单项式乘以多项式
《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题例1 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--.例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算: (1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x(3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+---- 例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++; (2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x24433412x x x -+-=(2)ab ab b a ab m m 3232)1353(11+⋅++--.322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=--说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++ n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x (2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式. 例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xy xy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x xx x x 227424-+-=(3)原式322222232814612222b ab b a ab b a ab b a a +-++---= 323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
《单项式乘以多项式》典型例题

《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
单项式与多项式相乘

单项式与多项式相乘教学建议一、知识结构二、重点、难点分析本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。
1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即其中,可以表示一个数、一个字母,也可以是一个代数式.2.利用法则进行单项式和多项式运算时要注意:(1)多项式每一项都包括前面的符号,例如中的多项式,共有两项,就是.运用法则计算时,一定要强调积的符号.(2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.(3)对于混合运算,要注意运算顺序,同时要注意:运算结果如有同类项要合并,从而得出最简结果.3﹒根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的符号;4﹒非零单项式乘以不含同类项的多项式,乘积仍然是多项式;积的项数与所乘多项式的项数相等;5﹒对于含有乘方、乘法、加减法的混合运算的题目,要注意运算顺序;也要注意合并同类项,得出最简结果.三、教法建议1.单项式与多项式相乘的基本依据是乘法分配律,故在本课开始先讲述乘法分配律,由有理数过渡到字母.2.由乘法分配律过渡到单项乘多项式的法则时,也可以采用以下代换的方法,如计算:(-4x2)·(2x2+3x-1).设m=-4x2,a=2x2,b=3x,c=-1,∴ (-4x2)·(2x2+3x-1)=m(a+b+c)=ma+mb+mc=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)=-8x4-12x3+4x2.这样过渡较自然,同时也渗透了一些代换的思想.3.单项式与多项式相乘,积仍是多项式,它的项数与多项式的项数相同.这是单项式与多项式相乘的结果,这个结果也是我们掌握法则的关键.一般说来,对于一个运算法则的掌握应从分析结果开始,分析结果的结构,分析结果与各算式的关系,这样才能较好地掌握法则.教学设计示例一、教学目标1.理解和掌握单项式与多项式乘法法则及推导.2.熟练运用法则进行单项式与多项式的乘法计算.3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.4.通过反馈练习,培养学生计算能力和综合运用知识的能力.5.渗透公式恒等变形的数学美.二、学法引导1.教学方法:讲授法、练习法.2.学生学法:学习单项式与多项式相乘的运算法则是运用了“转化”的数学思想方法,利用分配律把单项式乘以多项式问题转化为前面学过的单项式与单项式相乘;最后再合并同类项,故在学习中应充分利用这种方法去解题.三、重点·难点·疑点及解决办法(一)重点单项式与多项式乘法法则及其应用.(二)难点单项式与多项式相乘时结果的符号的确定.(三)解决办法复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项式乘单项式后符号确定的问题.四、课时安排一课时.五、教具学具准备投影仪、胶片.六、师生互动活动设计1.设计一道可运用乘法分配律进行简便运算的题目,让学生复习乘法分配律,并为引入单项式与多项式的乘法法则打下良好的基础.2.通过面积分割法,形象直观地引入单项式与多项式的乘法法则,并引导学生用文字语言概括出其结论.3.通过举例,教师分析、讲解并示范板书全过程,让学生规范解题过程,再通过反复的练习巩固所学过的法则.七、教学步骤(一)明确目标本节课重点学习单项式与多项式的乘法法则及其应用.(二)整体感知单项式乘以多项式的乘法运算主要是将它转化为单项式与单项式的乘法运算,放首先应适当复习并掌握单项式与单项式的乘法运算方法,再在计算过程中注意单项式与多项式相乘后的符号问题.(三)教学过程1.复习导入复习:(1)叙述单项式乘法法则.(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)(2)什么叫多项式?说出多项式的项和各项系数.2.探索新知,讲授新课简便计算:引申:计算,基中m、a、b、c都是单项式,因为式中字母都表示数,故分配律对代数式也适用,则引导学生用学过的长方形面积知识加以验证,把宽为m,长分别是a、b、c的三个小长方形拼成大长方形,研究图形面积的整体与部分关系.由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.例1 计算:(1)(2)说明:计算按课本,讲解时,要紧扣法则:①用单项式遍乘多项式的各项,不要漏乘.②要注意符号,多项式的每一项包括它前面的符号.③“把所得积相加”时,不要忘了加上加号.例2 化简:化简按课本,化街时直接写成省略加号的代数和,注意正确表达,做完乘法后,要合并同类项.练习:错例辨析(1)(2)(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为(四)总结、扩展1.由学生叙述单项式与多项式相乘法则,并回答积仍是多项式,积的项数与多项式因式的项数相同.2.考点剖析:单项式乘以多项式这一知识点在中考试卷中都是以与其他知识综合命题的形式考查的.但它是多项式乘法、因式分解、分式通分、解分式方程等知识的重要基础.故必须掌握好.如(99,河北)下列运算中,不正确的为()A. B.C. D.八、布置作业P112 A组 1.(2)(4)(6)(8),2,3.(2)参考答案:略单项式与多项式相乘。
单项式乘以多项式课件

$(a+b) times x = ax + bx$
注意事项
乘法交换律在单项式乘以多项式的运算中可以简 化计算,但需要注意符号的变化。
03
单项式乘以多项式的实例 解析
实例一:单项式与二项式相乘
01
02
总结词:简单易懂
详细描述:通过具体的单项式与二项式相乘的例子,展示乘法的基本 规则和运算步骤,帮助学生理解单项式乘以多项式的计算方法。
单项式乘以多项式课件
目录
• 单项式与多项式的定义 • 单项式乘以多项式的运算规则 • 单项式乘以多项式的实例解析
目录
• 单项式乘以多项式的运算技巧 • 单项式乘以多项式的应用
01
单项式与多项式的定义
单项式的定义
总结词
单项式是数学中基本的代数表达式之一,由数字、变量和它们的幂次通过乘法运算连接 而成。
在物理中的应用
力学分析
在力学分析中,单项式乘 以多项式可以用于计算物 体的运动轨迹、速度和加 速度等物理量。
电磁学
在电磁学中,单项式乘以 多项式可以用于计算电场 、磁场等物理量的分布和 变化规律。
热力学
在热力学中,单项式乘以 多项式可以用于计算温度 、压力等物理量的变化规 律。
在日常生活中的应用
详细描述
单项式和多项式通常用数学符号表示,其中幂次表示变量的次数。单项式的表示方法为数字系数与变 量及其幂次的乘积,如 $ax^n$ 表示 $a$ 与 $x$ 的 $n$ 次幂的乘积。多项式的表示方法为若干个单 项式的和,如 $ax^n + bx^m + c$ 表示一个多项式,其中 $a$、$b$ 和 $c$ 是系数,$x^n$、 $x^m$ 是幂次。
单项式乘以多项式PPT课件

= a2bc+ab2c+abc2
法则:单项式与多项式相乘,只要将单项式分别乘 以多项式的各项,再将所得的积相加。
例题教学
计算:(-2a2)· (3ab2-5ab3) 解:原式= (-2a2)· (-5ab3) (3ab2) + (-2a2) · = -6a3b2+l0a3b3 2、(3a2-5b)· 2a2 2a2 + (-5b)·2a2 解:原式= 3a2 · = -6a4-l0a2b
练习反馈
x(x-1)+2x(x+1)-3x(2x-5)
小
结
1、注意不要漏乘任何一项。 2、注意“-”的问题。 3、在几个单项式乘以多项的混合运算 中,要注意运算顺序,完成乘法后, 要合并同类项,得出最简结果。
知识拓展
(m+a)(n+b) = m(n+b)+a(n+b) = n(m+a)+b(m+a) = mn+mb+na+ab 它们之间有什么关系? 如果m=n,a=b,它们 之间又有什么关系?
mLeabharlann 这个图形的面 积该怎么表示
b
a n
作
业
1、 177
P
4
2、预习:多项式乘以多项式
练习反馈
1、3a(5a-2b) 2、(x-3y)(-6x)
例题教学
计算:-2a2(ab+b2)-5a(a2b-ab2) 解:原式= -2a2· ab +(-2a2· b2)+(-5a)· (a2b) (-ab2) + (-5a)· = -2a3b + (-2a2b2 ) + (-5a3b) + 5a2b2 = -7a3b + 3a2b2
人教八年级数学上册《单项式乘以多项式》课件

5(x2+x-3)-4x(6+x)+x(-x+4)=0.
解:x=-1
【易错盘点】 【例】计算:4m(2m2-5m+1)-2m(3m-2). 【错解】原式=8m3-20m2-6m2-4m=8m3- 26m2-4m. 【错因分析】本题错在漏掉了与1相乘,并且与 -2相乘去括号时,符号出错. 【正解】原式=8m3-20m2+4m-6m2+4m= 8m3-26m2+
解:由题意得3(x2-2x+1)-x(3x-4)=5,整理得 ,3x2-6x+3-3x2+4x=5,解得x=-1,∴当x=- 1时,3(x2-2x+1)与x(3x-4)的差等于5
18.(6分)若|a+b-1|+(a-b-3)2=0,求3a2(a3b2- 2a)-4a(-a2b)2的值.
解:原式=3a5b2-6a3-4a5b2=-6a3-a5b2.由已知 得a+b-1=0,a-b-3=0,解得:a=2,b=-1.∴ 原式=-6×23-25×(-1)2=-80
一、选择题(每小题3分,共9分) 10.当a=12,b=-1,c=23 时,a(b-c)-b(c-a)+ c(a-b)等于( A )
A.13 B.-43 C.-73 D.-2
11.现规定一种运算:a*b=ab+a-b,其中a,b为
实数,则a*b+(b-a)*b等于( B )
A.a2-b B.b2-b
(2)x(x-1)+(x2-1)x-(2x)2(x+1),其中x=-1. 解:原式=-3x3-3x2-2x,当x=-1时, 原式=2 16.(6分)解不等式: 45+(-x)2+6x(x+3)>(-x)(2x-13)+(-3x)2. 解:x>-9
17.(6分)x为何值时,3(x2-2x+1)与x(3x-4)的差 等于5?
单项式乘以多项式 教案

课题: 15.1.4 整式的乘法(二)单项式乘以多项式§15.1.4整式的乘法第2课时共3课时教学目标1.使学生探索并了解单项式与多项式相乘的法则;会运用法则进行简单计算.2. 使学生进一步理解数学中“转化”、“换元”的思想方法,即把单项式与多项式相乘转化为单项式与单项式相乘.3. 逐步形成独立思考、主动探索的习惯,培养思维的批评性、严密性和初步解决问题的愿望和能力.重点单项式与多项式相乘的法则及其运用.难点单项式与多项式相乘去括号法则的应用.教学方法多媒体教学教具准备多媒体课件施教时间2010年12月30日教学过程(师生活动)复习引新一知识回顾:1. 回忆幂的运算性质:a m·a n=a m+n(m,n都是正整数) 底数幂相乘,底数不变,指数相加.(a m)n=a mn(m,n都是正整数) 幂的乘方,底数不变,指数相乘.(ab)n=a n b n(n为正整数) 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.2.单项式与单项式相乘法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
3.练一练:判断正误(如果不对应如何改正)(1)4a2·2a3=8a6()(2)(ab)2(ab3)=a3b5()(3)(-2x2)3xy2=8x7y2()点拨:(1)错误,应该为8a5 (2)正确(3)错误,应该为-8x7y2创设情境引入新课问题:三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a,b、c.你能用不同的方法计算它们在这个月内销售这种商品总收入吗?探究新知1.让学生分析题意,得出两种解法:解法(一):先求三家连锁店的总销量,再求总收入,即总收入(单位:元)为:m(a+b+c) ①解法(二):先分别求三家连锁店的收入,再求它们的和,即总收入(单位:元)为:ma+mb+mc ②请学生探究①和②是否表示的结果一致?由于①和②表示同一个量,所以:m(a+b+c)=ma+mb+mc 。
第7课 单项式乘以多项式

15. 化简求值: 2x2(x+1)+x(3x2-x)-5x(x2+x-1),其中 x=12.
解:原式=2x3+2x2+3x3-x2-5x3-5x2+5x
=-4x2+5x.
当 x=12时,
原式=-4×122+5×12=-1+52=
3 2
.
第3关 16. 解方程 2x(x-1)-x(2x-5)=12.
解:2x2-2x-2x2+5x=12 3x=12 x=4
17.计算下面图中阴影部分的面积.
解:12π(2a)2-12π4a-2 2a2 =12π·4a2-12π·a2 =2πa2-12πa2 =32πa2
18. 规定一种运算:a b=ab+a-b. 例如:1 2=1×2+1-2=1. (1) 2 3=___5_____; (2) 2 (x-1)=__x_+__1___; (3)计算 m n+(n-m) n.
10.(例 5)一个长方体的长、宽、高分别为 3a-4,2a,a,则
它的体积等于( C ) A. 3a3-4a2
B.a2
C. 6a3-8a2
D.6a3-8a
11.若一个直角三角形的两条直角边的长分别为4a2, 8(a+b),则此直角三角形的面积是__1_6_a_3+__1_6_a_2_b__.
三、过关检测
解:原式=x3-x2-x3-x2+x=-2x2+x. 当 x=12时,原式=-2·122+12=-12+12=0.
9. 化简求值: x(x2-1)+2x2(x+1)-3x(2x-5),其中 x=-1.
解:原式=x3-x+2x3+2x2-6x2+15x=3x3-4x2+14x. 当 x=-1 时, 原式=3×(-1)3-4×(-1)2+14×(-1) =-3-4-14 =-21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时单项式乘以多项式
姓名:
01基础题
知识点1直接运用法则计算
1.(湖州中考)计算2x(3x2+1),正确的结果是( ) A.5x3+2x B.6x3+1
C.6x3+2x D.6x2+2x
2.计算x(y-z)-y(z-x)+z(x-y),结果正确的是( ) A.2xy-2yz B.-2yz
C.xy-2yz D.2xy-xz 3.计算:a(a-1)-a2=.
4.计算:
(1)(2xy2-3xy)·2xy;
.
(2)-x(2x+3x2-2);
(3)-2ab(ab-3ab2-1).
.
知识点2运用法则解决问题
5.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( )
A.3x3-4x2B.6x2-8x
C.6x3-8x2D.6x3-8x
6.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y -2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )
A.3xy B.-3xy
C.-1 D.1
7.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( )
A.a=-2,b=-2 B.a=2,b=2
C.a=2,b=-2 D.a=-2,b=2 8.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.02中档题
9.(北京中考)图中四边形均为长方形,根据图形,写出一个正确的等式:.
10.方程3x(7-x)=18-x(3x-15)的解为.11.计算:
(1)(-
1
2ab)(
2
3ab2-2ab+
4
3b+1);
(2)3ab(a2b-ab2-ab)-ab2(2a2-3ab+2a).12.已知ab2=-1,求(-ab)(a2b5-ab3-b)的值.
03综合题
13.某同学在计算一个多项式乘以-3x2时,算成了加上-3x2,得到的答案是x2-
1
2x+1,那么正确的计算结果是多少?。