随机事件和概率考查的主要内容

合集下载

高二数学随机事件的概率详细知识点总结2022

高二数学随机事件的概率详细知识点总结2022

高二数学随机事件的概率详细知识点总结2022二数学知识点总结2021有哪些?马上要数学考试了,同学们复习好了吗?特别是上了高二的同学,高二数学难度大了不少,是不是觉得压力很大?一起来看看高二数学知识点总结2021,欢迎查阅!高二数学随机事件的概率知识点总结一、事件1.在条件SS的必然事件.2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件.3.在条件SS的随机事件.二、概率和频率1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据.2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nAnA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A 出现的频率.3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A).三、事件的关系与运算四、概率的几个基本性质1.概率的取值范围:2.必然事件的概率P(E)=3.不可能事件的概率P(F)=4.概率的加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B).5.对立事件的概率:若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B).高二数学《导数》知识点总结导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作 .2. 导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t) 表示即时速度。

a=v/(t) 表示加速度。

3.常见函数的导数公式: ① ;② ;③ ;⑤ ;⑥ ;⑦ ;⑧ 。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果 ,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数 ;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数最大值与最小值的步骤:ⅰ求的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册数学[随机事件和概率--知识点整理及重点题型梳理]

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习随机事件和概率--知识讲解【学习目标】1、通过对生活中各种事件的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断;2、初步理解概率定义,通过具体情境了解概率意义.【要点梳理】要点一、必然事件、不可能事件和随机事件【 391875 名称:随机事件与概率初步:随机事件】1.定义:(1)必然事件在一定条件下重复进行试验时,在每次试验中必然会发生的事件,叫做必然事件.(2)不可能事件在每次试验中都不会发生的事件叫做不可能事件.(3)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.要点诠释:1.必然发生的事件和不可能发生的事件均为“确定事件”,随机事件又称为“不确定事件”;2.要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同.要点二、概率的意义概率是从数量上刻画了一个随机事件发生的可能性的大小.一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数附近,那么这个常数就叫做事件A的概率(probability),记为.要点诠释:(1)概率是频率的稳定值,而频率是概率的近似值;(2)概率反映了随机事件发生的可能性的大小;(3) 事件A的概率是一个大于等于0,且小于等于1的数,,即,其中P(必然事件)=1,P(不可能事件)=0,0<P(随机事件)<1.【典型例题】类型一、随机事件1.(1)指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.【答案与解析】①④是必然事件;②③是不可能事件;⑤⑥是随机事件.【总结升华】准确掌握定义,依据定义判别.【 391875 名称:随机事件与概率初步:经典例题1】举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【答案】C.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.【答案】C.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球. 【答案与解析】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【总结升华】了解并掌握三种事件的区别和联系.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.【答案】不公平,小于3的点数有1、2,大于3的点数有4、5、6,因此,它们的可能性是不同的,所以不公平.可设计掷出的点数为偶数时甲胜,掷出的点数为奇数时乙胜.类型二、概率3.(2015春•山亭区期末)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【答案与解析】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.【总结升华】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.举一反三【变式】(2014•宁波模拟)中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A.B.C.D.【答案】D.【 391875 名称:随机事件与概率初步:例6及思考题】投篮次数n8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率nm(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少? 【答案与解析】 (1)投篮次数n 8 10 12 9 16 10 进球次数m 6897127进球频率nm0.75 0.8 0.75 0.78 0.75 0.7 (2)P(进球)≈0.75.【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近. 举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:射击次数(n) 10 20 50 100 200 500 击中靶心次数(m)9 19 44 91 178 451 击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?【答案】 (1)击中靶心的各个频率依次是:0.90,0.95,0.88,0.91,0.89,0.90. (2)这个射手击中靶心的概率约为0.9.。

高二数学随机事件的概率知识精讲

高二数学随机事件的概率知识精讲

高二数学随机事件的概率【本讲主要内容】随机事件的概率事件的定义、随机事件的概率、概率的性质、基本事件、等可能性事件、等可能性事件的概率【知识掌握】【知识点精析】1. 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件。

随机现象的两个特征⑴结果的随机性:即在相同的条件下做重复的试验时,如果试验的结果不止一个,则在试验前无法预料哪一种结果将发生。

⑵频率的稳定性:即大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。

这一常数就成为该事件的概率。

2. 随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作()P A。

理解:需要区分“频率”和“概率”这两个概念:(1)频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的随机事件出现的可能性。

(2)概率是一个客观常数,它反映了随机事件的属性。

大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。

这一常数就成为该事件的概率。

3. 概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。

4. 概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A≤≤,必然事件和不可能事件看作随机事件的两个极端情形。

5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本事件。

例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件A由几个基本事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成)。

6. 等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件。

考研数学备考:概率论各章节知识点梳理

考研数学备考:概率论各章节知识点梳理

考研数学备考:概率论各章节知识点梳理1500字概率论作为考研数学中的一部分,是考生备考的重点之一。

下面将对概率论的各章节知识点进行梳理,帮助考生进行复习备考。

1. 随机事件与概率概率论的基本概念是随机事件和概率。

随机事件是随机现象的结果,概率是事件发生的可能性大小。

在这一章节中,主要涉及到随机事件的定义、事件的性质、事件间的关系等内容。

2. 随机变量及其分布随机变量是随机现象的数值描述,它分为离散随机变量和连续随机变量。

这一章节主要涉及随机变量的定义、分布函数、概率密度函数等内容。

同时还包括常见的离散随机变量和连续随机变量的概率分布,如二项分布、泊松分布、正态分布等。

3. 随机事件的数学描述随机事件可以用随机变量的取值区间来表示,也可以用事件的概率来描述。

这一章节主要包括随机事件的和、差、积等概念,以及离散随机变量和连续随机变量的概率函数之间的关系。

4. 多维随机变量及其分布多维随机变量是指由多个随机变量组成的向量。

这一章节主要包括多维随机变量的定义、联合分布、边缘分布等内容。

同时还包括多维随机变量的独立性、相关性等概念。

5. 随机变量的数字特征随机变量的数字特征包括数学期望、方差、协方差等。

这一章节主要涉及到随机变量的数学期望、方差和协方差的定义、性质以及计算方法。

6. 大数定律和中心极限定理大数定律是指随着试验次数的增加,随机事件的频率趋向于事件的概率。

中心极限定理是指当随机事件的样本量足够大时,其均值的分布接近于正态分布。

这一章节主要涉及到大数定律和中心极限定理的数学表达和推导。

7. 参数估计与假设检验参数估计是根据样本数据对总体参数进行估计,假设检验是根据样本数据对总体参数是否符合某个假设进行检验。

这一章节主要包括点估计、区间估计和假设检验的概念、方法和步骤。

8. 有序与无序排列的计数问题有序排列是指考虑元素的排列顺序,无序排列是指不考虑元素的排列顺序。

这一章节主要涉及到有序与无序排列的计数问题,如排列、组合、多重集合等。

随机事件的概率知识点和基本题型

随机事件的概率知识点和基本题型

随机事件的概率知识点和基本题型1、 确定事件和随机事件。

(1)“必然事件”是指事先可以肯定一定会发生的事件。

1)(=A P ,比如:今天星期一,明天就是星期二。

(2)“不可能事件”是指事先可以肯定一定不会发生的事件。

0)(=A P ,比方:今天星期一,明天是星期天。

(3)“不确定事件”或“随机事件”是指结果的发生与否具有随机性的事件。

比方:丢硬币,第一次是正面朝上,第二次还是正面朝上。

1)(0<<A P练习:1.在一个袋子中装有50个黄色乒乓球,小明在里面随便摸出一个来,他摸到黄球的可能性是( )%,摸到白球的可能性是( )%。

2.在括号中填上“必然发生”或“不可能发生”或“可能发生”;掷两个骰子,把两个点数相加:(1)和为1( );(2)和为7( ); (3)和为12( );(4)和为17( ); (5)和大于2( );(6)和小于2( ); (7)和小于20( )。

3.下列事件中,必然发生的事件是( )A. 明天会下雨B.小明考试得99分C.今天是星期一,明天就是星期二D.明年有370 天4.下列语名描述的事件中,是随机事件的是( ).A 水能载舟,亦能覆舟 .B 只手遮天,偷天换日 .C 瓜熟蒂落,水到渠成 .D 心想事成,万事如意 5.下列成语描述的事件为随机事件的是( ).A 守株待兔 .B 缘木求鱼 .C 水中捞月 .D 水涨船高 2、可能性的大小(1)事件的频数、频率。

设总共做n 次重复实验,而事件A 发生了m 次,则称事件A 发生的次数m 为频数。

称比值nm为A 发生的频率。

(2)概率:一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,所以我们常用一个随机事件发生的频率来估计它的概率。

练习:1.有10张大小相同的卡片,分别写有0至9十个数字,将它们背面朝上洗匀后任抽一张,则P (是偶数)=________,P (是3的倍数)=________。

随机事件与概率知识点

随机事件与概率知识点

随机事件与概率知识点随机事件和概率是概率论中的基本概念,它们揭示了不确定性现象背后的规律性。

本文将介绍随机事件的定义及性质,以及概率的概念、性质和计算方法。

一、随机事件的定义随机事件是指在一定条件下,具有不确定性的事件。

简单来说,就是不知道会发生什么的事件。

一个事件发生与否,可以用0或1表示,其中0代表事件不发生,1代表事件发生。

这种不确定性使得我们需要运用概率论的知识来描述和研究。

对于一个随机试验,其样本空间为Ω,由所有可能出现的结果组成。

样本空间中的每一个元素称为一个样本点,记作ω。

而样本空间中的子集,称为事件。

简单来说,事件就是样本空间的一个子集,用来描述某些结果的集合。

二、随机事件的性质1. 必然事件和不可能事件:必然事件是指在所有可能的结果中,一定会发生的事件。

记作Ω,其对应的概率为1。

例如,在一次掷骰子的实验中,必然事件就是出现的点数在1至6之间。

不可能事件是指在所有可能的结果中,一定不会发生的事件。

记作∅,其对应的概率为0。

例如,在一次掷骰子的实验中,不可能事件就是出现的点数为7。

2. 事件的互斥与对立:互斥事件是指两个事件不能同时发生的情况。

例如,掷骰子出现的点数为奇数和出现的点数为偶数就是互斥事件,因为在一次实验中,掷出奇数的点数和掷出偶数的点数不可能同时发生。

对立事件是指两个事件必定有一个发生,但不能同时发生的情况。

例如,掷骰子出现的点数为奇数和出现的点数为偶数就是对立事件。

三、概率的概念与性质概率是描述随机事件发生可能性大小的数值,通常用P(A)表示。

概率的取值范围在0到1之间,其中0代表不可能事件,1代表必然事件。

1. 古典概型:古典概型是指所有样本点出现的概率相等的情况。

例如,在一次掷骰子的实验中,每个点数出现的概率都是1/6。

2. 几何概型:几何概型是指样本空间是一个有限的几何图形的情况。

例如,在一个正方形平面内随机选择一个点,那么点落在正方形的某个子区域中的概率就可以通过计算子区域面积与正方形面积的比值得到。

随机事件与概率知识点总结

随机事件与概率知识点总结概率是我们日常生活中经常用到的概念,它与随机事件密切相关。

在这篇文章中,我们将总结一些关于随机事件与概率的重要知识点。

一、随机事件的定义与表示方式随机事件是指在相同的随机试验中可能发生的某个结果或某些结果的集合。

我们可以用事件的名称或符号来表示随机事件。

例如,事件A表示“掷一枚硬币正面朝上”,事件B表示“掷一枚硬币反面朝上”。

二、随机事件的分类随机事件可以分为互斥事件和非互斥事件。

1. 互斥事件互斥事件指的是两个事件不能同时发生。

例如,事件A表示“掷一枚硬币正面朝上”,事件B表示“掷一枚硬币反面朝上”。

在同一次试验中,事件A和事件B是互斥事件,因为硬币不能同时正反面朝上。

2. 非互斥事件非互斥事件指的是两个事件可以同时发生。

例如,事件C表示“掷一颗六面骰子,点数为偶数”,事件D表示“掷一颗六面骰子,点数为3”。

在同一次试验中,事件C和事件D是非互斥事件,因为骰子可能同时满足偶数和点数为3这两个条件。

三、概率的定义与性质概率是一个表示事件发生可能性的数值,通常用0到1之间的实数表示。

概率的性质包括:1. 非负性任何事件的概率都不小于0,即P(A)≥0。

2. 规范性样本空间Ω中的事件A的概率为1,即P(Ω)=1。

3. 可列可加性如果事件A1、A2、A3...两两互斥,那么这些事件的概率之和等于它们的并集的概率,即P(A1∪A2∪A3...)=P(A1)+P(A2)+P(A3)+...。

四、概率的计算方法计算概率的方法有频率法、古典概型法和几何概型法。

1. 频率法频率法是通过实验来估计事件发生的概率。

当我们进行大量试验时,事件发生的频率趋近于事件发生的概率。

例如,我们翻一枚硬币100次,正面朝上的次数为60次,那么事件“掷一枚硬币正面朝上”的概率可以估计为60/100=0.6。

2. 古典概型法古典概型法适用于样本空间有限、各个结果概率相等的情况。

例如,掷一枚骰子,点数为1、2、3、4、5、6的概率都相等,即P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1/6。

02197-概率论与数理统计二-考前重点

02197.概率论与数理统计(二)-考前重点《概率论与数理统计(二)〉〉考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识第一章随机事件与概率1.事件的包含与相等、和事件的定义P3(二级重点)(单选、填空)2.积事件、差事件、互不相容事件、对立事件的定义P4-5(一级重点)(单选、填空)尤其是互不相容事件与对立事件的理解,务必记住。

3.古典概型的概率计算P9(一级重点)(填空)等可能概型中事件概率的计算:设在古典概型中,试验E共有n个基本事件,事件A包含了m个基本事件,则事件A的概率为P(A)mn4,概率的加法公式与减法公式(性质2与性质3)P11-12(二级重点)(单选、填空)力口法公式:P(AB)P(A)P(B)P(AB)减法公式:P(BA)P(B)P(AB)5.条件概率的定义及用法P14(二级重点)(单选、填空、计算)条件概率的公式:P(B|A)=P(AB)/P(A)或者P(A|B)P(AB),P(B)6,全概率公式的定义及用法(注意其需要满足的两个条件)P16(二级重点)(填空、计算)用全概率定理来解题的思路,从试验的角度考虑问题,一定是将试验分为两步做,将第一步试验的各个结果分为一些完备事件组A,A,…,A,然后在这每一事件下计算或给出某个事件B发生的条件概率,最后用全概率公式综合计算。

7.两个事件与三个事件独立性的定义及应用P19-21(一级重点)(单选、填空、计算)三个事件独立可以推出两两独立,但反之不然。

8.n重贝努利试验的描述及其概率求法P22(一级重点)(单选、填空、综合)在n重贝努利试验中,设每次试验中事件A的概率为p(0<p<1),则事件A恰好发生k次的概率为:P(k)C:p k(1-P)nk,k=0,1,2Ln第二章随机变量及其概率分布9.离散分布律的两个性质(非负性,归一性)及其应用P30(一级重点)(单选、填空)P k0,(k1,2.......)(非负性);p k1(归一k性)10.0-1分布、二项分布、泊松分布P32-34(二级重点)(单选、填空)牢记这三个常用离散分布的定义形式11.分布函数的定义及其性质P36-38(三级重点)(单选、填空)知道分布函数的含义是概率在一个区间得到累积形式,对它的性质要了解。

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。

随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。

统计规律性:在大量重复试验或观察中所呈现的固有规律性。

概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。

(1)概率论:从数量上研究随机现象的统计规律性的科学。

(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。

2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。

在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。

样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。

样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。

3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。

事件发生:在一次试验中,当这一子集中的一个样本点出现时。

基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。

两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。

空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。

4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。

①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。

事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。

(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。

随机事件与概率

§10.4随机事件与概率考试要求 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.知识梳理1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E的每个可能的基本结果称为样本点,常用ω表示.全体样本点的集合称为试验E的样本空间,常用Ω表示.②有限样本空间:如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.(2)随机事件①定义:将样本空间Ω的子集称为随机事件,简称事件.②表示:大写字母A,B,C,….③随机事件的极端情形:必然事件、不可能事件.2.两个事件的关系和运算含义符号表示包含关系A发生导致B发生A⊆B相等关系B⊇A且A⊇B A=B并事件(和事件) A与B至少一个发生A∪B或A+B交事件(积事件)A与B同时发生A∩B或AB互斥(互不相容)A与B不能同时发生A∩B=∅互为对立A与B有且仅有一个发生A∩B=∅,A∪B=Ω3.频率与概率(1)频率的稳定性一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率f n(A)会逐渐稳定于事件A发生的概率P(A),我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用:可以用频率f n(A)估计概率P(A).常用结论1.为方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形.2.当随机事件A,B互斥时,不一定对立;当随机事件A,B对立时,一定互斥.也即两事件互斥是对立的必要不充分条件.3.随机事件A发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中,事件A发生的频率逐渐稳定于事件A发生的概率.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)必然事件一定发生.(√)(2)在大量重复试验中,概率是频率的稳定值.(√)(3)两个事件的和事件是指两个事件都得发生.(×)(4)若A∪B是必然事件,则A与B是对立事件.(×)教材改编题1.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶答案 D解析“至少有一次中靶”的对立事件是“两次都不中靶”.2.把一枚质地均匀的硬币连续抛掷1 000次,其中有496次正面朝上,504次反面朝上,则掷一次硬币正面朝上的概率为________.答案0.5解析掷一次硬币正面朝上的概率是0.5.3.先后两次抛掷同一枚硬币,若正面向上记为1;若反面向上,则记为0,则这个试验的样本空间中有________个样本点.答案 4解析这个试验的样本空间为Ω={(1,1),(1,0),(0,1),(0,0)},共4个样本点.题型一随机事件与样本空间例1(1)在1,2,3,…,10这十个数字中,任取三个不同的数字,那么“这三个数字的和大于5”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均有可能答案 A解析从1,2,3,…,10这十个数字中任取三个不同的数字,那么这三个数字和的最小值为1+2+3=6,∴事件“这三个数字的和大于5”一定会发生,∴由必然事件的定义可以得知该事件是必然事件.(2)袋中有大小、形状相同的红球、黑球各一个,现在有放回地随机摸3次,每次摸取一个,观察摸出球的颜色,则此随机试验的样本点个数为()A.5 B.6 C.7 D.8答案 D解析因为是有放回地随机摸3次,所以随机试验的样本空间为Ω={(红,红,红),(红,红,黑),(红,黑,红),(红,黑,黑),(黑,红,红),(黑,红,黑),(黑,黑,红),(黑,黑,黑)}.共8个.教师备选一只口袋装有除颜色外,形状、大小等完全相同的2个白球,3个黑球,4个红球,从中分两次依次取两个球.(1)写出这个试验的样本空间;(2)“至少有1个白球”这一事件包含哪几个样本点?解(1)这个试验的样本空间Ω={(白,白),(黑,黑),(红,红),(白,黑),(白,红),(黑,白),(红,白),(黑,红),(红,黑)}.(2)“至少有1个白球”这一事件包含以下5个样本点:(白,白),(白,黑),(白,红),(黑,白),(红,白).思维升华确定样本空间的方法(1)必须明确事件发生的条件.(2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.跟踪训练1(1)下列说法错误的是()A.任一事件的概率总在[0,1]内B.不可能事件的概率一定为0C.必然事件的概率一定为1 D.概率是随机的,在试验前不能确定答案 D解析任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1,概率是客观存在的,是一个确定值.(2)同时抛掷两枚完全相同的骰子,用(x ,y )表示结果,记A 为“所得点数之和小于5”,则事件A 包含的样本点的个数是( ) A .3 B .4 C .5 D .6 答案 D解析 事件A 包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个样本点.题型二 事件的关系与运算例2 (1)(多选)某人打靶时连续射击两次,设事件A =“只有一次中靶”,B =“两次都中靶”,则下列结论正确的是( ) A .A ⊆B B .A ∩B =∅C .A ∪B =“至少一次中靶”D .A 与B 互为对立事件 答案 BC解析 事件A =“只有一次中靶”,B =“两次都中靶”,所以A ,B 是互斥但不是对立事件,所以AD 选项错误,B 选项正确.A ∪B =“至少一次中靶”,C 选项正确.(2)(多选)将颜色分别为红、绿、白、蓝的4个小球随机分给甲、乙、丙、丁4个人,每人一个,则( )A .事件“甲分得红球”与事件“乙分得白球”是互斥不对立事件B .事件“甲分得红球”与事件“乙分得红球”是互斥不对立事件C .事件“甲分得绿球,乙分得蓝球”的对立事件是“丙分得白球,丁分得红球”D .当事件“甲分得红球”的对立事件发生时,事件“乙分得红球”发生的概率是13答案 BD解析 事件“甲分得红球”与事件“乙分得白球”可以同时发生,不是互斥事件,A 错误; 事件“甲分得红球”与事件“乙分得红球”不能同时发生,是互斥事件,除了甲分得红球或者乙分得红球以外,丙或者丁也可以分得红球,B 正确;事件“甲分得绿球,乙分得蓝球”与事件“丙分得白球,丁分得红球”可以同时发生,不是对立事件,C 错误;事件“甲分得红球”的对立事件是“甲没有分得红球”,因此乙、丙、丁三人中有一个人分得红球,事件“乙分得红球”发生的概率是1,D正确.3教师备选1.抛掷一颗质地均匀的骰子,有如下随机事件:C i=“点数为i”,其中i=1,2,3,4,5,6;D1=“点数不大于2”,D2=“点数不小于2”,D3=“点数大于5”;E=“点数为奇数”,F=“点数为偶数”.下列结论正确的是()A.C1与C2对立B.D1与D2互斥C.D3⊆F D.E⊇(D1∩D2)答案 C解析对于A,C1=“点数为1”,C2=“点数为2”,C1与C2互斥但不对立,故选项A不正确;对于B,D1=“点数不大于2”,D2=“点数不小于2”,当出现的点是2时,D1与D2同时发生,所以D1与D2不互斥,故选项B不正确;对于C,D3=“点数大于5”表示出现6点,F=“点数为偶数”,所以D3发生F一定发生,所以D3⊆F,故选项C正确;对于D,D1∩D2表示两个事件同时发生,即出现2点,E=“点数为奇数”,所以D1∩D2发生,事件E不发生,所以E⊇(D1∩D2)不正确,故选项D不正确.2.(多选)从1至9这9个自然数中任取两个,有如下随机事件:A=“恰有一个偶数”;B=“恰有一个奇数”;C=“至少有一个是奇数”;D=“两个数都是偶数”;E=“至多有一个奇数”.下列结论正确的有()A.A=B B.B⊆CC.D∩E=∅D.C∩D=∅,C∪D=Ω答案ABD解析事件A,B都指的是一奇一偶,故A正确;至少有一个奇数,指两个数是一奇一偶,或是两个奇数,所以B⊆C,故B正确;至多有一个奇数指一奇一偶,或是两偶,此时事件D,E有公共事件,故C错误;此时C,D是对立事件,所以C∩D=∅,C∪D=Ω.思维升华事件的关系运算策略(1)互斥事件是不可能同时发生的事件,但也可以同时不发生.(2)进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析.也可类比集合的关系和运用Venn图分析事件.跟踪训练2(1)(2022·长春模拟)口袋中装有3个红球和4个黑球,每个球编有不同的号码,现从中取出3个球,则互斥而不对立的事件是()A.至少有1个红球与至少有1个黑球B.至少有1个红球与都是黑球C.至少有1个红球与至多有1个黑球D.恰有1个红球与恰有2个红球答案 D解析对于A,不互斥,如取出2个红球和1个黑球,与至少有1个黑球不是互斥事件,所以A不符合题意;对于B,至少有1个红球与都是黑球不能同时发生,且必有其中1个发生.所以为互斥事件,且为对立事件,所以B不符合题意;对于C,不互斥.如取出2个红球和1个黑球,与至多有1个黑球不是互斥事件,所以C不符合题意;对于D,恰有1个红球与恰有2个红球不能同时发生,所以为互斥事件,但不对立,如还有3个红球.(2)抛掷一枚质地均匀的骰子,有如下随机事件:A i=“向上的点数为i”,其中i=1,2,3,4,5,6,B=“向上的点数为偶数”,则下列说法正确的是()A.A1⊆B B.A2+B=ΩC.A3与B互斥D.A4与B对立答案 C解析对于A,A1={2,3,4,5,6},B={2,4,6},∴B⊆A1,故A错误;对于B,A2+B={2}∪{2,4,6}={2,4,6}≠Ω,故B错误;对于C ,A 3与B 不能同时发生,是互斥事件,故C 正确;对于D ,A 4={4},B ={1,3,5},A 4与B 是互斥但不对立事件,故D 错误. 题型三 频率与概率例3 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15)[15,20) [20,25) [25,30) [30,35)[35,40]天数 216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为2+16+3690=0.6.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则Y =200×6+(450-200)×2-450×4=-100; 若最高气温位于区间[20,25),则Y =300×6+(450-300)×2-450×4=300; 若最高气温不低于25, 则Y =450×(6-4)=900,所以利润Y 的所有可能值为-100,300,900.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8.因此Y 大于零的概率的估计值为0.8. 教师备选某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5 保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数 0 1 2 3 4 ≥5 频数605030302010(1)记A 为事件:“一续保人本年度的保费不高于基本保费”,求P (A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得保费 0.85a a 1.25a 1.5a 1.75a 2a 频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a . 思维升华 (1)概率与频率的关系(2)随机事件概率的求法跟踪训练3 某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X 的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110, 160,220,140,160.(1)完成如下的频率分布表: 近20年六月份降雨量频率分布表降雨量 70 110 140 160 200 220 频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率. 解 (1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为降雨量 70 110 140 160 200 220 频率120320420720320220(2)根据题意,Y =460+X -7010×5=X2+425,故P (“发电量低于490万千瓦时或超过530万千瓦时”)=P (Y <490或Y >530) =P (X <130或X >210)=P (X =70)+P (X =110)+P (X =220) =120+320+220=310. 故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.课时精练1.下列说法正确的是( ) A .任何事件的概率总是在(0,1)之间 B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,事件发生的频率一般会稳定于概率D .概率是随机的,在试验前不能确定 答案 C解析 不可能事件的概率为0,必然事件的概率为1,故A 错;频率是由试验的次数决定的,故B 错;概率是频率的稳定值,故C 正确,D 错.2.2021年东京奥运会中国体育代表团共有777人,截止到7月15日,未完成疫苗接种的有3人,则中国体育代表团成员的疫苗接种率约为( ) A .99.61% B .99.49% C .99.36% D .99.23% 答案 A解析 中国体育代表团成员的疫苗接种率约为777-3777≈0.996 1=99.61%.3.在一个袋子中装有分别标注1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出小球标注的数字之差的绝对值为2或4的事件包含的样本点个数为( )A .2B .4C .6D .8 答案 B解析 从5个小球中任取2个,其中数字之差的绝对值为2或4的事件包含(1,3),(1,5),(2,4),(3,5),共4个样本点.4.抛掷一枚骰子,“向上的点数是1或2”为事件A ,“向上的点数是2或3”为事件B ,则( ) A .A ⊆B B .A =BC .A +B 表示向上的点数是1或2或3D .AB 表示向上的点数是1或2或3 答案 C解析 由题意,可知A ={1,2},B ={2,3},则A ∩B ={1},A ∪B ={1,2,3},∴A ∪B 表示向上的点数为1或2或3.5.(多选)依次抛掷两枚骰子,所得点数之和记为X ,那么X =4表示的随机试验的样本点是( )A.第一枚是3点,第二枚是1点B.第一枚是1点,第二枚是3点C.两枚都是4点D.两枚都是2点答案ABD解析X=4表示两次抛掷所得总数之和为4,则随机试验的样本点是“第一枚是3点,第二枚是1点”或“第一枚是1点,第二枚是3点”或“两枚都是2点”.6.(多选)下列说法正确的是()A.若事件A与B互斥,则A∪B是必然事件B.《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国四大名著.若在这四大名著中,甲、乙、丙、丁分别任取一本进行阅读,设事件E=“甲取到《红楼梦》”,事件F=“乙取到《红楼梦》”,则E与F是互斥但不对立事件C.掷一枚骰子,记录其向上的点数,记事件A=“向上的点数不大于5”,事件B=“向上的点数为质数”,则B⊆AD.10个产品中有2个次品,从中抽取一个产品检查其质量,则样本空间含有2个样本点答案BCD解析对于A,事件A与B互斥时,A∪B不一定是必然事件,故A不正确;对于B,事件E与F不会同时发生,所以E与F是互斥事件,但除了事件E与F之外还有“丙取到红楼梦”“丁取到红楼梦”,所以E与F不是对立事件,故E与F是互斥不对立事件,B正确;对于C,事件A={1,2,3,4,5},事件B={2,3,5},所以B包含于A,C正确;对于D,样本空间Ω={正品,次品},含有2个样本点,故D正确.7.笼子中有4只鸡和3只兔,依次取出一只,直到3只兔全部取出,记录剩下动物的脚数.则该试验的样本空间Ω=________.答案{0,2,4,6,8}解析最少需要取3次,最多需要取7次,那么剩余鸡的只数最多4只,最少0只,所以剩余动物的脚数可能是8,6,4,2,0.8.商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9.若第5组表示的是尺码为40~42的皮鞋,则售出的这300双皮鞋中尺码为40~42的皮鞋约为________双.答案60解析∵第1,2,4组的频数分别为6,7,9,∴第1,2,4组的频率分别为6 40=0.15,740=0.175,940=0.225.∵第3组的频率为0.25,∴第5组的频率是1-0.25-0.15-0.175-0.225=0.2,∴售出的这300双皮鞋中尺码为40~42的皮鞋约为0.2×300=60(双).9.盒子里有6个红球、4个白球,现从中任取3个球,设事件A={3个球中有1个红球、2个白球},事件B={3个球中有2个红球、1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.(1)事件D与A,B是什么样的运算关系?(2)事件C与A的积事件是什么事件?解(1)对于事件D,可能的结果为1个红球、2个白球或2个红球、1个白球,故D=A+B.(2)对于事件C,可能的结果为1个红球、2个白球或2个红球、1个白球或3个红球,故CA =A.10.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层随机抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有样本点;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,写出该事件的集合表示.解(1)甲、乙、丙三个协会共有的运动员人数为27+9+18=54,则应从甲协会抽取27×654=3(人),从乙协会抽取9×654=1(人),从丙协会抽取18×654=2(人).故从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有样本点为(A1,A2),(A1,A3),(A1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6),共15种.②事件A 可用集合表示为{(A 1,A 5),(A 1,A 6),(A 2,A 5),(A 2,A 6),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6)}.11.(多选)2021年5月7日,国药集团中国生物北京生物制品研究所研发生产的新型冠状病毒灭活疫苗(Vero 细胞),获得世卫组织紧急使用授权,纳入全球“紧急使用清单”(EUL).世卫组织审评认为该疫苗的效力为78.1%,最高达90%,安全性良好,临床试验数据中没有发现安全问题.所谓疫苗的效力,是通过把人群分成两部分,一部分为对照组,注射安慰剂;另一部分为疫苗组,注射疫苗,当从对照组与疫苗组分别获得发病率后,就可以得到注射疫苗的效力=对照组发病率-疫苗组发病率对照组发病率×100%.关于注射疫苗,下列说法正确的是( )A .只要注射该种新冠疫苗,就一定不会感染新冠肺炎B .注射该种新冠疫苗,能使新冠肺炎感染的风险大大降低C .若对照组10 000人,发病100人;疫苗组20 000人,发病40人,则效力为80%D .若疫苗的效力为80%,对照组的发病率为50%.那么在10 000个人注射该疫苗后,一定有1 000个人发病 答案 BC解析 由题意知,疫苗的效力为78.1%,最高达90%,但不是注射该种新冠疫苗,就一定不会感染新冠肺炎,故选项A 错误;疫苗的效力为78.1%,最高达90%,所以注射该种新冠疫苗,能使新冠肺炎感染的风险大大降低,故选项B 正确;若对照组10 000人,发病100人;疫苗组20 000人,发病40人,则注射疫苗的效力=10010 000-4020 00010010 000×100%=80%,故选项C 正确;若疫苗的效力为80%,对照组的发病率为50%,只是反应了一个概率问题,并不能说明在 10 000个人注射该疫苗后,一定有1 000个人发病,故选项D 错误.12.(多选)一批产品共100件,其中5件是次品,95件是合格品,从这批产品中任意抽取5件,现给出以下四个事件:事件A:“恰有一件次品”;事件B:“至少有两件次品”;事件C:“至少有一件次品”;事件D:“至多有一件次品”.则以下结论正确的是()A.A∪B=C B.D∪B是必然事件C.A∪B=B D.A∪D=C答案AB解析A∪B表示的事件为至少有一件次品,即事件C,所以A正确,C不正确;D∪B表示的事件为至少有两件次品或至多有一件次品,包括了所有情况,所以B正确;A∪D表示的事件为至多有一件次品,即事件D,所以D不正确.13.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是()A.A⊆D B.B∩D=∅C.A∪C=D D.A∪C=B∪D答案 D解析对于选项A,事件A包含于事件D,故A正确.对于选项B,由于事件B,D不能同时发生.故B∩D=∅,故B正确.对于选项C,由题意知正确.对于选项D,由于A∪C=D={至少有一弹击中飞机},不是必然事件;而B∪D为必然事件,所以A∪C≠B∪D,故D不正确.14.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘坐上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,则他乘坐上等车的概率为________.答案1 2解析共有6种发车顺序:①上、中、下;②上、下、中;③中,上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=1 2.15.(多选)千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据:后半夜天气情况“日落云里走”的情况下雨 未下雨 合计 出现 25 5 30 未出现 25 45 70 合计5050100α 0.1 0.05 0.01 0.005 0.001 x α2.7063.8416.6357.87910.828并计算得到χ2≈19.05,则小波对该地区天气的判断正确的是( ) A .后半夜下雨的概率约为12B .未出现“日落云里走”时,后半夜下雨的概率约为59C .依据小概率值α=0.01的独立性检验,认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D .若出现“日落云里走”,则后半夜有99%的可能会下雨 答案 AC解析 对于A ,把频率看作概率,可得后半夜下雨的概率约为50100=12,故A 判断正确;对于B ,未出现“日落云里走”时,后半夜下雨的概率约为2525+45=514,故B 判断错误; 对于C ,由χ2≈19.05>6.635=x 0.01,认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关,故C 判断正确;易知D 判断错误.16.甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张. (1)写出甲、乙抽到牌的所有样本点;(2)若甲抽到红桃3,则乙抽到的牌的数字比3大的概率是多少?(3)甲、乙约定,若甲抽到的牌的数字比乙的大,则甲胜;否则乙胜,你认为此游戏是否公平?为什么?解(1)分别用2,3,4,4′表示红桃2,红桃3,红桃4,方片4,则甲、乙抽到牌的所有样本点为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12个.(2)甲抽到红桃3,乙抽到的只能是红桃2,红桃4,方片4,因此乙抽到牌的数字比3大的概率是23.(3)甲抽到的牌的数字比乙的大,有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5个样本点,因此甲胜的概率为512,乙胜的概率为712.因为512<712,所以此游戏不公平.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机事件和概率考查的主要内容有:
(1)事件之间的关系与运算,以及利用它们进行概率计算;
(2)概率的定义及性质,利用概率的性质计算一些事件的概率;
(3)古典概型与几何概型;
(4)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
(5)事件独立性的概念,利用独立性计算事件的概率;
(6)独立重复试验,伯努利概型及有关事件概率的计算。

要求考生理解基本概念,会分析事件的结构,正确运用公式,掌握一些技巧,熟练地计算概率。

随机变量及概率分布考查的主要内容有:
(1)利用分布函数、概率分布或概率密度的定义和性质进行计算;
(2)掌握一些重要的随机变量的分布及性质,主要的有:(0-1)分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、指数分布和正态分布,会进行有关事件概率的计算;
(3)会求随机变量的函数的分布。

(4)求两个随机变量的简单函数的分布,特别是两个独立随机变量的和的分布。

要求考生熟练掌握有关分布函数、边缘分布和条件分布的计算,掌握有关判断独立性的方法并进行有关的计算,会求两个随机变量函数的分布。

随机变量的数字特征考查的主要内容有:
(1)数学期望、方差的定义、性质和计算;
(2)常用随机变量的数学期望和方差;
(3)计算一些随机变量函数的数学期望和方差;
(4)协方差、相关系数和矩的定义、性质和计算;
要求考生熟练掌握数学期望、方差的定义、性质和计算,掌握由给出的试验确定随机变量的分布,再计算有关的数字的特征的方法,会计算协方差、相关系数和矩,掌握判断两个随机变量不相关的方法。

大数定律和中心限定理考查的主要内容有:
(1)切比雪夫不等式;
(2)大数定律;
(3)中心极限定理。

要求考生会用切比雪夫不等式证明有关不等式,会利用中心极限理进行有关事件概率的近似计算。

数理统计的基本概念考查的主要内容有:
(1)样本均值、样本方差和样本矩的概念、性质及计算;
(2)χ2分布、t分布和F分布的定义、性质及分位数;
(3)推导某些统计量的(特别是正态总体的某些统计量)的分布及计算有关的概率。

要求考生熟练掌握样本均值、样本方差的性质和计算,会根据χ2分布、 t分布和 F 分布的定义和性质推导有关正态总体某些统计的计量的分布。

参数估计考查的主要内容有:
(1)求参数的矩估计、极大似然估计;
(2)判断估计量的无偏性、有效性、一致性;
(3)求正态总体参数的置信区间。

要求考生熟练地求得参数的矩估计、极大似然估计并判断无偏性,会求正态总体参数的置信区间。

假设检验考查的显著的主要内容有:
(1)正态总体参数的显著性检验;
(2)总体分布假设的χ2检验。

要求考生会进行正态总体参数的显著性检验和总体分布假设的χ2检验。

常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:
(1)确定事件间的关系,进行事件的运算;
(2)利用事件的关系进行概率计算;
(3)利用概率的性质证明概率等式或计算概率;
(4)有关古典概型、几何概型的概率计算;
(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
(6)有关事件独立性的证明和计算概率;
(7)有关独重复试验及伯努利概率型的计算;
(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;
(9)由给定的试验求随机变量的分布;
(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;
(11)求随机变量函数的分布
(12)确定二维随机变量的分布;
(13)利用二维均匀分布和正态分布计算概率;
(14)求二维随机变量的边缘分布、条件分布;
(15)判断随机变量的独立性和计算概率;
(16)求两个独立随机变量函数的分布;
(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;
(18)求随机变量函数的数学期望;
(19)求两个随机变量的协方差、相关系数并判断相关性;
(20)求随机变量的矩和协方差矩阵;
(21)利用切比雪夫不等式推证概率不等式;
(22)利用中心极限定理进行概率的近似计算;
(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;
(24)推证某些统计量(特别是正态总体统计量)的分布;
(25)计算统计量的概率;
(26)求总体分布中未知参数的矩估计量和极大似然估计量;
(27)判断估计量的无偏性、有效性和一致性;
(28)求单个或两个正态总体参数的置信区间;
(29)对单个或两个正态总体参数假设进行显著性检验;
(30)利用χ2检验法对总体分布假设进行检验。

这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。

对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。

要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。

在解答这部分考题时,考生易犯的错误有:
(1)概念不清,弄不清事件之间的关系和事件的结构;
(2)对试验分析错误,概率模型搞错;
(3)计算概率的公式运用不当;
(4)不能熟练地运用独立性去证明和计算;
(5)不能熟练掌握和运用常用的概率分布及其数字特征;
(6)不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。

综合历年考生的答题情况,得知概率论与数理统计试题的得分率在0.3左右,区分度一般在0.40以上。

这表明试题既有一定的难度,又有较高的区分度
1、随机事件;
2、事件的关系与运算;
3、古典概率;
4、条件概率,乘法定理;
5、全概率公式;
6、贝叶斯公式;
7、事件的独立性;
8、重复独立试验,二项概率公式;
9、随机变量的概念;10、离散型随机变量;11、随机变量的分布函量;12、连续性随机变量;13、正态分布;14、随机变量函数的分布;15、多维随机变量及其分布函数、边缘分布函数;16、二维离散型随机变量17、二维连续型随机变量;18、概率密度及边缘概率密度;19、二维正态分布;20、随机变量的独立性;21、二维随机变量函数的分布;
22、数学期望;23、离散型随机变量的数学期望;24、连续型随机为量的数学期望;25、随机变量函数的数学期望;26、数学期望的性质;27、方差的概念;28、方差的性质;29、协方差和相关系数;30、切比雪夫不等式。

相关文档
最新文档