C 、3x 2﹣y +5xy 2是3次3项式,故错误; D 、m 3n 5是整式,故错误;故选:B .3.(4分)下列说法中,正确的有( ) ①经过两点有且只有一条直线; ②两点之间,直线最短;③连接两点间的线段叫做这两点的距离; ④若AB =BC ,则点B 是线段AC 的中点. A .1 个B .2 个C .3 个D .4 个【考点】IA :直线、射线、线段;IB :直线的性质:两点确定一条直线;IC :线段的性质:两点之间线段最短;ID :两点间的距离.【解答】解:①经过两点有且只有一条直线;正确; ②两点之间,线段最短;错误;③连接两点间的线段的长度叫做这两点的距离;错误; ④若AB =BC ,则点B 不一定是线段AC 的中点;错误. 故选:A .4.(4分)请阅读一小段约翰斯特劳斯作品,根据乐谱中的信息,确定最后一个音符的时值长应为( )A .18B .12C .14D .34【考点】1A :有理数的减法. 【解答】解:依题意得:34−12=14.故选:C .5.(4分)历史上,数学家欧拉最先把关于x 的多项式用记号f (x )来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如x =﹣1时,多项式f (x )=x 2+3x ﹣5的值记为f (﹣1),那么f (﹣1)等于( ) A .﹣7B .﹣9C .﹣3D .﹣1【考点】33:代数式求值.【解答】解:根据题意得:f (﹣1)=1﹣3﹣5=﹣7. 故选:A .6.(4分)代数式4y 2﹣2y +5值是7,代数式1﹣y +2y 2值是( ) A .2B .3C .﹣2D .4【考点】33:代数式求值.【解答】解:∵4y2﹣2y+5值是7,∴4y2﹣2y+5=7,∴2y2﹣y=1,∴1﹣y+2y2=1+(2y2﹣y)=1+1=2,故选:A.7.(4分)下列方程,以﹣2为解的方程是()A.3x﹣2=2x B.4x﹣1=2x+3C.5x﹣3=6x﹣2D.3x+1=2x﹣1【考点】82:方程的解.【解答】解:A、将x=﹣2代入原方程.左边=3×(﹣2)﹣2=﹣8,右边=2×(﹣2)=﹣4,因为左边≠右边,所以x=﹣2不是原方程的解.B、将x=﹣2代入原方程.左边=4×(﹣2)﹣1=﹣9,右边=2×(﹣2)+3=﹣1,因为左边≠右边,所以x=﹣2是原方程的解.C、将x=﹣2代入原方程.左边=5×(﹣2)﹣3=﹣13,右边=6×(﹣2)﹣2=﹣14,因为左边≠右边,所以x=﹣2不是原方程的解.D、将x=﹣2代入原方程.左边=3×(﹣2)+1=﹣5,右边=2×(﹣2)﹣1=﹣5,因为左边=右边,所以x=﹣2是原方程的解.故选:D.8.(4分)已知互为补角的两个角的差为35°,则较大的角是()A.107.5°B.108.5°C.97.5°D.72.5°【考点】IL:余角和补角.【解答】解:设较大的角为x,则较小的角为180°﹣x,根据题意得,x﹣(180°﹣x)=35°,解得x=107.5°.故选:A.9.(4分)如图是正方体的平面展开图,每个面上标有一个汉字,与“我”字相对的面上的字是()A.国B.厉C.害D.了【考点】I8:专题:正方体相对两个面上的文字.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“的”与“害”是相对面,“历”与“了”是相对面.故选:A.10.(4分)已知某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元【考点】8A:一元一次方程的应用.【解答】解:设盈利的进价是x元,依题意得80﹣x=60%x,解得x=50设亏本的进价是y元.则y﹣80=20%y,解得y=100,所以80+80﹣100﹣50=10元.故赚了10元.故选:B.二、填空题(本题共4小题,每小题5分,满分20分)11.(5分)习近平同志在十九大报告中指出:农业农村农民问题是关系到国计民生的根本性问题,我国现有农村人口约为589000000,将589000000科学记数法表示为 5.89×108.【考点】1I:科学记数法—表示较大的数.【解答】解:589000000这个数用科学记数法表示为5.89×108.故答案是:5.89×108.12.(5分)上午8点30分,时钟的时针和分针所构成的锐角度数为75°.【考点】IG:钟面角.【解答】解:8点30分,时钟的时针和分针相距2+12=52份,8点30分,时钟的时针和分针所构成的锐角度数为30°×52=75°,故答案为:75°.13.(5分)已知线段MM=10cm,点C是直线MN上一点,NC=4cm,若P是线段MN的中点,Q是NC的中点,则线段PQ的长度是3或7cm.【考点】ID:两点间的距离.【解答】解:P是线段MN的中点,Q是线段NC的中点,得PN=12MN=12×10=5cm,QN=12NC=12×4=2cm.①当C在MN上时,如图1,PQ=PN﹣QN=5﹣2=3cm;②当C在MN的延长线上时如图2,PQ=PN+QN=5+2=7cmm,③点C在MN的反向延长线上,NC<MN,不成立,故答案为:3或7.14.(5分)找出图形变化的规律,则第2018个图形中白色正方形的数量是3027.【考点】38:规律型:图形的变化类.【解答】解:根据题意得:第2018个图形中正方形的个数为2×2018=4036(个),黑色正方形的规律为:0,1,1,2,2,3,3,…,∵(2018﹣1)÷2=2017÷2=1008…1,∴黑色正方形个数为1009,则第2016个图形中白色正方形的数量是4036﹣1009=3027,故答案为:3027.三、(本题共2小题,每小题8分,满分16分) 15.(8分)计算:4×(﹣2)3﹣6÷(﹣3). 【考点】1G :有理数的混合运算.【解答】解:原式=4×(﹣8)﹣(﹣2)=﹣32+2=﹣30. 16.(8分)解方程:y+24−2y−16=1.【考点】86:解一元一次方程.【解答】解:去分母得:3(y +2)﹣2(2y ﹣1)=12, 去括号得:3y +6﹣4y +2=12, 移项、合并得:﹣y =4, 系数化为1:得y =﹣4.四、(本题共2小题,每小题8分,满分16分)17.(8分)学校需要添置某种教学仪器,现有两种添置方法方案1:到厂商家购买,每件需要8元和一次性的运费2000元;方案2:学校自己制作,每件4元,另外购置制作工具的费用4200元,请问添置多少件这种教学仪器时两种方案所需费用恰好一样多. 【考点】8A :一元一次方程的应用.【解答】解:设添置x 件教学仪器时,两种方案费用一样多. 根据题意,得8x +2000=4x +4200, 解得x =550.答:添置550件教学仪器时,两种方案费用一样多.18.(8分)如图是由小立方块所搭成的几何体从上面看到的图形,正方形中的数字表示在该位置小立方块的个数,请你在所给出的方格图中画出这个几何体从正面、从左面看到的图形.【考点】U3:由三视图判断几何体;U4:作图﹣三视图.【解答】解:如图所示:五、(本题共2小题,每小题10分,满分20分)19.(10分)小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?【考点】44:整式的加减.【解答】解:(1)(3x2﹣6x+8)+(6x﹣5x2﹣2)=3x2﹣6x+8+6x﹣5x2﹣2=﹣2x2+6;(2)设“□”是a,则原式=(ax2﹣6x+8)+(6x﹣5x2﹣2)=ax2﹣6x+8+6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案是6,∴a﹣5=0,解得a=5.20.(10分)如图,点O是直线AB上一点,∠AOE=130°,∠EOF=90°,OP平分∠AOE,OQ平分∠BOF,求∠POQ的度数.【考点】IJ:角平分线的定义;IK:角的计算.【解答】解:∵OP平分∠AOE,∴∠POE=12∠AOE=12×130°=65°,∵∠BOE=180°﹣∠AOE=180°﹣130°=50°,∴∠BOF=∠EOF﹣∠BOE=90°﹣50°=40°,∵OQ平分∠BOF,∴∠BOQ=12∠BOF=12×40°=20°,∴∠POQ=∠POE+∠BOE+∠BOQ=65°+50°+20°=135°.六、(本题满分12分)21.(12分)根据图中情景,解答下列问题:(1)购买8根跳绳需208元;购买11根跳绳需302元;(2)小红比小明多买2根,付款时小红反而比小明少7元,你认为有这种可能吗?请结合方程知识说明理由.【考点】8A:一元一次方程的应用.【解答】解:(1)根据题意得:35×8=280(元),即购买8根跳绳需280元,0.8×35×11=308(元),即购买11根跳绳需308元,故答案为:280,308,(2)若小红比小明多买2根,付款时小红反而比小明少7元成立,唯一的可能性就是小红买的跳绳超过10根打折了,而小明的不足10根没打折,设小明买了x根跳绳,小红买了(x+2)根跳绳,根据题意得:35x﹣35×0.8(x+2)=7,解得:x=9,x+2=11≥10(符合题意),答:有这种可能性.七、(本题满分12分)22.(12分)按下面的程序计算:如:输入x=100,输出结果是501.若开始输入x的值为正整数,最后输出的结果为506,求输入的x值是多少?【考点】1G:有理数的混合运算;33:代数式求值.【解答】解:当输入一次就输出506时,即5x+1=506,解得,x=101;当输入两次输出506时,5x+1=101解得x=20当输入三次输出506时,5x+1=20解得x=195.由于输入的值不为正整数,所以不和题意舍去.即:若开始输入x的值为正整数,最后输出的结果为506,则输入的x值是20或101.八、(本题满分14分)23.(14分)甲、乙两辆车在一条公路上匀速行驶,为了确定汽车的位置.我们用OX表示这条公路,原点O 为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧:行程为零,表示汽车位于零千米处.(1)根据题意,填写下列表格;(2)甲、乙两车能否相遇,如果相遇,求相遇时的时刻及在公路上的位置;如果不能相遇,请说明理由;(3)甲、乙汽车能否相距180km ?如果能,求相距180km 的时刻及其位置;如不能,请说明理由.【考点】11:正数和负数;8A :一元一次方程的应用.【解答】解:(1) (2)由题意得:190﹣40x =﹣80+50x , 解得:x =3, 190﹣40×3=70,答:相遇时刻为3小时,且位于零千米右侧70km 处;(3)①190﹣40x +180=﹣80+50x , 解得:x =5,190﹣40×5=﹣10,﹣80+50×5=170,②190﹣40x=﹣80+50x+180,解得x=1,190﹣40×1=150,﹣80+50×1=﹣30,答:相距180km的时刻为5小时或1小时,甲乙两车分别位于零千米左侧10km、右侧170km 处,或者甲乙两车分别位于零千米右侧150km、左侧30km处.。

七年级(上)期末数学试卷(含答案) (3)

七年级(上)期末数学试卷(含答案) (3)

北京市丰台区2018-2019学年七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)在﹣3,﹣1,2,0这四个数中,最小的数是()A.﹣3 B.﹣1 C.2 D.02.(3分)如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.3.(3分)北京某天的最高气温是6℃,最低气温是﹣1℃,则这天的温差是()A.﹣7℃B.﹣5℃C.5℃D.7℃4.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱5.(3分)如图,小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A.经过一点能画无数条直线B.两点之间,线段最短C.两点确定一条直线D.连接两点间的线段的长度,叫做这两点的距离6.(3分)下列运算正确的是()A.4m﹣m=3 B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=07.(3分)2018年10月24日珠港澳大桥正式通车,它是中国境内一座连接珠海、香港和澳门的桥隧工程.其中海底隧道由33节巨型沉管等部件组成,已知每节沉管重约74000吨,那么珠港澳大桥海底隧道所有巨型沉管的总重量约为()A.7.4×104吨B.7.4×105吨C.2.4×105吨D.2.4×106吨8.(3分)有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b9.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等的图形是()A.B.C.D.10.(3分)如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.63 B.70 C.96 D.105二、填空题(本题共16分,每小题2分)11.(2分)绝对值等于3的数是.12.(2分)单项式﹣x2y3的系数是,次数是.13.(2分)若a,b互为相反数,则5a+5b的值为.14.(2分)若∠α=47°30′,则∠α的补角的度数为.15.(2分)若x=4是关于x的一元一次方程ax=x﹣1的解,则a=.16.(2分)学习直线、射线、线段时,老师请同学们交流这样一个问题:直线上有三点A,B,C,若AB=6,BC=2,点D是线段AB的中点,请你求出线段CD的长.小华同学通过计算得到CD的长是5.你认为小华的答案是否正确(填“是”或“否”).你的理由是.17.(2分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了6天才到达目的地.若设此人第一天走的路程为x里,依题意可列方程为.18.(2分)一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.集合中的元素是互不相同的,如一组数1,2,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比有理数可以进行加法运算,集合也可以“相加”.我们规定:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若已知A={﹣2,0,1,4,6},B={﹣1,0,4},则A+B.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.(3分)计算:﹣7﹣(﹣13)+(﹣9).20.(4分)计算:﹣8×(+﹣)21.(4分)计算:(﹣1)2019+|﹣|÷(﹣4)×822.(5分)解方程:2x+3(5﹣x)=4.23.(5分)=1﹣.24.(5分)如图,平面上有三个点A,O,B.(1)画直线OA,射线OB;(2)连接AB,用圆规在射线OB上截取OC=AB(保留作图痕迹);(3)用量角器测量∠AOB的大小(精确到度).25.(5分)先化简,再求值:3(a2b+ab2)﹣(3a2b﹣1)﹣ab2﹣1,其中a=1,b=﹣3.26.(5分)如图,∠CAB+∠ABC=90°,AD平分∠CAB,与BC边交于点D,BE平分∠ABC与AC 边交于点E.(1)依题意补全图形,并猜想∠DAB+∠EBA的度数等于;(2)证明以上结论.证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=.(理由:)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠+∠)=.27.(6分)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,两班学生共104人,其中初一(1)班有40多人,不足50人,教育基地门票价格如下:原计划两班都以班为单位购票,则一共应付1136元,请回答下列问题:(1)初一(1)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?28.(6分)如图,数轴上点A对应的有理数为10,点P以每秒1个单位长度的速度从点A出发,点Q以每秒3个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分別是,,PQ=;(2)当PQ=8时,求t的值.29.(6分)阅读下面一段文字:问题:0.能化为分数形式吗?探求:步骤①设x=0.,步骤②10x=10×,步骤③10x=7.,则10x=7×,步骤④10x=7+x,解得:x=.根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是;(2)仿照上述探求过程,请你尝试把0.化为分数形式:步骤①设x=0.,步骤②100x=100×,步骤③;步骤④,解得x=;(3)请你将0.3化为分数形式,并说明理由.参考答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.解:如图所示,,由图可知,四个数中﹣3最小.故选:A.2.解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.3.解:这天的温差为6﹣(﹣1)=6+1=7(℃),故选:D.4.解:观察图形可知,这个几何体是三棱柱.故选:A.5.解:小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是两点之间,线段最短,故选:B.6.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.7.解:74000×33=2442000(吨),2442000吨≈2.4×106吨.故选:D.8.解:∵由图可知a<0<b,且|a|>|b|,∴a<﹣b.故选:D.9.解:A、∠α=∠β=90°﹣45°=90°,能判断∠α和∠β相等,故本选项错误;B、∠α和∠β都等于90°减去重合的角,故本选项错误;C、不能判断∠α和∠β相等,故本选项正确;D、∠α=∠β=180°﹣45°=135°,能判断∠α和∠β相等,故本选项错误.故选:C.10.解:设“H”型框中的正中间的数为x,则其他6个数分别为x﹣8,x﹣6,x﹣1,x+1,x+6,x+8,这7个数之和为:x﹣8+x﹣6+x﹣1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.二、填空题(本题共16分,每小题2分)11.解:绝对值等于3的数是±3.12.解:单项式﹣x2y3的系数为﹣,次数为5.故答案为:﹣,5.13.解:∵a,b互为相反数,∴5a+5b=5(a+b)=0.故答案为:0.14.解:180°﹣47°30′=132°30′,故答案为:132°30′.15.解:把x=4代入方程ax=x﹣1得:4a=4﹣1,解得:a=,故答案为:.16.解:如图1,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=5;如图2,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=1,∴小华的答案不正确,因为线段DC的长为1或5,故答案为:否;当点C在线段AB上时,CD=1或5.17.解:设此人第一天走的路程为x里,根据题意得:x+++++=378.故答案为:x+++++=378.18.解:∵A={﹣2,0,1,4,6},B={﹣1,0,4},∴由集合的定义,可得A+B={﹣2,﹣1,0,1,4,6}.故答案为:={﹣2,﹣1,0,1,4,6}.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.解:原式=﹣7+13﹣9=﹣3.20.解:原式=﹣1﹣2+12=9.21.解:原式=﹣1﹣××8=﹣1﹣1=﹣2.22.解:去括号得:2x+15﹣3x=4,移项合并得:﹣x=﹣11,解得:x=11.23.解:去分母得:4x﹣1=6﹣6x+2,移项合并得:10x=9,解得:x=0.9.24.解:(1)如图所示,直线OA和射线OB即为所求;(2)如图所示,线段OC即为所求;(3)∠AOB约为40°.25.解:原式=3a2b+3ab2﹣3a2b+1﹣ab2﹣1=2ab2,当a=1,b=﹣3时,原式=2×1×(﹣3)2=2×9=18.26.解:(1)补全图形,并猜想∠DAB+∠EBA的度数等于45°;(2)证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=∠CBA.(理由:角平分线的定义)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠CAB+∠ABC)=45°.故答案为:45°,∠CAB,角平分线的定义,,∠CAB,∠ABC,45°.27.解:(1)设初一(1)班有x人,则初一(2)班有(104﹣x)人,12x+10(104﹣x)=1136,解得,x =48,答:初一(1)有48人; (2)两个班一起购票最省钱,1136﹣8×104=1136﹣832=304(元), 即可以节省304元.28.解:(1)∵10+2×1=12,3×2=6,∴当t =2时,P ,Q 两点对应的有理数分别是12,6, ∴PQ =12﹣6=6. 故答案为:12;6;6;(2)运动t 秒时,P ,Q 两点对应的有理数分别是10+t ,3t . ①当点P 在点Q 右侧时, ∵PQ =8,∴(10+t )﹣3t =8, 解得:t =1;②当点P 在点Q 左侧时, ∵PQ =8,∴3t ﹣(10+t )=8, 解得:t =9.综上所述,t 的值为1秒或9秒.29.解:(1)步骤①到步骤②的依据是等式的基本性质2. 故答案为等式的基本性质2;(2)把0.化为分数形式:步骤①设x =0.,步骤②100x =100×,步骤③100x =37.,则100x =37+0.;步骤④100x =37+x ,解得x =.故答案为100x =37.,则100x =37+0.;100x =37+x ,;11(3)设x =0.,10x =10×0.,10x =8.,10x =8+0.,10x =8+x ,解得:x =.设m =0.3,10m =3.=3+=,m =. 即0.3=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018学年度第一学期期末学业水平测试七年级数学试卷
一、选择题(共10小题,每小题3分,共30分) 1.四个有理数-2、1、0-1,其中最小的是( ) A .1 B .0 C .-1 D .-2
2.2
1
的相反数是( )
A .2
B .21
C .2
1
D .-2
3.全面贯彻“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进煤燃电厂脱硫改造15 000 000千万是《政府工作报告》中确定的中点任务之一,将数据15 000 000用科学记数法表示为( )
A .15×106
B .1.5×107
C .1.5×108
D .0.15×108
4.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是( )
5.多项式x 3+x 2+x +1的次数是( ) A .3 B .4 C .5 D .6 6.若x =-1是关于x 的方程2x +a =1的解,则a 的值为( ) A .-1 B .1 C .3 D .-3 7.下列各式中运算正确的是( ) A .4m -m =3 B .a 2b -ab 2=0 C .2a 3-3a 3=a 3 D .xy -2xy =-xy
8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元.设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .08(1+0.5)x =x +28 B .08(1+0.5)x =x -28 C .08(1+0.5x )=x -28 D .08(1+0.5x )=x +28
9.在数轴上表示有理数a 、b 、c 的点如图所示,若ac <0,b +a <0,则( ) A .b +c <0 B .|b |<|c | C .|a |>|b | D .abc <0
10.如图,点C 、D 为线段AB 上两点,AC +BD =a ,且AD +BC =5
7
AB ,则CD 等于( ) A .a 5
2
B .a 3
2
C .a 3
5
D .a 7
5
二、填空题(本大题共6个小题,每小题3分,共18分)
11.某市2016年元旦的最低气温为-2℃,最高气温为8℃,这一天的最高气温比最低气温高__________℃ 12.38°15′=__________°
13.若单项式-x 6y 3与2x 2n y 3
是同类项,则常数n 的值是__________ 14.已知∠α和∠β互为补角,且∠β比∠α小30°,则∠β等于__________°
15.延长线段AB 到点C ,使BC =2AB ,取AC 中点D ,BD =1,则AC =__________ 16.已知整数a 1、a 2、a 3、a 4、……满足下列条件:a 1=-1,a 2=-|a 1+2|,a 3=-|a 2+3|,a 4=-|a 3+4|,……,a n +1=-|a n +n +1|(n 为正整数)依此类推,则a 2017的值为__________ 三、解答题(共8题,共72分)
17.(本题8分)计算:(1) (-8)+10+2+(-1) (2) (-2)2×3+(-3)3÷9
18.(本题8分)解方程:(1) 5x -6=3x -4 (2)
4
6
321-+
=+x x
19.(本题8分)先化简,再求值:2x 2-5x +4-(2x 2-6x ),其中x =-3
20.(本题8分)某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a hm 2,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3 hm 2 (1) 该村三种农作物种植面积一共是多少hm 2? (2) 水稻种植面积比玉米种植面积大多少hm 2?
21.(本题8分)如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD =20°,∠AOB =140°,求∠DOE 的度数
22.(本题8分)A 、B 两种型号的机器生产同一种产品,已知7台A 型机器一天生产的产品装满8箱后还剩2个,5台B 型机器一天生产的产品装满6箱后还剩8个.每台A 型机器比每台B 型机器一天少生产2个产品,求每箱装多少个产品? 23.(本题10分)已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且|a -b |=14
(1) 若b =-6,则a 的值为__________ (2) 若OA =3OB ,求a 的值
(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值
24.(本题12分)已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=80°
(1) 如图1,当OD平分∠AOC时,求∠EOB的度数
(2) 点F在射线OB上
①若射线OF绕点O逆时针旋转n°(0<n<180且n≠60),∠FOA=3∠AOD,请判断∠FOE和∠EOC 的数量关系并说明理由
②若射线OF绕点O顺时针旋转n°(0<n<180),∠FOA=2∠AOD,OH平分∠EOC.当∠FOH=∠AOC 时,则n=___________
七年级数学试卷参考答案
一、选择题。

第10题分析:AD+BC=AB+CD=5AB ,CD=5AB ,AC+BD=5AB=a ,AB=3
a 。

二、填空题。

11、10 12、38.25 13、3 14、75 15、6 16、-1009 第16题分析:规律探究:-1,-1,-2,-2,…… 三、解答题。

17、(1)3 (2)9
18、(1)x=1 (2)x=4 19、化简得:x+4 求值得:1
20、(1)a+4a+2a -3=7a -3 (2)4a -(2a -3)=2a+3 21、∠AOD=1
2
∠AOB=70°,∠BOC=∠AOB -∠AOD -∠COD=50°, ∠COE=
1
2
∠BOC=35°,∠DOE=∠COD+∠COE=45° 22、解:设每箱装x 个产品。

依题意可列方程:
8268
275
x x +++=
解得 x =12
23、(1)8
(2)设B 点对应的数为a+1。

3(a+14-0)=0-a a=-10.5
设B 点对应的数为a -14。

3[0-(a -14)] =a -0 a=10.5 综上所得:a=±10.5
(3)满足条件的C 四种情况:
① 如图:3x+4x=14
x=2
则C 对应-8
②如图:x+2x+2x=14
x=2.8
则C对应-5.6
③如图:x+2x+2x=14
x=2.8
则C对应5.6
④如图:3x+4x=14
x=2
则C对应8
综上所得:C点对应±5.6,±8。

24、(1)∠EOB=40°
(2)①∠DOE在∠AOC内部。

令∠AOD=x°,则∠DOF=2x°, ∠EOF=80°—2x°
∠EOC=120—(x°+2x°+80°—2x°)=40°—x°
∴∠EOF=2∠EOC
②∠DOE的两边在射线OC的两侧。

令∠AOD=x°,则∠DOF=2x°, ∠DOC=120°—x°,∠EOF=2x°—80°. ∠EOC=80°—(120°—x°)=x°—40°
∴∠EOF=2∠EOC
综上可得∠EOF=2∠EOC
(3)①∠DOE 在∠AOC 内部。

令∠AOD=x °,则∠AOF=2x °,
∠EOC=120°—x °—80°=40°—x °,∠EOH=
1
2
(40°—x °). ∴∠HOF=
1
2
(40°—x °)+80°+x °+2x °=120° 解得8x =
则∠BOF=180218016164x -=-=°
②∠DOE 的两边在射线OC 的两侧。

令∠AOD=x °,则∠AOF=2x °, ∠COD=120x -° ∠EOC=80°—(120°—x °)=x —40°,∠EOH=1
2
( x °—40°) ∠EOB=100°-x °. ∠BOF=180-2x °
∴∠HOF=
1
2
( x °—40°)+ 100°-x °+180-2x °=120° 解得56x =
则∠BOF=180218011268x -=-=°
综上所得:OF 旋转的角度为164°或者68°。

相关文档
最新文档