辽宁省大连市2018届高三第一次模拟数学理试题+Word版含解析

合集下载

(完整word版)2018-2019高三第一次模拟试题文科数学

(完整word版)2018-2019高三第一次模拟试题文科数学

高三年级第一次模拟考试60分.在每小题给出的四个选项中,有且合 题目要畚考公式:样本败据x lt 鬲的标准差 尸¥门如一訝+他— 英叩丘为样車屮均数柱体的体积公式Y=*其中/为底!ftl 曲积・h 为海341(1)复数 I ~i = (A) 1+2i (B) 1-2i(C) 2-i (D) 2+i⑵函数的定义域为(A) (-1,2) (B) (0, 2] (C) (0, 2) (D) (-1,2] ⑶ 己知命题p :办I 砒+ llX ,则了为 锥体的体积公式v=*h 乩中$为底面面枳,h 为商 耶的親血祝*休枳公式$=4庆,評It 中月为球的半牲(A) (C)函数|;宀林匚阴的图象可以由函数'尸沁酬的图象 (A) 64 (B) 31 (C) 32 (D) 63(7) 已知某几何体的三视图如图所示,则其表面积为 (A)右+4观(B)「(C) 2 (D) 8一、选择题:本大题共12小题,毎小题5〕 分,共 只有一 项 符(B)(D)(A) (C)向左平移个单位得到JL个单位得到(B)向右平移3个单位得到 向左平移设变量x 、y 满足约束条件 ⑸ (A) 3 (B) 2 (C) 1 (D) 5(D)向右平移个单位得到g+2y —2 鼻(h[2x +工一7冬6则的最小值为(6)等比数列{an }的公比a>1,血,则-血+口 $+他"卜彌=(8) 算法如图,若输入 m=210,n= 119,则输出的n 为 (A) 2 (B) 3 (C) 7 (D) 11(9) 在 中,/恥C 权」,AB=2, AC=3,则 = (A) 10 (B)-10(C) -4 (D) 4(10) 点A 、B 、C D 均在同一球面上,其中 的体积为(11) 已知何m 2 '黑⑴-代2侧集合」「等于D |『工=对止卡(B)卜: (12) 抛物线 的焦点为F,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为 的重心,则直线 BC 的方程为 (A)龙卄一0 (B): tT '■(C)Ly=0 (D) | It \.■二、填空题:本大题共 4小题,每小题5分,共20分.(13) 班主任为了对本班学生的考试成绩进行分析,从全班 50名同学中按男生、女生用分层 抽样的方法随机地抽取一个容量为 10的样本进行分析•己知抽取的样本中男生人数为 6,则班内女生人数为 ________ .Lif ]町= :—(14) 函数.文+】(X 〉0)的值域是 _________ .(15) 在数列1禺1中,尙=1,如 厂% = 2门丨,则数列的通项 □」= _________ .—7 --- F ------(16) —P 尺的一个顶点P ( 7,12)在双曲线 产 3上,另外两顶点 F1、F2为该双曲线是正三角形,AD 丄平面 AD=2AB=6则该球(D)(C) 卜 j(—Ak 土(D)(A) (B) 15 (C)的左、右焦点,则屮八几的内心的横坐标为 __________ .三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 (17) (本小题满分12分)在厶ABC 中,角A 、B C 的对边分别为a 、b 、c, A=2B,呦占」5 ' (I ) 求cosC 的值;[c\(II)求的值•(18) (本小题满分12分)某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查, 右表是在某单位得到的数据(人数)•(I )能否有90%以上的把握认为对这一问题的看法与性别有关?(II)从反对“男女同龄退休”的甲、 乙等6名男士中选出2人进行陈述,求甲、乙至少有- 人被选出的概率.反对 合计|男 5 6 H 1 女II1 3 "14 合计 16925(19) (本小题满分12分)如图,在三棱柱.A 尅匚 "Q 中,CC1丄底面ABC 底面是边长为2的正三角形,M N 、G 分别是棱CC1 AB, BC 的中点. (I ) 求证:CN//平面AMB1 (II)若X 严2迄,求证:平面AMG.(20) (本小题满分12 分)X'设函数:「—L(I )当a=0时,求曲线在点(1, f(1))处的切线 方程;P(K 2^k) 0.25 Od U 0J0 kL323 2.072 2.706__ ,讯耐一比严 ____(a+附:(II )讨论f(x)的单调性•(21) (本小题满分12分)中心在原点0,焦点F1、F2在x 轴上的椭圆E 经过点C(2, 2),且 ―二◎土::(I) 求椭圆E 的方程;(II) 垂直于0C 的直线I 与椭圆E 交于A B 两点,当以AB 为直径的圆P 与y 轴相切时,求 直线I 的方程和圆P 的方程•请考生在第(22)、( 23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分 •作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑 •(22) (本小题满分10分)选修4-1:几何证明选讲如图,AB 是圆0的直径,以B 为圆心的圆B 与圆0的一个交点为P.过点A 作直线交圆Q 于 点交圆B 于点M N. (I )求证:QM=QNi110(II)设圆0的半径为2,圆B 的半径为1,当AM= 时,求MN 的长.(23) (本小题满分10分)选修4-4:坐标系与参数 方程 以直角坐标系的原点 O 为极点,x 轴正半轴为极轴,.已知直线I 的参数方程为 (t 为参数,(I )求曲线C 的直角坐标方程;(II)设直线I 与曲线C 相交于A B 两点,当a 变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5:不等式选讲 设曲线C 的极坐标方程为2cos 0 L朋& *并在两种坐标系中取相同的长度单位(I) 求不等式的解集S;(II) 若关于x不等式应总=1我=;『;:纂釧有解,求参数t的取值范围(18) 解: 由此可知,有90%的把握认为对这一问题的看法与性别有关.…5分(H)记反对“男女同龄退休”的6男士为ai , i = 1, 2,…,6,其中甲、乙分别为a2,从中选出2人的不同情形为: a1a2, a1a3, a1a4, a1a5, a1a6, a2a3, a2a4, a2a5 , a2a6, a3a4, a3a5, a3a6 , a4a5, a4a6, a5a6,…9分共15种可能,其中甲、乙至少有1人的情形有9种,93 所求概率为P = .…12分(19)解:(I)设 AB1的中点为 P ,连结NP 、MP1 1•/ CM^ — A1 , NP^— A1 , • CM^ NP,2 2文科数学参考答案 一、 选择题: A 卷: ADCDC B 卷: BCDAB 二、 填空题: (13) 20 三、 解答题: (17)解:DACB ADDCAB(14) BB CA(-1,1)(15) n2(16) 1(I): B =(0,亍),••• cosB = 1— s in 2B =•/ A = 2B ,「.4si nA = 2si nBcosB = , cosA = cos2B = 1 — 2si n2B = 5 , ••• cosC = cos[ —(A + B)] = — cos(A + B) = si nAsi nB — cosAcosB =— 2.525 'sinC =1 — cos2C=11 .525 ,根据由正弦定理,c si nC 11b sinB 5…12分(I) K2= 25 X (5 X 3— 6 X11)216 X 9X 11 X 142.932 > 2.706 a1 ,• CNPK是平行四边形,• CN// MP•/ CN平面AMB1 MP平面AMB1 • CN//平面AMB1 …4分(n)v cc 仏平面 ABC •••平面 CC1B1E L 平面 ABC , •/ AG 丄 BC, • AGL 平面 CC1B1B • B1M L AG •/ CC1 丄平面 ABC 平面 A1B1C1 //平面 ABC •- CC L AC, CC1 丄 B1C1 ,在 Rt △ MCA 中 , AM k CM 即 AC2= 6. 同理,B1M=6.•/ BB1/ CC1, • BB1 丄平面 ABC •- BB1 丄 AB, • AB1= B1B2+ AB2= C1C2+ AB2= 2.3 , • AM2+ B1M2= AB2, • B1ML AM 又 AG A AM= A , • B1ML 平面 AMG (20)解:, , x2 x(x — 2) (I)当 a = 0 时,f(x) = , f (x)=—亠exex1 1f(i) =T ,f (i) =-^,曲线y = f(x)在点(1 , f(1))处的切线方程为(2x — a)ex — (x2 — ax 土 a)ex e2x(1 )若 a = 2,贝U f (x) w 0 , f(x)在(一a , +s )单调递减. …7 分(2 )若 a v 2,贝 U…10分 …12分1y =肓(x — 1) +(x — 2)(x — a)exA Bf (x)当x€ ( —a , a)或x€ (2 , +a )时,f (x) v 0,当x € (a , 2)时,f (x) > 0 , 此时f(x)在(—a , a)和(2 , +a )单调递减,在(a , 2)单调递增.(3)若a> 2,贝U当x€ ( —a , 2)或x€ (a , +a )时,f (x) v 0,当x € (2 , a)时,f (x) >0 , 此时f(x)在(—a , 2)和(a , +a )单调递减,在(2 , a)单调递增. …12分x2 y2(21)解:(I)设椭圆E的方程为02+ b2 = 1 (a>b> 0),贝y a2+ b2记c= ,a2—b2 ,不妨设F1( — c , 0) , F2(c , 0),则C f1= ( —c—2, —2) , C f2= (c —2, —2),则C f1 • C f2= 8 —c2 = 2 , c2 = 6,即a2 —b2= 6.由①、②得a2= 12, b2= 6. 当m= 3时,直线I 方程为y =— x + 3, 此时,x1 + x2 = 4,圆心为(2 , 1),半径为2,圆P 的方程为(x — 2)2 + (y — 1)2 = 4; 同理,当 m=— 3时,直线I 方程为y = — x — 3,圆P 的方程为(x + 2)2 + (y + 1)2 = 4. …12分 (22)解:(I)连结 BM BN BQ BP. •/ B 为小圆的圆心,••• BM= BN 又••• AB 为大圆的直径,• BQL MN , •- QM= QN …4 分 (n)v AB 为大圆的直径,•/ APB= 90 , • AP 为圆B 的切线,• AP2= AM- AN …6分 由已知 AB= 4, PB= 1 , AP2= AB2- PB2= 15,所以曲线C 的直角坐标方程为 y2= 2x .(n)将直线l 的参数方程代入 y2 = 2x ,得t2sin2 a — 2tcos a — 1= 0.所以椭圆E 的方程为 x2 y2 i2+ 6 = 1. (也可通过2a = iCFlI + |C ?2|求出a ) (n)依题意,直线 0C 斜率为1,由此设直线I 的方程为y = — X + m 代入椭圆 E 方程,得 3x2 — 4m 灶2m2- 12= 0. 由△= 16m2- 12(2m2 — 12) = 8(18 — m2),得 m2< 18. 4m 2m2— 12 记 A(x1 , y1)、B(x2 , y2),贝U x1 + x2=^ , x1x2 = -—. 3 3 x1 + x2 圆P 的圆心为(一_, y1 + y2 2 ),半径r = 当圆P 与y 轴相切时, x1 + x2 r = 1 2 1, 2x1x2 = (x1 + x2)2 4 2(2m2 — 12)= 3 = 4m2 —,m2= 9v 18. …10分 (I)由 2cos 0 p = sinr v ,得(p sin 0 )2 = 2 p cos 0, …6分 7 6设A、B两点对应的参数分别为t1、t2,则4C0S2 a 4 2 + = ------------------------ sin4 a sin2 a sin2 a当a =—亍时,|AB|取最小值2 .…10分 (24)解:—x + 3, x v — 3,(I) f(x) = — 3x — 3,— 3<x < 0,x — 3, x >0.如图,函数y = f(x)的图象与直线 y = 7相交于横坐标为 x1 =— 4,x2 = 10的两点, 由此得 S = [ — 4, 10].\ :I…6分(n)由(I )知,f (x )的最小值为一3,则不等式 f(x) + |2t —3| < 0有解必须且只需—3 + |2t — 3| < 0,解得0W t < 3,所以t 的取值范围是[0 , 3]. t1 + t2 = 2C0S a sin2 at1t2 sin2 a :.|AB| = |t1 - t2| = (t1 + t2)2 - 4t1t2 …10分。

2018年辽宁省大连市高考一模数学试卷(理科)【解析版】

2018年辽宁省大连市高考一模数学试卷(理科)【解析版】

2018年辽宁省大连市高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,满分60分,每小题各有四个选项,仅有一个选项正确)1.(5分)设集合A={x||x|<1},B={x|x(x﹣3)<0},则A∪B=()A.(﹣1,0)B.(0,1)C.(﹣1,3)D.(1,3)2.(5分)若复数z=为纯虚数,则实数a的值为()A.1B.0C.D.﹣13.(5分)中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行计算,算筹的摆放形式有横纵两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推.例如3266用算筹表示就是,则8771用算筹可表示为()A.B.C.D.4.(5分)如图所示的程序框图是为了求出满足2n﹣n2>28的最小偶数n,那么空白框中的语句及最后输出的n值分别是()A.n=n+1和6B.n=n+2和6C.n=n+1和8D.n=n+2和8 5.(5分)函数的部分图象大致为()A.B.C.D.6.(5分)某几何体的三视图如图所示(单位:cm),其俯视图为等边三角形,则该几何体的体积(单位:cm3)是()A.4B.C.2D.7.(5分)6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两段端,丙、丁两本书必须相邻,则不同的摆放方法有()种.A.24B.36C.48D.608.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2b cos B=a cos C+c cos A,b=2,则△ABC面积的最大值是()A.1B.C.2D.49.(5分)已知边长为2的等边三角形ABC,D为BC的中点,以AD为折痕,将△ABC折成直二面角B﹣AD﹣C,则过A,B,C,D四点的球的表面积为()A.3πB.4πC.5πD.6π10.(5分)将函数f(x)=sin(2x+)的图象向右平移a(a>0)个单位得到函数g(x)=cos(2x+)的图象,则a的值可以为()A.B.C.D.11.(5分)已知双曲线C:=1的左、右焦点分别为F1,F2,若C上存在一点P满足PF1⊥PF2,且△PF1F2的面积为3,则该双曲线的离心率为()A.B.C.2D.312.(5分)若直线kx﹣y﹣k+1=0(k∈R)和曲线E:y=ax3+bx2+(ab≠0)的图象交于A(x1,y1),B(x2,y2),C(x3,y3)(x1<x2<x3)三点时,曲线E 在点A,点C处的切线总是平行的,则过点(b,a)可作曲线E的()条切线.A.0B.1C.2D.3二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设实数x,y满足约束条件,则z=x+2y+5的最大值为.14.(5分)已知半径为R的圆周上有一定点A,在圆周上等可能地任取一点与点A连接,则所得弦长介于R与R之间的概率为.15.(5分)已知抛物线C:y2=2x,过点(1,0)任作一条直线和抛物线C交于A、B两点,设点G(2,0),连接AG,BG并延长分别和抛物线C交于点A′和B′,则直线A′B′过定点.16.(5分)已知腰长为2的等腰直角△ABC中,M为斜边AB的中点,点P为该平面内一动点,若||=2,则(•+4)•(•)的最小值为.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)设数列{a n}的前n项和为S n,且S n=n2﹣n+1,在正项等比数列{b n}中,b2=a2,b4=a5.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设c n=a n b n,求数列{c n}的前n项和.18.(12分)大连市某企业为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…8)数据作了初步处理,得到下面的散点图及一些统计量的值.(xi ﹣(w i ﹣xi y i w i y i表中w i =,=w i(Ⅰ)根据散点图判断,y =a +bx 与y =c +d哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x 、y 的关系为z =0.2y ﹣x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =64时,年销售量及年利润的预报值是多少?(ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βμ的斜率和截距的最小二乘估计分别为:=,=﹣.19.(12分)在如图所示的几何体中,四边形ABCD 是正方形,P A ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,P A =AB =1.(Ⅰ)求证:EF ∥平面DCP ;(Ⅱ)求平面EFC与平面PDC所成锐二面角的余弦值.20.(12分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的离心率为,点M(1,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)已知P(﹣2,0)与Q(2,0)为平面内的两个定点,过点(1,0)的直线l与椭圆C交于A,B两点,求四边形APBQ面积的最大值.21.(12分)已知函数f(x)=x2﹣4x+5﹣(a∈R).(Ⅰ)若f(x)在(﹣∞,+∞)上是单调递增函数,求a的取值范围;(Ⅱ)设g(x)=e x f(x),当m≥1时,若g(x1)+g(x2)=2g(m),且x1≠x2,求证:x1+x2<2m.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请标清题号。

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上,写在本试卷上无效。

3.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。

$(-4,-3)$B。

$[-4,-3]$C。

$(-\infty,-3)\cup(4,+\infty)$D。

$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。

$-\frac{2}{5}+\frac{1}{5}i$B。

$-\frac{2}{5}-\frac{1}{5}i$C。

$\frac{2}{5}+\frac{1}{5}i$D。

$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。

$\frac{2}{3}$B。

$\frac{1}{5}$C。

$\frac{2}{5}$D。

$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。

高三数学-2018年大连市高考模拟试题(一)数学 精品

高三数学-2018年大连市高考模拟试题(一)数学 精品

2018年大连市高考模拟试题(一)数 学参考公式:如果事件A 、B 互斥,那么 正棱锥、圆锥的侧面积公式P (A+B )=P (A )+P (B ) cl S 21=锥侧 如果事件A 、B 相互独立,那么 其中c 表示底面周长,l 表示斜P (AB )=P (A )P (B ) 高或母线长 如果事件A 在一次试验中发生的概率是 球的体积公式 334R V π=P ,那么n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.与曲线21+=x y 关于y 轴对称的曲线为 ( )A .x y -=21B .21+-=x yC .21-=x yD .21+=x y 2.函数x y 2cos 3=的最小正周期为 ( )A .2π B .πC .π2D .π43.n xx 23)1(+展开式的第6项系数最大,则其常数项为( )A .120B .252C .210D .45 4.若向量=-=-==c c b a 则),4,2(),1,1(),1,1(( )A .3+-B .3-C .-3D .+-35.过原点的直线与圆03422=+-+y y x 相切,若切点在第二象限,则该直线的方程是( )A .x y 3=B .x y 33=C .x y 33-=D .x y 3-= 6.长方体一个顶点上三条棱的长分别是6、8、10,且它的八个顶点都在同一个球面上,这个球的表面积是( )A .π250B .π500C .π100D .π2007.设项数为8的等比数列的中间两项与04722=++x x 的两根相等,则数列的各项相乘的 积为 ( )A .64B .8C .16D .328.设函数⎩⎨⎧<>-=)0(1)0(1)(x x x f ,则)(2)()()(b a b a f b a b a ≠-⋅-++的值为 ( ) A .aB .bC .a 、b 中较小的数D .a 、b 中较大的数9.如图,在正方体A 1B 1C 1D 1—ABCD 中,M 、N 分别为棱 A 1A 和B 1B 中点,则异面直线CM 与D 1N 所成角的正弦 值为 ( ) A .91B .594C .592 D .3210.x f x f x x f 则若),5.3()(|,log |)(3>=的取值范围是( )A .)27,1()72,0(B .),27(+∞C .),27()72,0(+∞D .)27,72(11.G 为△ABC 内一点,且满足=++,则G 为△ABC 的 ( )A .外心B .内心C .垂心D .重心12.已知)(x f 是R 上的偶函数,)(x g 是R 上的奇函数,且)1()(-=x f x g ,若2)2(=f ,则)2004(f 的值为 ( )A .2B .0C .-2D .±2二、填空题:本大题4小题,每小题4分,共16分. 把答案填在题中横线上.13.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况,现用分层抽样的方法从他们中抽取36人进行体检,老、中、青依次应抽取 、 、 人.14.双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上,若021=⋅PF PF ,则点P到y 轴的距离为 .15.把正n 棱柱的顶点相连接的直线(不包括棱柱的边)共有 条.16.设数列}{n a 的通项公式为 <<<<<<∈+=+*13212}{)(n n n n a a a a a a N n n n a 满足且λ,则实数λ的取值范围是 .三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知θπθθθθθtan ),2,0(,2)tan 1(cos )cot 1(sin 22求∈=+++的值.18.(本小题满分12分)甲、乙两人进行五次比赛,如果甲或乙无论谁胜了三次,比赛宣告结束. 假定甲获胜的概率是32,乙获胜的概率是31,试求下列概率.(1)比赛以甲3胜1败而结束的概率;(2)比赛以乙3胜2败而结束的概率;(3)设甲先胜3次的概率为a ,乙先胜3次的概率为b ,求a :b 的值.19.(本小题满分12分)如图,在底面是直角梯形的四棱锥P —ABCD 中,AD//BC ,∠ABC=90°,且55arcsin=∠ADC ,又PA ⊥平面ABCD ,AD=3AB=3PA=3a . (1)求二面角P —CD —A 的正切值. (2)求点A 到平面PBC 的距离.20.(本小题满分12分)已知13)(223-=+++=x a bx ax x x f 在时有极值0. (1)求常数a 、b 的值; (2)求)(x f 的单调区间.21.(本小题满分12分)设数列),2,1(,2)1(),1(}{11 =-+=<=+n a n n n a t t a a nn n 满足(1)用数学归纳法证明),2,1()1(])2()1[( =-----=n tn n t n n n a n ;(2)求!lim 121n a a a n n +∞→ .22.(本小题满分14分)如图,在直角坐标系中,点A (-1,0),B (1,0),P (x ,y )(y ≠0). 设、、与x 轴正方向的夹角分别为α、β、γ,若πγβα=++,(1)求点P 的轨迹G 的方程;(2)设过点C (0,-1)的直线l 与轨迹G 交于不同两点M 、N. 问在x 轴上是否存在一点)0,(0x E ,使△MNE 为正三方形. 若存在求出0x 值;若不存在说明理由.2018年大连市高考模拟试题(一)数学参考答案一、选择题1.A 2.B 3.C 4.B 5.D 6.D 7.C 8.C 9.B 10.C 11.D 12.C 二、填空题13.6、12、18 14.145315.)2(2-n n 16.3->λ 三、解答题17.解法一:由θθθθθθsin cos cot ,cos sin tan ==…………2分 由原式得:2sin cos cos cos sin sin 22=⋅++⋅+θθθθθθ2cos cos sin 2sin 22=++∴θθθθ. 2c o s s i n21=+∴θθ .12sin =∴θ ……6分)4,0(2),2,0(πθπθ∈∴∈ …………8分 .25222πθπθ==∴或 .1tan 454=∴==∴θπθπθ或……………………12分解法二:由已知,2tan cos cos cot sin sin2222=+++θθθθθθθθθθθθ2222sin cos tan cos cot sin +=+∴.两边同乘θ2cos 11tan ,01tan 2tan 2=∴=+-∴θθθ (注)其它解法相应给分.18.解:(1)以甲3胜1败而结束比赛,甲只能在1、2、3次中失败1次,因此所求概率为:278)31()32(33=⋅=P …………4分(2)乙3胜2败的场合24C ,因而所求概率为818)32()31(623=⋅⋅=P …………8分 (3)甲先胜3次的情况有3种,3胜无败,3胜1败,3胜2败,其概率分别为278、278、8116,于是81648116278278=++=a ………10分乙获胜概率b 6417:,811781641=∴=-=b a …………12分 19.解:(1)在底面ABCD 内,过A 作AE ⊥CD 垂足为E ,连结PE ,∵PA ⊥平面ABCD ,由三垂线定理知,PE ⊥CD ∴∠PEA 是二面角P —CD —A 的平面角.……2分在a ADE AD AE ADE a AD AED Rt 553sin ,55arcsin,3,=∠⋅=∴=∠=∆中…4分 在∴==∠∆,35tan ,AE PA PEA PAE Rt 中二面角P —CD —A 的正切值为35……6分 (2)在平面APB 中,过A 作AH ⊥PB 垂足为H.∵PA ⊥平面ABCD ,∴PA ⊥BC ,又AB ⊥BC ,∴BC ⊥平面PAB ,∴平面PBC ⊥平面 PAB ,∴AH ⊥平面PBC.故AH 的长即为点A 到平面PBC 的距离.…………10分在等腰直角三角形PAB 中,aAH 22=,所以点A 到平面PBC 的距离为a 22…12分 20.解:(1)b ax x x f ++='63)(2,由题知⎩⎨⎧=+-+-=+-⇒⎩⎨⎧=-=-'0310630)1(0)1(2a b a b a f f 联立①、②有⎩⎨⎧==⎩⎨⎧==9231b a b a 或………………4分 当0)1(3963)(,3,122≥+=++='==x x x x f b a 时,这说明此时)(x f 为增函数,无极值,舍去…………6分当0)().1)(3(39123)(,9,22='++=++='==x f x x x x x f b a 故方程时有根x =-3或x =-1①②由表可见,当1-=x 时,)(x f 有极小值0,故⎩⎨⎧==92b a 符合题意.…………9分(2)由上表可知,)(x f 的减函数区间为(-3,-1);)(x f 的增函数区间为)3,(--∞ 或),1(+∞-…………………………12分21.解:(1)①当n=1时,t a =1,命题成立.②假定a =k 时命题成立,即tk k t k k k a k )1(])2()1[(-----= 那么tk k t k k k k k k a k k k a k k )1(])2()1[(2)1(2)1(1------+=-+=+ kt k t k k k tk k t k k k -+--+=------+=)1(])1()[1()1()2()1(21 因此,当1+=k n 时,命题也成立.综合①②对任何自然数n 命题都成立.………………6分(2)nt n t n n n a t n n t n n n a t t a t a t a n n -+--+=-----=--=-==+)1(])1()[1(,)1(])2()1[(,,23)2(3,22,1321 nt n t n n a a a n -++⋅⋅=∴+)1()1(321121 …………10分 .)1()1(!121nt n t n n a a a n -++=∴+ t t t nt n n a a a n n -=-++=∴+∞→1)11()11(!lim 121 …………………………12分 22.解(1)由已知γβαπγβαtan )tan(,,1,0-=+∴=++≠> 时当x xγβαγβαtan tan tan tan tan tan =++∴……………………2分1111-⋅⋅+=-+++∴x y x y x y x y x y x y )0(,1322≠=-∴y y x ①…………5分当x =1时,)2,1(±P ,也满足方程①∴所求轨迹G 方程为)0,0(1322>≠=-x y y x ………………6分(2)假设存在点)0,(0x E ,使△MNE 为正△,设直线l 方程:1-=kx y 代入 )0,0(1322≠>=-y x y x 得022)3(22=-+-kx x k63,0320320)3(842222<<∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>-->-->-+=∆k k kk k k …………9分 22122122214)(1||),33,3(k x x x x k MN kk k F MN +=-++=----∴中点 .38)3(42222k k k -+- )0,34().3(133:222kk E k k x k k y l EF ------=--- 22222)3(9)3(9||k k k EF -+-=∴ 在正|:|||23,EF MN EMN =∆中 .13338)3(41232222222k k k k k k +-=-+-+∴ .12)3](38)3(4[222222=--+-∴k kk k ………………12分 6332<<=∴k k 与矛盾.∴不存在这样的点)0,(0x E 使△MNE 为正△.………………14分。

高考数学考前刷题大卷练4 集合、常用逻辑用语、函数与导数(文)(含解析)-人教版高三全册数学试题

高考数学考前刷题大卷练4 集合、常用逻辑用语、函数与导数(文)(含解析)-人教版高三全册数学试题

大卷练4 集合、常用逻辑用语、函数与导数大卷练一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2019·东北三省四市模拟]已知全集U =R ,集合A ={x |x <-1或x >4},B ={x |-2≤x ≤3},那么阴影部分表示的集合为( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x ≤-1}D .{x |-1≤x ≤3} 答案:D解析:由题意得,阴影部分所表示的集合为(∁U A )∩B ={x |-1≤x ≤3},故选D. 2.[2017·卷,6]设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A解析:由存在负数λ,使得m =λn ,可得m 、n 共线且反向,夹角为180°,则m ·n =-|m |·|n |<0,故充分性成立.由m ·n <0,可得m ,n 的夹角为钝角或180°,故必要性不成立.故选A.3.[2019·某某马某某第一次教学质量检测]已知函数f (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (1)+f (2)+f (3)+…+f ( 2 018)=( )A .44B .45C .1 009D .2 018 答案:A解析:由442=1 936,452=2 025可得1,2,3,…, 2 018中的有理数共有44个,其余均为无理数,所以f (1)+f (2)+f (3)+…+f ( 2 018)=44.4.[2019·某某模拟]已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x+log 2x ,则f (2 015)=( )A .5 B.12C .2D .-2 答案:D解析:由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 015)=f (503×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2,故选D.5.[2019·某某某某五校联考]下列函数中既是偶函数又在(0,+∞)上单调递增的是( )A .f (x )=2x -2-xB .f (x )=x 2-1 C .f (x )=log 12|x | D .f (x )=x sin x答案:B解析:f (x )=2x-2-x是奇函数,故不满足条件;f (x )=x 2-1是偶函数,且在(0,+∞)上单调递增,故满足条件;f (x )=log 12|x |是偶函数,在(0,+∞)上单调递减,不满足条件;f (x )=x sin x 是偶函数,但是在(0,+∞)上不单调.故选B.6.[2019·某某第一中学一诊模拟]设a =213,b =log 43,c =log 85,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >c >aD .c >b >a 答案:A解析:由指数函数的性质知a >1,由对数函数的性质得0<b <1,0<c <1.c 可化为log 235;b 可化为log 23,∵(35)6<(3)6,∴b >c ,∴a >b >c ,故选A.7.已知函数f (x )=x 2-4x +2的定义域为[1,t ],f (x )的最大值与最小值之和为-3,则实数t 的取值X 围是( )A .(1,3]B .[2,3]C .(1,2]D .(2,3) 答案:B解析:f (x )=x 2-4x +2的图象开口向上,对称轴为x =2,f (1)=-1,f (2)=-2.当1<t <2时,f (x )max =f (1)=-1,f (x )min >f (2)=-2,则f (x )max +f (x )min >-3,不符合题意;当t ≥2时,f (x )min =f (2)=-2,则f (x )max =-3-f (2)=-1,令f (x )=-1,则x 2-4x +2=-1,解得x =1或x =3,∴2≤t ≤3.故选B.8.[2019·某某某某第一次大联考]若函数f (x )=a x-k ·a -x(a >0且a ≠1)在(-∞,+∞)上既是奇函数又是增函数,则函数g (x )=log a (x +k )的大致图象是( )答案:B解析:由题意得f (0)=0,得k =1,a >1,所以g (x )=log a (x +1)为(-1,+∞)上的单调递增函数,且g (0)=0,故选B.9.[2019·某某大卷练]已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11) 答案:C解析:f ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′1=0,f1=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.10.[2019·某某某某郊联体模拟]如图是函数f (x )=x 2+ax +b 的部分图象,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫14,12 B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(2,3) 答案:C解析:由函数f (x )=x 2+ax +b 的部分图象得0<b <1,f (1)=0,即有a =-1-b ,从而-2<a <-1.而g (x )=ln x +2x +a ,在定义域内单调递增,g ⎝ ⎛⎭⎪⎫12=ln 12+1+a <0,g (1)=ln1+2+a =2+a >0,∴函数g (x )=ln x +f ′(x )的零点所在的区间是⎝ ⎛⎭⎪⎫12,1.故选C. 11.[2019·某某某某第一中学模拟]设函数f (x )=⎩⎪⎨⎪⎧x 2-6x +6,x ≥0,3x +4,x <0,若互不相等的实数x 1,x 2,x 3,满足f (x 1)=f (x 2)=f (x 3),则x 1+x 2+x 3的取值X 围是( )A.⎝ ⎛⎦⎥⎤113,6B.⎝ ⎛⎭⎪⎫203,263C.⎝⎛⎦⎥⎤203,263 D.⎝ ⎛⎭⎪⎫113,6答案:D解析:函数f (x )=⎩⎪⎨⎪⎧x 2-6x +6,x ≥0,3x +4,x <0的图象如图,不妨设x 1<x 2<x 3,则x 2,x 3关于直线x =3对称,故x 2+x 3=6,且x 1满足-73<x 1<0,则-73+6<x 1+x 2+x 3<0+6,即x 1+x 2+x 3∈⎝ ⎛⎭⎪⎫113,6.故选D. 12.[2019·某某某某一中质检]已知函数f (x )=13x 3+x 2+ax .若g (x )=1ex ,且对任意x 1∈⎣⎢⎡⎦⎥⎤12,2,存在x 2∈⎣⎢⎡⎦⎥⎤12,2,使f ′(x 1)≤g (x 2)成立,则实数a 的取值X 围是( ) A.⎝ ⎛⎦⎥⎤-∞,e e -8 B.⎣⎢⎡⎭⎪⎫e e -8,+∞ C .[2,e) D.⎝ ⎛⎦⎥⎤-33,e 2 答案:A解析:对任意x 1∈⎣⎢⎡⎦⎥⎤12,2,存在x 2∈⎣⎢⎡⎦⎥⎤12,2,使f ′(x 1)≤g (x 2),∴[f ′(x )]max ≤[g (x )]max . 又f ′(x )=(x +1)2+a -1在⎣⎢⎡⎦⎥⎤12,2上单调递增,∴[f ′(x )]max =f ′(2)=8+a .而g (x )在⎣⎢⎡⎦⎥⎤12,2上单调递减,则[g (x )]max =g ⎝ ⎛⎭⎪⎫12=e e ,∴8+a ≤e e ,则a ≤ee-8.故选A. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.log 327-log 33+(5-1)0-⎝ ⎛⎭⎪⎫9412+cos 4π3=________.答案:0解析:原式=log 3(27÷3)+1-32-12=1+1-32-12=0.14.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x ∈R ,x 2+2ax +2-a =0,若命题p 且q 是真命题,则实数a 的取值X 围是__________.答案:{a |a ≤-2或a =1}解析:由x 2-a ≥0,得a ≤x 2,因为x ∈[1,2],所以a ≤1.要使q 成立,则有Δ=4a2-4(2-a )≥0,即a 2+a -2≥0,解得a ≥1或a ≤-2.因为命题p 且q 是真命题,所以p ,q同时为真,即⎩⎪⎨⎪⎧a ≤1a ≥1或a ≤-2,故a ≤-2或a =1.15.已知f (x )=⎩⎪⎨⎪⎧x 3+1,x <1,3-5x ,x ≥1,则f (f (0))=________.答案:-2解析:因为f (0)=1,所以f (f (0))=f (1)=-2.16.[2019·某某八校联考]曲线y =x 3上一点B 处的切线l 交x 轴于点A ,△OAB (O 为原点)是以∠A 为顶角的等腰三角形,则切线l 的倾斜角为________.答案:60°解析:解法一 因为y =x 3,所以y ′=3x 2.设点B (x 0,x 30)(x 0≠0),则k l =3x 20,所以切线l 的方程为y -x 30=3x 20(x -x 0).取y =0,则x =23x 0,所以点A ⎝ ⎛⎭⎪⎫23x 0,0.易知线段OB 的垂直平分线方程为y -x 302=-1x 20x -x 02,根据线段OB 的垂直平分线过点A ⎝ ⎛⎭⎪⎫23x 0,0可得-x 302=-1x 20⎝⎛⎭⎪⎫23x 0-x 02,解得x 20=33,所以k l =3x 20=3,故切线l 的倾斜角为60°.解法二 因为y =x 3,所以y ′=3x 2.设点B (x 0,x 30)(x 0≠0),则k l =3x 20,所以切线l 的方程为y -x 3=3x 20(x -x 0).取y =0,则x =23x 0,所以点A ⎝ ⎛⎭⎪⎫23x 0,0.由|OA |=|AB |,得4x 209=x 209+x 60,又x 0≠0,所以x 20=33,所以k l =3x 20=3,故切线l 的倾斜角为60°. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f (x )=log 3mx 2+8x +nx 2+1的定义域为R ,值域为[]0,2,求m ,n 的值.解析:由y =f (x )=log 3mx 2+8x +n x 2+1,得3y =mx 2+8x +n x 2+1,即()3y -m ·x 2-8x +3y-n =0∵x ∈R ,∴Δ=64-4(3y -m )(3y -n )≥0,即32y -(m +n )·3y+mn -16≤0 由0≤y ≤2,得1≤3y≤9,由根与系数的关系得⎩⎪⎨⎪⎧m +n =1+9mn -16=1×9,解得m =n =5.18.(本小题满分12分)[2019·某某调研测试(二诊)]已知曲线f (x )=ln 2x +a ln x +ax在点(e ,f (e))处的切线与直线2x +e 2y =0平行,a ∈R .(1)求a 的值; (2)求证:f x x >aex . 解析:(1)f ′(x )=-ln 2x +2-a ln xx2,由f ′(e)=-1+2-a e 2=-2e 2,解得a =3.(2)证明:f (x )=ln 2x +3ln x +3x,f ′(x )=-ln x ln x +1x 2.由f ′(x )>0,得1e<x <1,故f (x )在⎝ ⎛⎭⎪⎫0,1e 和(1,+∞)上单调递减,在⎝ ⎛⎭⎪⎫1e ,1上单调递增. ①当x ∈(0,1)时,f (x )≥f ⎝ ⎛⎭⎪⎫1e =e.∵⎝ ⎛⎭⎪⎫3x e x ′=31-x e x,∴3xex 在(0,1)上单调递增, ∴3x e x <3e <e ,∴f (x )>3x e x ,即f x x >3ex . ②当x ∈[1,+∞)时,ln 2x +3ln x +3≥0+0+3=3. 令g (x )=3x 2ex ,则g ′(x )=32x -x 2ex .∴g (x )在[1,2)上单调递增,在(2,+∞)上单调递减, ∴g (x )≤g (2)=12e2<3,∴ln 2x +3ln x +3>3x 2e x ,即f x x >3ex .综上,对任意x >0,均有f x x >3ex . 19.(本小题满分12分)定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数). (1)判断k 为何值时,f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,某某数m 的取值X 围.解析:(1)k =0时,f (x )为R 上的奇函数,证明如下: 令a =x ,b =-x ,则f (0)=f (x )+f (-x )=0, 即f (-x )=-f (x ), ∴f (x )为R 上的奇函数.(2)k =-1时,令a =b =2,则f (4)=2f (2)-1,f (2)=3 ∴f (mx 2-2mx +3)>f (2)恒成立,又f (x )是R 上的增函数,∴mx 2-2mx +3>2恒成立 即mx 2-2mx +1>0m =0时,3>2恒成立m ≠0时,有⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0得0<m <1综上m 的取值X 围为[0,1). 20.(本小题满分12分)[2019·某某馆陶县一中月考]设函数f (x )=ln x -(a +1)x ,a ∈R . (1)讨论函数f (x )的单调性;(2)当函数f (x )有最大值且最大值大于3a -1时,求a 的取值X 围. 解析:(1)函数f (x )的定义域为(0,+∞),f ′(x )=1x-(a +1)=1-a +1xx.①当a +1≤0,即a ≤-1时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增; ②当a +1>0,即a >-1时,令f ′(x )=0,解得x =1a +1, (ⅰ)当0<x <1a +1时,f ′(x )>0,函数单调递增; (ⅱ)当x >1a +1时,f ′(x )<0,函数单调递减. 综上所述,当a ≤-1时,函数f (x )在(0,+∞)上单调递增; 当a >-1时,函数f (x )在⎝⎛⎭⎪⎫0,1a +1上单调递增,在⎝ ⎛⎭⎪⎫1a +1,+∞上单调递减.(2)由(1)得,若f (x )有最大值,则a >-1,且f (x )max =f ⎝ ⎛⎭⎪⎫1a +1=ln 1a +1-1.∵函数f (x )的最大值大于3a -1. ∴ln1a +1-1>3a -1,即ln(a +1)+3a <0(a >-1). 令g (a )=ln(a +1)+3a (a >-1),∵g (0)=0且g (a )在(-1,+∞)上单调递增, ∴-1<a <0.故a 的取值X 围为(-1,0).21.(本小题满分12分)设函数f (x )=x 2+bx -1(b ∈R ).(1)当b =1时证明:函数f (x )在区间⎝ ⎛⎭⎪⎫12,1内存在唯一零点; (2)若当x ∈[1,2],不等式f (x )<1有解.某某数b 的取值X 围. 解析:(1)由b =1,得f (x )=x 2+x -1,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫122+12-1=-14<0,f (1)=12+1-1=1>0,∴f ⎝ ⎛⎭⎪⎫12·f (1)<0,所以函数f (x )在区间(12,1)内存在零点.又由二次函数的图象,可知f (x )=x 2+x -1在(12,1)上单调递增,从而函数f (x )在区间(12,1)内存在唯一零点.(2)方法1:由题意可知x 2+bx -1<1在区间[1,2]上有解, 所以b <2-x 2x =2x-x 在区间[1,2]上有解.令g (x )=2x-x ,可得g (x )在区间[1,2]上递减,所以b <g (x )max =g (1)=2-1=1 ,从而实数b 的取值X 围为(-∞,1). 方法2:由题意可知x 2+bx -2<0在区间[1,2]上有解.令g (x )=x 2+bx -2,则等价于g (x )在区间[1,2]上的最小值小于0. 当-b2≥2即b ≤-4时,g (x )在[1,2]上递减,∴g (x )min =g (2)=2b +2<0,即b <-1,所以b ≤-4;当1<-b 2<2即-4<b <-2时,g (x )在[1,-b2]上递减,在⎣⎢⎡⎦⎥⎤-b2,2上递增,∴g (x )min =g (-b 2)=(b2)2-b 22-2=-b 24-2<0恒成立.所以-4<b <-2;当-b2≤1即b ≥-2时,g (x )在[1,2]上递增,∴g (x )min =g (1)=b -1<0 即b <1,所以-2≤b <1. 综上可得b ≤-4或-4<b <-2或-2≤b <1,所以b <1, 从而实数b 的取值X 围为(-∞,1) 22.(本小题满分12分)[2018·全国卷Ⅱ]已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .解析:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x-1≤0.设函数g (x )=(x 2+1)e -x-1,则g ′(x )=-(x 2-2x +1)·e -x=-(x -1)2e -x. 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减. 而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)设函数h (x )=1-ax 2e -x.f (x )在(0,+∞)只有一个零点等价于h (x )在(0,+∞)只有一个零点.(i)当a ≤0时,h (x )>0,h (x )没有零点; (ii)当a >0时,h ′(x )=ax (x -2)e -x.当x ∈(0,2)时,h ′(x )<0; 当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)单调递减,在(2,+∞)单调递增. 故h (2)=1-4ae 2是h (x )在(0,+∞)的最小值.①若h (2)>0,即a <e24,h (x )在(0,+∞)没有零点.②若h (2)=0,即a =e24,h (x )在(0,+∞)只有一个零点.③若h (2)<0,即a >e24,因为h (0)=1,所以h (x )在(0,2)有一个零点;由(1)知,当x >0时,e x>x 2,所以h (4a )=1-16a 3e 4a =1-16a3e2a2>1-16a32a4=1-1a>0,故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点.综上,当f (x )在(0,+∞)只有一个零点时,a =e24.。

第54题+不等式的概念与性质-2018精品之高中数学(理)黄金100题系列+Word版含解析

第54题+不等式的概念与性质-2018精品之高中数学(理)黄金100题系列+Word版含解析

第54题 不等式的概念与性质I .题源探究·黄金母题【例1】已知0,0,a b c >><求证:c c a d>. 【证明】10,0,0a b ab ab>>∴>>.于是11,a b ab ab ⋅>⋅即11,b a >由0c <,得c c a d>. 精彩解读【试题来源】人教版A 版必修5P 74例1.【母题评析】本题考查了不等式的重要性质.作为基础题,不等式性质的应用,是历年来高考的一个常考点. 【思路方法】熟记不等式性质,应用不等式的性质解题.II .考场精彩·真题回放【例2】【2017高考山东理7】若0a b >>,且1ab =,则下列不等式成立的是 ( ) A .()21log 2a b a a b b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a ba ab b +<+< D .()21log 2a b a b a b +<+<【答案】B【解析】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+,所以选B . 【例3】【2016高考新课标I 】若101a b c >><<,,则 ( ) A .cca b < B .ccab ba < C .log log b a a c b c < D .log log a b c c < 【答案】C【命题意图】这类题主要考查不等式的性质、指数函数、对数函数、幂函数的性质.本题能较好的考查考生分析问题、解决问题的能力等. 【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等偏易,考查基础知识的识记与理解.【难点中心】比较指数式或对数式的大小,若幂的底数相同或对数的底数相同或幂的指数相同,通常利用指数函数或对数函数或幂函数的单调性进行比较;若底数不同,可考虑利用中间量进行【解析】用特殊值法.令3a =,2b =,12c =,得112232>,选项A错误;11223223⨯>⨯,选项B 错误;2313log 2log 22<,选项C 正确;3211log log 22>,选项D 错误,故选C . 【例4】【2017高考北京理13】能够说明“设,,a b c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为______________________________. 【答案】1,2,3---.【解析】()123,1233->->--+-=->-相矛盾,∴验证是假命题. 【例5】【2017高考北京文14】某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________. 【答案】6,12【解析】设男生数,女生数,教师数为,,a b c ,则2,,,c a b c a b c >>>∈N第一小问:max 846a b b >>>⇒=;第二小问:min 3,635,412.c a b a b a b c =>>>⇒==⇒++=比较.也可以利用特殊值法.III .理论基础·解题原理1.比较法原理:0,0,0.a b a b a b a b a b a b ->⇔>-<⇔<-=⇔= 2.a b b a >⇔<(反对称性); 3.若,,a b b c >>则a c >(传递性)4.若a b >,则a c b c +>+;5.若,0a b c >>,则ac bc >;若,0a b c ><,则ac bc <; 6.若,a b c d >>,则a c b d +>+; 7.若0,0a b c d >>>>,则ac bd >;9.若0a b >>,则(),2n n a b n N n >∈≥;IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,一般难度较小,往往考查对基础知识的识记与理解. 【技能方法】解决此类问题的关键是在不等式的求解证明中,必须在不等式的常见性质体系下进行分析.(1)用作差比较法比较数式的大小关键是变形,常将两个代数式作差后变形为常数或平方和的形式或几个因式积的形式等,常有的变形技巧有因式分解、配方、通分、分母(分子)有理化等.作差比较法的一般步骤:作差——变形——与0比较大小——下结论.(2)当用作差法难以比较数式的大小时,可以试用作商比较法(前提是两个代数式同号).作商比较法的一般步骤:作商——变形——与1比较大小——下结论.(3)在运用不等式的性质时,一定要掌握它们成立的条件.如两边同乘以(或除以)一个正数,不等号的方向不变,若同乘以(或除以)一个负数,则不等号的方向改变.因此在分式不等式中,若不能肯定分母是正数还是负数,则不要轻易去分母.又如,同向不等式相乘、不等式两边同时乘方或(或开方)时,要求不等式两边都是正数.(4)应用不等式的性质解题的常见类型及方法:①注意观察从已知不等式到目标不等式的变化,它是如何变形的,这些变形是否符合不等式的性质及性质的条件;②若比较大小的两式是指数或对数模型,注意联想单调性;③恰当运用赋值法和淘汰法探究解答选择题、填空题. 【易错指导】(1)比较大小时,要把各种可能的情况都考虑进去,对不确定的因素进行分类讨论,每一步运算都要准确,每一步推理都要有充分的依据.(2)不等式性质的等价性:在不等式的基本性质中,对表达不等式性质的各不等式,要注意“箭头”是单向还是双向,也就是说每条性质是否具有可逆性.(3)由于同向不等式相加或相乘会使范围变大,所以在求有关不等式取值范围的问题时,尽量少用不等式相加或相乘,次数越少越好,最好“一次性”不等关系的运算求得待求整体的范围,这是避免出错的一条捷径.V .举一反三·触类旁通考向1 利用不等式的性质判定大小【例1】【2018河南焦作高三第四次模拟】已知0a b >>,则下列不等式中成立的是( )A .11a b >B .22log log a b <C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .1122a b -->【答案】C【例2】【2018河北衡水中学高三十五模】已知330c c a b<<,则下列选项中错误的是( ) A .b a > B .ac bc > C .0a b c -> D .ln 0ab> 【答案】D【解析】330c c a b <<,当0c <时,110a b >>,即b 0a >>,∴b a >,ac bc >,0a bc->成立,此时01a b <<,∴ln 0ab<,故选D . 【例3】【2018江西吉安一中、九江一中等八所重点中学高三4月联考】若1a >,01c b <<<,则下列不等式不正确的是( )A .log 2018log 2018a b >B .log log b c a a<C .()()aac b c c b b ->- D .()()cba c a a c a ->- 【答案】D【解析】根据对数函数的单调性可得log 20180log 2018a b >>,log log b c a a <,故A 、B 正确.∵1a >,01c b <<<,∴0a a c b <<,0c b -<,0c b a a <<,0a c ->, ∴()()aac b c c b b ->-,()()cba c a a c a -<-,则C 正确,D 错误.故选D .【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性. 【跟踪练习】1.【2018北京丰台区高三一模】已知0a b <<,则下列不等式中恒成立的是A .11a b> B < C .22a b > D .33a b > 【答案】A2.【2018北京十一学校高三3月模拟】设 4.20.60.60.6,7,log 7a b c ===,则,,a b c 的大小关系是A .c b a <<B .c a b <<C .b c a <<D .a b c << 【答案】B【解析】0< 4.20.6<1,0.67>1,0.6log 7<0,所以b>a>c ,选B .3.【2018四川成都第七中学高三上学期模拟】设12523log 2,log 2,a b c e ===,则,,a b c 的大小关系是( )A .a b c <<B .b a c <<C .b c a <<D .c b a << 【答案】B【解析】因为()12523log 20,1,log 20,1a b c e=∈==,所以b a c <<,选B .考向2 求范围的问题【例4】【2018黑龙江双鸭山市一中高二4月月考】已知15,13a b a b ≤+≤-≤-≤,则32a b -的取值范围是 ( )A .[]6,14-B .[]2,14-C .[]2,10-D .[]6,10- 【答案】C【解析】设()()32x y a b a b a b -=++-,易得:1x 2=,5y 2=, ∴()()[]15322,1022a b a b a b -=++-∈-,故选C . 【名师点睛】根据不等式组确定二元目标式范围的方程有二,其一:利用待定系数法表示目标,直接加减一次即可;其二:利用线性规划的方法处理.【例5】三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,则ba的取值范围是________. 【答案】23,32⎡⎤⎢⎥⎣⎦【例6】【2018辽宁大连渤海高级中学高二上学期期中考试】设()2f x ax bx =+,且()112f -≤-≤,()214f ≤≤,求()2f -的取值范围.【答案】()1210f -≤-≤【解析】试题分析:由()2f x ax bx =+ 得()242f a b -=-.已知()()1,1f f - 的范围,用()()1,1f f -表示,a b ,再把()242f a b -=-化简,然后根据不等式的性质可得所求范围.试题解析:由已知得()()1{ 1f a b f a b-=-=+,∴()()()()112{112f f a f f b +-=--=,∴()()()()()11112424222f f f f f a b +----=-=⨯-⨯()()131f f =+-,∵()()112,3316f f -≤-≤∴-≤-≤,∵()214f ≤≤,∴()()113110,f f -≤+-≤∴()1210f -≤-≤.【名师点睛】利用不等式的性质可以求参数或某些代数式的取值范围,但在变换过程中要注意掌握、准确使用不等式的性质.求含有字母的代数式的取值范围时,要注意题设中的条件.如本例若忽视αβ<,则会导致取值范围变大. 【跟踪练习】1.【2018广西防城港市高中毕业班1月模拟】已知0,0,22a b a b >>+=,若24a b m +>恒成立,则实数m 的取值范围是__________. 【答案】4m <2.【2018江苏邗江中学高二下学期期中考试】若不等式(﹣1)n •a <3对任意的正整数n 恒成立,则实数a 的取值范围是_____. 【答案】【解析】分析:将不等式进行参数分离,求函数的最值即可得到结论. 详解:当为奇数时,不等式可化为,即,要使得不等式对任意自然数恒成立,则,当为偶数时,不等式可化为,要使得不等式对任意自然数恒成立,则,即,综上,.【名师点睛】本题主要考查了不等式恒成立问题,将不等式的恒成立转化为求式子的最值问题解决恒成立问题是解答恒成立问题的基本方法,着重考查分析问题和解答问题的能力.3.【2018北京市海淀区育英学校高一下期期中考试】若实数a ,b 满足02a <<,01b <<,则a b -的取值范围是__________. 【答案】()1,2-【解析】01,10b b <<∴-<-<,02,12a a b <<∴-<-<,故答案为()1,2-.4.设等差数列{a n }的前n 项和为S n ,若1≤a 5≤4,2≤a 6≤3,则S 6的取值范围是________. 【答案】[-12,42]【名师点睛】本题是一道易错题,如果根据1≤a 5≤4,2≤a 6≤3分别求出1,a d 的范围,再求S 6=6a 1+15d 的范围,实际上是错误的.这里涉及到不等式取等的问题,可以利用线性规划的知识,也可以利用解答中的整体代入的方法.考向3 不等式的性质与充要条件【例7】【2018广东省中山市高二上学期期末复习】若,a b 为实数,则22a b >是0a b >>的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不也不必要条件 【答案】B【解析】当0a b >>时,22a b >成立,当3,1a b =-=-时,满足22a b >,但0a b >>不成立,即“22a b >”是“0a b >>”的必要不充分条件,故选B .【例8】【2018广东中山市高二上学期理科数学期末考试】条件甲:24{03x y xy <+<<<;条件乙:01{23x y <<<<,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不也不必要条件 【答案】B 【解析】由01{23x y <<<<,根据不等式的性质可得24{ 03x y xy <+<<<;由01{23y x <<<<,而15,22x y ==时,24{03x y xy <+<<<成立,01{ 23y x <<<<不成立,所以甲是乙的必要不充分条件,故选B .【例9】下列四个不等式:①a <0<b ;②b <a <0;③b <0<a ;④0<b <a ,其中能使11a b<成立的充分条件有________. 【答案】①②④【解析】①a <0<b ⇒1a <0,1b >0⇒1a <1b ;②b <a <0⇒1a <1b ;③b <0<a ⇒1a >1b;④0<b <a ⇒1a <1b.故答案为:①②④. 【跟踪练习】1.【2018天津蓟州区第一中学高二第一学期第二次月考】①一个命题的逆命题为真,它的否命题一定也为真: ②在中,“”是“三个角成等差数列”的充要条件;③是的充要条件; ④“”是“”的充分必要条件;以上说法中,判断错误的有_______________. 【答案】③④有,又由,则,故在中,“”是“三个角成等差数列”的充要条件,②正确;对于③,当,则满足,而不满足,则是的不必要条件,③错误;对于④,若,当时,有,则“”是“”的不必要条件,④错误,故答案为③④.2.【2018衡水金卷(四)】设p :3402x xx-≤,q :()22210x m x m m -+++≤,若p 是q 的必要不充分条件,则实数m 的取值范围为( )A .[]2,1-B .[]3,1-C .[)(]2,00,1-⋃D .[)(]2,10,1--⋃ 【答案】D【解析】设p :3402x xx-≤的解集为A ,所以A={x|-2≤x <0或0<x≤2},设q :()22210x m x m m -+++≤的解集为B ,所以B={x|m≤x≤m+1},由题知p 是q 的必要不充分条件,即得B 是A 的真子集,所以有010{01{ 2 1.122m m m m m m >+<⇒<≤⇒-≤<-+≤≥-或综合得m ∈[)(]2,10,1--⋃,故选D .3.设,x y R ∈,则4()0x y x -<是x y <的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A。

推荐-辽宁省大连市2018年高三第一次模拟考试(数学理) 精品

推荐-辽宁省大连市2018年高三第一次模拟考试(数学理) 精品

辽宁省大连市2018年高三第一次模拟考试(数学理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第22—24题为选做题,其它题为必考题。

共150分。

考试时间120分钟。

考生作答时,将答案答大答题纸上。

在本试卷上答题无效。

参考公式:如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(锥体体积公式 Sh V 31=其中S 为底面面积,h 为高柱体体积公式Sh V =其中S 为底面面积,h 为高第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,},1|{},lg |{2+=∈==∈=x y R y N x y R x M 集合N M = ( )A .),0(+∞B .[)+∞,1C .),(+∞-∞D .(]1,02.已知某几何体的三视如图1,则这个几何体是 ( ) A .三棱锥 B .四棱锥C .四棱柱D .四棱台3.已知复数i z 31=和复数iz 63212-=,则复数21z z ⋅= ( )A .i 2321+ B .i 2123+ C .i 2321-D .i 2123-4.在等差数列}{n a 中,若,80108642=++++a a a a a 则6a 的值为( )A .4B .6C .8D .16 5.平面//α平面β的一个充分条件是( )A .存在一条直线a ,a//α,a//βB .存在一条直线a ,βα//,a a ⊂C .存在两条平行直线a 、b ,,α⊂a αββ//,//,b a b ⊂D .存在两条相交直线ββα//,//,,b a ba a ⊂6.设F 为抛物线)0(22>=p px y 的焦点,A 、B 、C 为该抛物线上三点,当FC FB FA ++=0 且++=3时,此抛物线的方程为( )A .x y 22= B .x y 42= C .x y 62= D .x y 82= 7.在可行域内任取一点),(y x ,如果执行如下图2的程序框图,那么输出数对),(y x 的概率是( )A .8πB .4πC .6πD .2π8.在平面直角坐标系中,动点M(x,y)满足条件⎪⎩⎪⎨⎧≥-≤-+≤+-01,02,02y y x y x ,动点Q在曲线21)1(22=+-y x 上,则|MQ|的最小值为( )A .2B .223C .221-D .215-9.已知平面向量与满足,2|||:|,==的夹角为2π,又21λλ+= 21,10,21≤≤≤<λλ,则点P 的集合所表示的图形面积为 ( )A .8B .4C .2D .110.给出下列四个命题:①"0,"2>-∈∃x x R x 的否定是"0,"2≤-∈∀x x R x ; ②对于任意实数x ,有,0)(',0)(',0),()(),()(>>>=--=-x g x f x x g x g x f x f 时且 则);(')(',0x g x f x ><时③函数)1,0(33log )(≠>-+=a a x xx f a是偶函数;④若对,R x ∈∀函数f (x )满足)()2(x f x f -=+,则4是该函数的一个周期,其中真命题的个数为 ( )A .1B .2C . 3D .411.由0,1,2,3,4,5这六个数字组成的不重复的六位数中,不出现“135”与“24”的六位数的个数为 ( )A .582B .518C .490D .48612.若关于x 的不等式x a x sin |2cos |≥在闭区间]6,3[ππ-上恒成立,则实数a 的取值范围是( )A .]1,21[-B .]0,1[-C .]0,23[-D .[0,1]第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省大连市2018届高三第一次模拟数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A. B. C. D.【答案】C【解析】由题意得:,∴故选:C2. 若复数为纯虚数,则实数的值为()A. 1B. 0C.D. -1【答案】D【解析】设,得到:+∴,且解得:故选:D3. 中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如3266用算筹表示就是,则8771用算筹可表示为()A. B. C. D.【答案】A【解析】由题意各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,则8771 用算筹可表示为,故选:C.4. 如图所示程序框图是为了求出满足的最小正偶数,那么空白框中及最后输出的值分别是()A. 和6B. 和6C. 和8D. 和8【答案】D【解析】空白框中n依次加2可保证其为偶数,排除A,C时,,时,所以D选项满足要求.故选:D.5. 函数的部分图象大致为()A. B.C. D.【答案】B【解析】由函数是偶函数,排除A,C,当,.排除B故选:D.点睛:识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.6. 某几何体的三视图如图所示(单位:),其俯视图为等边三角形,则该几何体的体积(单位:)是()A. B. C. D.【答案】B【解析】由题意可知该几何体为正三棱柱去掉一个小三棱锥,.故选:B.7. 6本不同的书在书架上摆成一排,要求甲、乙两本书必须摆放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种.A. 24B. 36C. 48D. 60【答案】A【解析】第一步:甲、乙两本书必须摆放在两端,有种排法;第二步:丙、丁两本书必须相邻视为整体与其它两本共三本,有种排法;∴故选:A.8. 的内角的对边分别为,若,,则面积的最大值是()A. 1B.C. 2D. 4【答案】B【解析】由题意知,由余弦定理,,故,有,故..................................故选:B9. 已知边长为2的等边三角形,为的中点,以为折痕进行翻折,使为直角,则过四点的球的表面积为()A. B. C. D.【答案】C【解析】折后的图形可放到一个长方体中,其体对角线长为,故其外接球的半径为,其表面积为.故选:D.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.10. 将函数的图象向右平移个单位得到函数的图象,则的值可以为()A. B. C. D.【答案】C【解析】将函数的图象向右平移个单位得到函数∴,∴得到:.当k=1时,故选:C.11. 已知双曲线的左、右焦点分别为、,若上存在一点满足,且的面积为3,则该双曲线的离心率为()A. B. C. 2 D. 3【答案】B【解析】由双曲线可知,从而.故选:B.12. 若直线和曲线的图象交于,,三点时,曲线在点、点处的切线总是平行的,则过点可作曲线的()条切线.A. 0B. 1C. 2D. 3【答案】C【解析】直线过定点由题意可知:定点是曲线的对称中心,,解得,所以曲线,f′(x)=,设切点M(x0,y0),则M纵坐标y0=,又f′(x0)=,∴切线的方程为:又直线过定点,得﹣-2=0,,即解得:故可做两条切线故选:C点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 设实数,满足约束条件则的最大值为__________.【答案】【解析】作出可行域,如图:由可行域可确定目标函数在处取最大值故的最大值为14故答案为:14点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.14. 已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.【答案】【解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.15. 已知抛物线,过点任作一条直线和抛物线交于、两点,设点,连接,并延长,分别和抛物线交于点和,则直线过定点__________.【答案】【解析】设方程为:,代入抛物线得:设A,,则同理:B,,又AB过定点,∴共线,∴∴,即∴,又,∴直线:,利用点在抛物线上化简得:∴∴直线过定点故答案为:16. 已知腰长为2的等腰直角中,为斜边的中点,点为该平面内一动点,若,则的最小值为__________.【答案】【解析】如图建立平面直角坐标系,,∴,当sin时,得到最小值为故答案为:三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 设数列的前项和为,且,在正项等比数列中,,.求和的通项公式;设,求数列的前项和.【答案】(1),(2)【解析】试题分析:(1)由求出的通项公式,由等比数列的基本公式得到的通项公式;(2)利用错位相减法求出数列的前项和.试题解析:解:,当时,,,,.又数列为等比数列,,,又,.由得:设数列的前项和为当时,,,,,,.当时,,又当时,,综上,.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18. 大连市某企业为确定下一年投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.表中,.根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)根据的判断结果及表中数据,建立关于的回归方程;已知这种产品的年利润与、的关系为.根据的结果回答下列问题:年宣传费时,年销售量及年利润的预报值是多少?年宣传费为何值时,年利润的预报值最大?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.【答案】(1)(2)(3)年销售量,年利润.年宣传费为46.24千元时,年利润预报值最大.【解析】试题分析:(1)由散点图可以判断适宜作为年销售量关于年宣传费的回归方程类型;(2)利用公式计算,从而得到关于的回归方程;(3)由知,当时,年销售量的预报值为,年利润的预报值为;根据的结果知,年利润的预报值,求二次函数的最值即可.试题解析:解:由散点图可以判断适宜作为年销售量关于年宣传费的回归方程类型.令,先建立关于的线性回归方程,,所以关于的线性回归方程为,所以关于的线性回归方程为.由知,当时,年销售量的预报值为,年利润的预报值为.根据的结果知,年利润的预报值,当,即时,年利润的预报值最大,故年宣传费为46.24千元时,年利润预报值最大.19. 在如图所示的几何体中,四边形是正方形,平面,分别是线段,的中点,.求证:平面;求到平面的距离.【答案】(1)见解析(2)【解析】(1)取中点,连接,易得四边形为平行四边形,从而所以∥平面;(2)平面,且四边形是正方形,两两垂直,以为原点,,,所在直线为轴,建立空间直角坐标系,求出平面与平面的法向量,代入公式得到所成锐二面角的余弦值.解:方法一:取中点,连接,分别是中点, ,为中点,为正方形,,,四边形为平行四边形,平面,平面,平面.方法二:取中点,连接,.是中点,是中点,,又是中点,是中点,,,,又,平面,平面,平面,平面,平面平面.又平面,平面.方法三:取中点,连接,,在正方形中,是中点,是中点又是中点,是中点,,又,,,平面//平面.平面平面.方法四:平面,且四边形是正方形,两两垂直,以为原点,,,所在直线为轴,建立空间直角坐标系,则,则设平面法向量为,则, 即, 取,,所以,又平面,∥平面.平面,且四边形是正方形,两两垂直,以为原点,,,所在直线为轴,建立空间直角坐标系,则设平面法向量为,,则, 即,取,则设平面法向量为,则, 即, 取,.平面与平面所成锐二面角的余弦值为.(若第一问用方法四,则第二问部分步骤可省略)点睛:本题主要考查线面垂直的判定定理以及用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 在平面直角坐标系中,椭圆的离心率为,点在椭圆上.求椭圆的方程;已知与为平面内的两个定点,过点的直线与椭圆交于两点,求四边形面积的最大值.【答案】(1)(2)6【解析】试题分析:(1)由椭圆定义得到动圆圆心的轨迹的方程;(2)设的方程为,联立可得,通过根与系数的关系表示弦长进而得到四边形面积的表达式,利用换元法及均值不等式求最值即可.试题解析:解:由可得,,又因为,所以.所以椭圆方程为,又因为在椭圆上,所以.所以,所以,故椭圆方程为.方法一:设的方程为,联立,消去得,设点,有,所以令,有,由函数,故函数,在上单调递增,故,故当且仅当即时等号成立,四边形面积的最大值为.方法二:设的方程为,联立,消去得,设点,有有,点到直线的距离为,点到直线的距离为,从而四边形的面积令,有,函数,故函数,在上单调递增,有,故当且仅当即时等号成立,四边形面积的最大值为.方法三:①当的斜率不存在时,此时,四边形的面积为.②当的斜率存在时,设为:,则,,四边形的面积,令则,,,综上,四边形面积的最大值为.21. 已知函数.若在上是单调递增函数,求的取值范围;设,当时,若,且,求证:.【答案】(1)(2)见解析【解析】试题分析:(1)在上是单调递增函数等价于在上,恒成立,即:,构造新函数求最值即可;(2)要证,即证,记,易证在上递增,转证。

相关文档
最新文档