人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2
【创新设计】2022-2021学年高二数学人教B版必修5学案:1.2 应用举例(二)

1.2 应用举例(二)[学习目标] 1.利用正、余弦定理解决生产实践中的有关角度的测量问题.2.能够运用正、余弦定理解决力学或几何方面的问题.[学问链接] 有人说物理学科中的题实质上是数学的应用题,事实上学习物理离不开数学,数学在物理学中的应用格外广泛,本节课我们来争辩正、余弦定理在测量方面,及在物理中的力学、平面几何方面的应用.要点一 测量角度问题例1 如图在海岸A 处发觉北偏东45°方向,距A处(3-1)海里的B 处有一艘走奉命以103私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船海里/时的速度追截走私船,此时走私船正以10海里/时的速度,从B 处向北偏东30°方向逃跑.问:缉私船应沿什么方向行驶才能最快截获走私船?并求出所需时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =103t 海里,BD =10t 海里. 在△ABC 中,由余弦定理, 得BC 2=AB 2+AC 2-2AB ·AC ·cos A =(3-1)2+22-2(3-1)·2·cos 120°=6, ∴BC =6(海里). 又∵BC sin A =AC sin ∠ABC,∴sin ∠ABC =AC ·sin A BC =2·sin 120°6=22,∴∠ABC =45°,∴B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°.在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD ,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin 120°103t=12.∴∠BCD =30°,∴缉私船应沿北偏东60°的方向行驶,又在△BCD 中,∠CBD =120°,∠BCD =30°,∴∠CDB =30°,∴BD =BC ,即10t = 6. ∴t =610小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.规律方法 航海问题是解三角形应用问题中的一类很重要的问题,解决这类问题肯定要搞清方位角,再就是选择好不动点,然后依据条件,画出示意图,转化为三角形问题.跟踪演练1 甲船在A 点发觉乙船在北偏东60°的B 处,乙船以每小时a 海里的速度向北行驶,已知甲船的速度是每小时3a 海里,问甲船应沿着什么方向前进,才能最快与乙船相遇? 解 如图所示.设经过t 小时两船在C 点相遇,则在△ABC 中,BC =at 海里,AC =3at 海里, B =90°+30°=120°,由BC sin ∠CAB =ACsin B 得:sin ∠CAB =BC sin B AC =at ·sin 120°3at =323=12.∵0°<∠CAB <90°,∴∠CAB =30°. ∴∠DAC =60°-30°=30°.所以甲船应沿着北偏东30°的方向前进,才能最快与乙船相遇. 要点二 正、余弦定理在几何中的应用例2 如图所示,半圆O 的直径为2,A 为直径延长线上的一点,OA =2,B 为半圆上任意一点,以AB 为一边作等边三角形ABC ,问:点B 在什么位置时,四边形OACB 面积最大?解 设∠AOB =α,在△ABC 中,由余弦定理, 得AB 2=12+22-2×2cos α=5-4cos α,α∈(0,π),于是,四边形OACB 的面积为S =S △AOB +S △ABC=12OA ·OB ·sin α+34AB 2=12×2×1×sin α+34(5-4cos α) =sin α-3cos α+543=2sin(α-π3)+543.由于0<α<π,所以当α-π3=π2,α=56π,即∠AOB =56π时,四边形OACB 面积最大.规律方法 利用正弦定理和余弦定理来解题时,要学会审题及依据题意画示意图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.跟踪演练2 如图所示,在△ABC 中,已知BC =15,AB ∶AC =7∶8,sin B =437,求BC边上的高AD 的长.解 在△ABC 中,由已知设AB =7x ,AC =8x ,x >0, 由正弦定理得7x sin C =8xsin B .∴sin C =7x sin B 8x =78×437=32.∴C =60°(C =120°舍去,否则由8x >7x ,知B 也为钝角,不合要求). 由余弦定理得(7x )2=(8x )2+152-2×8x ×15cos 60°, ∴x 2-8x +15=0,解得x =3或x =5. ∴AB =21或AB =35,在△ABD 中,AD =AB sin B =437AB ,∴AD =123或20 3.1.已知两座灯塔A ,B 与海洋观看站C 的距离相等,灯塔A 在观看站C 的北偏东40°,灯塔B 在观看站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°答案 B解析 如图,因△ABC 为等腰三角形,所以∠CBA =12(180°-80°)=50°,60°-50°=10°,故选B.2.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危急区,城市B 在A 的正东40 km 处,B 城市处于危急区内的时间为( ) A .0.5 h B .1 h C .1.5 h D .2 h 答案 B解析 设A 地东北方向上点P 到B 的距离为30 km ,AP =x . 在△ABP 中,PB 2=AP 2+AB 2-2AP ·AB cos A , 即302=x 2+402-2x ·40cos 45°, 化简得x 2-402x +700=0. 设该方程的两根为x 1,x 2,则|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=400,|x 1-x 2|=20,即P 1P 2=20,故t =P 1P 2v =2020=1.故选B.3.一艘海轮从A 处动身,以40 n mile/h 的速度沿南偏东40°方向直线航行,30 min 后到达B 处,在C 处有一座灯塔,海轮在A 处观看灯塔,其方向是南偏东70°,在B 处观看灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A .10 2 n mile B .10 3 n mile C .20 2 n mile D .20 3 n mile答案 A解析 如图所示,由已知条件可得,∠CAB =30°, ∠ABC =105°,AB =40×12=20(n mile).∴∠BCA =45°.∴由正弦定理可得AB sin 45°=BCsin 30°.∴BC =20×1222=102(n mile).4.如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =6,AD =5,S △ADC =152,则AB =________.答案 43解析 在△ADC 中,已知AC =6,AD =5,S △ADC =152,则由S △ADC =12·AC ·AD ·sin ∠DAC ,求得sin ∠DAC =12,即∠DAC =30°,∴ ∠BAC =30°.而∠ABC =60°,故△ABC 为直角三角形; ∵ AC =6,∴ AB =AC cos 30°=632=4 3.1.在求解三角形中,我们可以依据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必需检验上述所求的解是否符合实际意义,从而得出实际问题的解. 2.解三角形的应用题时,通常会遇到两种状况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先争辩,再逐步在其余的三角形中求出问题的解.一、基础达标1.从高出海平面h m 的小岛看正东方向有一只船俯角为30°,看正南方向有一只船俯角为45°,则此时两船间的距离为 ( )A .2h m B.2h m C.3h m D .22h m 答案 A解析 如图所示,BC =3h m ,AC =h m ,∴AB =3h 2+h 2=2h (m).2.甲船在岛B 的正南A 处,AB =10 km ,甲船以每小时4 km 的速度向正北航行,同时,乙船自B 动身以每小时6 km 的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( ) A.1507分钟 B.157小时 C .21.5分钟 D .2.15分钟答案 A解析 设行驶x h 后甲到点C ,乙到点D , 两船相距y km ,则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120° =28x 2-20x +100=28(x -514)2-257+100∴当x =514小时=1507分钟,y 2有最小值.∴y 最小.3.已知A 船在灯塔C 北偏东80°处,且A 船到灯塔的距离为2 km ,B 船在灯塔C 北偏西处40°,A ,B 两船间的距离为3 km ,则B 船到灯塔的距离为________ km. 答案6-1解析 由题意知,∠ACB =80°+40°=120°,AC =2,AB =3,设B 船到灯塔的距离为x ,即BC =x .由余弦定理可知AB 2=AC 2+BC 2-2AC ·BC cos120°,即9=4+x 2-2×2x ×(-12),整理得x 2+2x -5=0,解得x =-1-6(舍去)或x =-1+ 6.4.在平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是________. 答案 16解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b2-2ab cos α=17,a 2+b 2-2ab cos(180°-α)=65. 解得:a =5,b =4,cos α=35,∴S ▱ABCD =ab sin α=16.5.两座灯塔A 和B 与海洋观看站C 的距离都等于a km ,灯塔A 在观看站C 的北偏东20°,灯塔B 在观看站C 的南偏东40°,则灯塔A 与灯塔B 的距离为________km. 答案3a解析 由于灯塔A 在观看站C 的北偏东20°,灯塔B 在观看站C 的南偏东40°,所以∠ACB =120°.又由于AC 和BC 的距离都是a km ,由余弦定理,得AB 2=a 2+a 2-2×a ×a ×cos 120°=3a 2,所以A ,B 的距离是3a km.6.某地出土一块类似三角形刀状的古代玉佩(如右图),其一角已破损,现测得如下数据:BC =2.57 cm ,CE =3.57 cm ,BD =4.38 cm ,B =45°,C =120°.为了复原,请计算原玉佩两边的长(结果精确到0.01 cm).解 如下图所示,将BD ,CE 分别延长相交于一点A ,在△ABC 中,已知BC 的长及角B 与角C ,可以通过正弦定理求AB ,AC 的长.将BD ,CE 分别延长相交于一点A ,在△ABC 中,BC =2.57 cm ,B =45°,C =120°, A =180°-(B +C )=180°-(45°+120°)=15°.∵BC sin A =AC sin B ,∴AC =BC sin B sin A =2.57sin 45°sin 15°. 利用计算器算得AC ≈7.02(cm). 同理,AB ≈8.60(cm).答 原玉佩两边的长分别约为7.02 cm,8.60 cm.7.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在货轮的南偏东60°. 求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,B =45°.由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24(n mile).所以A 处与D 处的距离为24 n mile.(2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC ·cos 30°.解得:CD =83(n mile).即灯塔C 与D 处的距离为8 3 n mile. 二、力量提升8.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°的方向上,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为________海里/时. 答案 20(6-2) 解析 由题意,得∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2)(海里).则v 货=20(6-2) (海里/时).9.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,马上测出该渔船在方位角为45°,距离为10海里的C 处,并测得渔船正沿方位角为105°的方向,以10海里/时的速度向小岛B 靠拢,我海军舰艇马上以103海里/时的速度前去营救,求舰艇的航向和靠近渔船所需的时间. 解 如图所示,设所需时间为t 小时, 则AB =103t 海里,CB =10t 海里,在△ABC 中,依据余弦定理,则有 AB 2=AC 2+BC 2-2AC ·BC cos 120°,可得(103t )2=102+(10t )2-2×10×10t cos 120°, 整理得2t 2-t -1=0,解得t =1或t =-12(舍去).即舰艇需1小时靠近渔船,此时AB =103(海里),BC =10(海里), 在△ABC 中,由正弦定理得BC sin ∠CAB =ABsin 120°,所以sin ∠CAB =BC sin 120°AB =10×32103=12,所以∠CAB =30°,所以舰艇航行的方位角为75°.10.为保障高考的公正性,高考时每个考点都要安装手机屏蔽仪,要求在考点四周1千米处不能收到手机信号,检查员抽查青岛市一考点,在考点正西约1.732千米有一条北偏东60°方向的大路,在此处检查员用手机接通电话,以每小时12千米的速度沿大路行驶,问最长需要多少分钟检查员开头收不到信号,并至少持续多长时间该考点才算合格?解 如图所示,考点为A ,检查开头处为B , 设大路上C ,D 两点到考点的距离为1千米. 在△ABC 中,AB =3≈1.732(千米),AC =1(千米), ∠ABC = 30°,由正弦定理sin ∠ACB =sin 30°AC ·AB =32,∴∠ACB =120°(∠ACB =60°不合题意), ∴∠BAC =30°,∴BC =AC =1(千米), 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1(千米). ∵BC12×60=5,∴在BC 上需5分钟,CD 上需5分钟. 所以最长需要5分钟检查员开头收不到信号,并持续至少5分钟才算合格.11.某工厂生产产品后,留下大量中心角为60°,半径为R 的扇形边角料,现要利用边角料,从中剪裁出矩形毛坯,要求矩形面积尽可能大,请问如何裁剪?解 如图所示,矩形有两个顶点在半径OA 上,设∠AOP =θ, 则PM =R sin θ,∵扇形中心角为60°, ∴∠PQO =120°.在△OPQ 中,由正弦定理, 得OP sin 120°=PQsin (60°-θ),即PQ =23R sin(60°-θ). ∴矩形MPQR 的面积为 S 1=PM ·PQ =23R 2sin θsin(60°-θ), sin θsin(60°-θ)=sin θ(32cos θ-12sin θ) =32sin θcos θ-12sin 2 θ =34sin 2θ-1-cos 2θ4 =34sin 2θ+14cos 2θ-14=12sin(2θ+30°)-14, 当sin(2θ+30°)=1时,取得最大值14,即θ=30°时,sin θsin(60°-θ)≤14.此时S 1=23R 2sin θsin(60°-θ)≤36R 2,故θ=30°时,S 1取最大值36R 2,由θ=30°确定P 点,通过做平行线不难确定出另三点. 三、探究与创新12.现有一块直径为30 cm 的圆形钢板,需截去直径分别为20 cm,10 cm 的圆形钢板各一块,现需在剩余的钢板中再截出同样大小的圆形钢板两块,问这两块钢板的半径最大为多少?解 如图,设⊙A ,⊙B 分别是直径为20 cm 和10 cm 的圆,⊙D 是直径为30 cm 的圆,则⊙A ,⊙B 相外切且与⊙D 内切,再设最终截下的两个最大的圆为⊙C ,⊙E ,则它们与⊙A ,⊙B 相外切,且与⊙D 相内切,连接AB 、AC 、BC 、CD .设⊙C 的半径为r ,在△ABC 中,AB =15,AC =10+r , BC =5+r ,AD =5,CD =15-r , 由余弦定理得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC=152+(10+r )2-(5+r )22×15×(10+r )=30+r 30+3r .在△ADC 中,cos ∠DAC =AD 2+AC 2-CD 22AD ·AC=52+(10+r )2-(15-r )22·5·(10+r )=5r -10r +10.故30+r30+3r =5r -10r +10,整理得7r 2+40r -300=0, ∴r =307或r =-10(舍去).所以在剩余的钢板中还可以截出半径最大为307cm 的同样大小的圆形钢板两块.。
高中数学人教B版必修5第1章《解三角形》(1.2 第1课时)同步课件

∴AE=2csoisn1350°°=
2×12 6+
= 2
6-
2.
4
在△ABC 中,已知 A=45°,cosB=45. (1)求 cosC 的值; (2)若 BC=10,D 为 AB 的中点,求 CD 的长.
[解析]
(1)∵A=45°,∴cosA=
22,sinA=
2 2.
又∵cosB=45,∴sinB=35.
第一章 解三角形
第一章 1.2 应用举例 第1课时 距离问题
1
课前自主预习
3
易错疑难辨析
2
课堂典例讲练
4
课时作业
课前自主预习
• 碧波万顷的大海上,“蓝天号”渔轮在A处进行海上
作业,“白云号”货轮在“蓝天号”正南方向距
“蓝天号”20n mile的B处.现在“白云号”以10n
mile/h的速度向正北方向行驶,而“蓝天号”同时
小岛A周围38 n mile内有暗
礁,一船正向南航行,在B处
测得小岛A在船的南偏东30°,
航行30 n mile后,在C处测
得小岛在船的南偏东45°,
如果此船不改变航向,继续
向南航行,有无触礁的危险?
• [分析] 船继续向南航行,有无触礁的危险,取决
于A到直线BC的距离与38 n mile的大小,于是我们 只要先求出AC或AB的大小,再计算出A到BC的距离,
∴x=503 6 n mile.
• 4.在相距2 km的A、B两点处测量目标点C,若∠CAB =75°,∠CBA=60°,则A、C两点之间的距离为
______ km.
[答案] 6
[解析] 如图所示,由题意知∠C=45°, 由正弦定理,得siAn6C0°=sinA4B5°,∴AC= 22·23= 6. 2
高中数学 第一章 解三角形 1.1.2 余弦定理练习(含解析)新人教B版必修5-新人教B版高二必修5

1.1.2 余弦定理课时过关·能力提升1已知在△ABC 中,a ∶b ∶c=1∶1∶√3,则cos C 的值为( ) A.23 B.-23C.12D.-122在△ABC 中,若2cos B sin A=sin C ,则△ABC 的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形D.等边三角形2cos B sin A=sin C ,得a 2+a 2-a 2aa·a=c , 所以a=b.所以△ABC 为等腰三角形.3已知在△ABC 中,AB=3,BC=√13,AC=4,则边AC 上的高是( ) A.3√22B.3√32C.32D.3√3,得cos A=aa 2+aa 2-aa 22aa ·aa =9+16-132×3×4=12.∴sin A=√32.∴S △ABC =12AB ·AC ·sin A=12×3×4×√32=3√3.设边AC 上的高为h ,则S △ABC =12AC ·h=12×4×h=3√3. ∴h=3√32.4已知在△ABC 中,∠ABC=π4,AB=√2,BC=3,则sin ∠BAC=( ) A.√1010 B.√105C.3√1010D.√55ABC中,由余弦定理,得AC2=AB2+BC2-2AB·BC cos∠ABC=2+9-2×√2×3×√22=5,即得AC=√5.由正弦定理aasin∠aaa =aasin∠aaa,即√5√22=3sin∠aaa,所以sin∠BAC=3√1010.5已知在△ABC中,∠B=60°,b2=ac,则△ABC一定是三角形.B=60°,b2=ac,由余弦定理,得b2=a2+c2-2ac cos B,得ac=a2+c2-ac,即(a-c)2=0,所以a=c.又∠B=60°,所以△ABC是等边三角形.6已知△ABC的内角∠A,∠B,∠C的对边分别为a,b,c,且3b2+3c2-3a2=4√2bc,则sin A=.7设△ABC的内角∠A,∠B,∠C的对边分别为a,b,c,且a=1,b=2,cos C=14,则sinB=.,得c2=a2+b2-2ab cos C=1+4-2×1×2×14=4,解得c=2,即b=c,故sin B=sin C=√1-(14)2=√154.8如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=2√23,AB=3√2,AD=3,则BD的长为.AD⊥AC,∴∠DAC=π2.∵sin ∠BAC=2√23,∴sin (∠aaa +π2)=2√23,∴cos ∠BAD=2√23.由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD=(3√2)2+32-2×3√2×3×2√23=3.∴BD=√3. √3 9在△ABC 中,已知∠B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.ADC 中,AD=10,AC=14,DC=6,由余弦定理,得cos ∠ADC=aa 2+aa 2-aa 22aa ·aa=100+36-1962×10×6=-12,∴∠ADC=120°,∴∠ADB=60°.在△ABD 中,AD=10,∠B=45°,∠ADB=60°, 由正弦定理,得aa sin∠aaa=aasin a, ∴AB=aa ·sin∠aaasin a=10sin60°sin45°=10×√32√22=5√6.10在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足c=2b cos A. (1)求证:∠A=∠B ;(2)若△ABC 的面积S=152,cos C=45,求c 的值.c=2b cos A ,由正弦定理,得sin C=2sin B ·cos A ,所以sin(A+B )=2sin B ·cos A ,所以sin(A-B )=0.在△ABC 中,因为0<∠A<π,0<∠B<π, 所以-π<∠A-∠B<π,所以∠A=∠B.(1)知a=b.因为cos C=45,又0<∠C<π,所以sin C=35.又因为△ABC 的面积S=152, 所以S=12ab sin C=152,可得a=b=5. 由余弦定理,得c 2=a 2+b 2-2ab cos C=10. 所以c=√10. ★11设△ABC 是锐角三角形,a ,b ,c 分别是内角∠A ,∠B ,∠C 所对的边,并且sin 2A=sin (π3+a )sin (π3-a )+sin 2B.(1)求∠A 的值;(2)若aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12,a=2√7,求b ,c (其中b<c ).因为sin 2A=(√32cos a +12sin a )·(√32cos a -12sin a )+sin 2B=34cos 2B-14sin 2B+sin 2B=34,所以sin A=√32.又∠A 为锐角, 所以∠A=π3.(2)由aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12,可得bc cos A=12.① 由(1)知∠A=π3, 所以bc=24.②由余弦定理知a 2=c 2+b 2-2bc cos A , 将a=2√7及①代入上式,得c 2+b 2=52,③ 由③+②×2,得(b+c )2=100,所以b+c=10. 因此b ,c 是一元二次方程t 2-10t+24=0的两个根. 解此方程并由c>b 知c=6,b=4.。
高中数学必修5复习题及答案(A组)免费范文

篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。
高中数学《第一章解三角形1.2应用举例阅读与思考海伦和秦九韶》268PPT课件 一等奖名师

4
2
则用“三斜求 积”公式求得△ABC的面积为 _____.
课堂练习
练习1.在ABC中,AB 3, BC 13 AC 4,求ABC的面积
2. 在△ABC中,b 2, B ,C ,求ABC的面积.
64
c2 sin Asin B b2 sin Asin C a2 sin B sin C
I
正负开方术
数
书
九
II
章
三斜求积术
III
大衍总数术
I 德国数学史家康 托尔赞扬秦九韶 是“最幸运的天 才”
此前法国大数学家拉 格朗日也是这样称赞 牛顿的
有着“科学史之父”美 誉的美国科学史家萨顿 甚至认为,秦九韶是“ 他那个民族,他那个时 代,并且确实也是所有 时代最伟大的数学家之 一”
2005年,牛津大 学出版了《数学史 —从美索不达米亚 到现代》,该书重 点提及12位数学 家,提及了秦九韶 是唯一的中国人
(a
b
c)(a
b
c)(b 4c 2
a
c)(b
a
c)
h (a b c)(a b c)(b a c)(b a c) 4c 2
ha
t DB
h (a b c)(a b c)(b a c)(b a c) 2c
[求出面积S ] (a b c)(a b c)(b a c)(b aC c)
2010年,BBC 广播公司制作4 集纪录片《数学 的故事》,第2 节17分钟讲述中 国,秦九韶是唯 一提及的中国人
古代其他 数学成就
利用祖暅原理求球体积
牟合方盖
古代其他 数学成就
牟合方盖
割圆术
问题提出 能否由秦九韶的公式推导出海伦公式?
公式转化
高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_30

第一课时 1.2 应用举例(一)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.教学重点:熟练运用正弦定理、余弦定理解答有关三角形的测量实际问题.教学难点:根据题意建立解三角形的数学模型.教学过程:一、复习准备:1.在△ABC 中,∠C =60°,a +b =+1),c =,则∠A 为 .2.在△ABC 中,sin A =sin sin cos cos B C B C++,判断三角形的形状. 解法:利用正弦定理、余弦定理化为边的关系,再进行化简二、讲授新课:1. 教学距离测量问题:① 出示例1:如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC =51︒,∠ACB =75︒. 求A 、B 两点的距离(精确到0.1m ).分析:实际问题中已知的边与角? 选用什么定理比较合适?→ 师生共同完成解答. →讨论:如何测量从一个可到达的点到一个不可到达的点之间的距离? ③ 出示例2:如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法.分析得出方法:测量者可以在河岸边选定两点C 、D ,测得CD =a ,并且在C 、D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ.讨论:依次抓住哪几个三角形进行计算?→ 写出各步计算的符号所表示的结论. 具体如下:在∆ADC 和∆BDC 中,应用正弦定理得AC =sin()sin[180()]a γδβγδ+︒-++ =sin()sin()a γδβγδ+++, BC =sin sin[180()]a γαβγ︒-++=sin sin()a γαβγ++. 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB =④ 练习:若在河岸选取相距40米的C 、D 两点,测得∠BCA =60︒,∠ACD =30︒,∠CDB =45︒,∠BDA =60︒. (答案:AB .2. 小结:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.三、巩固练习:1. 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°. A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离. ()2. 两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30︒,灯塔B在观察站C 南偏东60︒,则A 、B a km )3. 作业:教材P14 练习1、2题.第二课时 1.2 应用举例(二)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学过程:一、复习准备:1. 讨论:测量建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?2. 讨论:怎样测量底部不可到达的建筑物高度呢?二、讲授新课:1. 教学高度的测量:① 出示例1:AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:测量方法→ 计算方法师生一起用符号表示计算过程与结论.AC =sin sin()a βαβ-,AB = AE +h =AC sin α+h =sin sin sin()a αβαβ-+h . ② 练习:如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5440︒',在塔底C 处测得A 处的俯角β=501︒'. 已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1 m )③ 出示例2:如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD .分析:已知条件和问题分别在哪几个三角形中? 分别选用什么定理来依次解各三角形? → 师生共同解答.解答:在∆ABC 中, ∠A =15︒,∠C = 25︒-15︒=10︒,根据正弦定理,sin BC A = sin AB C, BC =sin sin AB A C =5sin15sin10︒︒≈7.4524(km ),CD =BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m ). 2. 练习:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.解法:画图分析,标出各三角形的有关数据,再用定理求解. 关键:角度的概念3. 小结:审题;基本概念(方位角、俯角与仰角);选择适合定理解三角形;三种高度测量模型(结合图示分析).三、巩固练习:1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ? 答案:(m ) 2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高. (答案:230米)3. 作业:P17 练习1、3题.第三课时 1.2 应用举例(三)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.教学重点:熟练运用定理.教学难点:掌握解题分析方法.教学过程:一、复习准备:1. 讨论:如何测量一个可到达的点到一个不可到达的点之间的距离?又如何测量两个不可到达点的距离? 如何测量底部不可到达的建筑物高度?与前者有何相通之处?2. 讨论:在实际的航海生活中,如何确定航速和航向?通法:转化已知三角形的一些边和角求其余边的问题二、讲授新课:1. 教学角度的测量问题:① 出示例1:甲、乙两船同时从B 点出发,甲船以每小时10(3+1)km 的速度向正东航行,乙船以每小时20km 的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.分析:根据题意,如何画图? →解哪个三角形?用什么定理?如何列式?→ 学生讲述解答过程 (答案:630) → 小结:解决实际问题,首先读懂题意,画出图形→再分析解哪个三角形,如何解?② 练习:已知A 、B 两点的距离为100海里,B 在A 的北偏东30°,甲船自A 以50海里/小时的速度向B 航行,同时乙船自B 以30海里/小时的速度沿方位角150°方向航行,问航行几小时,两船之间的距离最小?画出图形,并标记已知和要求的 →解哪个三角形?用什么定理解?如何列式? ③ 出示例2:某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?分析:如何画出方位图? → 寻找三角形中的已知条件和问题? →如何解三角形.→ 师生共同解答. (答案:北偏东8331'︒方向;1.4小时)④ 练习:某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上渔群?2. 小结:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之. (2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.三、巩固练习:1. 我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2. 某时刻A 点西400千米的B 处是台风中心,台风以每小时40千米的速度向东北方向直线前进,以台风中心为圆心,300千米为半径的圆称为“台风圈”,从此时刻算起,经过多长时间A 进入台风圈?A 处在台风圈中的时间有多长?3. 作业:教材P22 习题1.2 A 组 2、3题.第四课时 1.2 应用举例(四)教学要求:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用,能证明三角形中的简单的恒等式.教学重点:三角形面积公式的利用及三角形中简单恒等式的证明. 教学难点:利用正弦定理、余弦定理来求证简单的证明题.教学过程:一、复习准备:1. 提问:接触过哪些三角形的面积公式?2. 讨论:已知两边及夹角如何求三角形面积?二、讲授新课:1. 教学面积公式:①讨论:∆ABC中,边BC、CA、AB上的高分别记为ha 、hb、h c,那么它们如何用已知边和角表示?→如何计算三角形面积?②结论:三角形面积公式,S=12absin C,S=1bcsin A,S=12acsinB③练习:已知在∆ABC中,∠B=30︒,b=6,c求a及∆ABC的面积S.(解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数)④出示例1:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)?分析:由已知条件可得到什么结论?根据三角形面积公式如何求一个角的正弦?→师生共同解答. →小结:余弦定理,诱导公式,面积公式.→讨论:由三边如何直接求面积?(海仑公式)2. 教学恒等式证明:①讨论:射影定理:a = b cos C + c cos B;b = a cos C + c cos A;c = a cos B + b cos A.分析:如何证明第一个式子?证一:右边=22222222222a b c a c b ab c aab ac a+-+-+=== 左边证二:右边= 2R sin B cos C + 2R sin C cos B=2R sin(B+C)=2R sin A= a = 左边→学生试证后面两个.②出示例2:在∆ABC中,求证:(1)222222sin sin;sina b A Bc C++=(2)2a+2b+2c=2(bc cos A+ca cos B+abcosC)分析:观察式子特点,讨论选用什么定理?3. 小结:利用正弦定理或余弦定理,“化边为角”或“化角为边”.三、巩固练习:1. 在△ABC中,若22tantanA aB b=,判断△ABC的形状. (两种方法)2. 某人在M汽车站的北偏西20︒的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶. 公路的走向是M站的北偏东40︒. 开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米. 问汽车还需行驶多远,才能到达M汽车站?(15千米)3. 作业:教材P24 14、15题.。
数学:1.1.2《余弦定理》课件(新人教b版必修5)

1 2
AB
1
3 2
3 AB 4. C
AC 2 AB 2 BC 2 2 AB BC COSB
16 1 2 41 1 13 AC 13.
A
2
Ac 2 BC 2 AB 2 13 1 16
13
cosC
B
2 AC BC
2 13 1 13
sinC
1
13 13
2
2 26 13
1.1.2 余弦定理 课件
2024/11/11
1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,
即a =
sin A
b sin B
=
c =2R(R为△ABC外接圆半径)
sin C
2.正弦定理的应用: 从理论上正弦定理可解决两类问题: 1.两角和任意一边,求其它两边和一角;
2.两边和其中一边对角,求另一边的对角,进而可求其它的边和 角。
c2 a2 b2 2ab cosC
2024/11/11
1.余弦定理 :三角形任何一边的平方等于其他两边平方的和减去 这两边与它们夹角的余弦的积的两倍。
b2 c2 a2
即 a2 b2 c2 2bc cos A cos A 2bc
b2 c2 a2 2ac cosB cos B c2 a2 b2
2ab
2024/11/11
2.在△ABC中,若a2>b2+c2,则△ABC为 钝角三角形;若a2=b2+c2,
则△ABC为
直角三;角若形a2<b2+c2且b2<a2+c2且c2<a2+b2,
则△ABC为
锐角。三角形
3.在△ABC中,sinA=2cosBsinC,则三角形为 等腰三角形 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时解三角形应用举例—距离问题
一、教材分析
本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析
距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标
(一)知识与技能
能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法
通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观
提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点
重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段
计算机,PPT,黑板板书。
六、教学过程(设计)
情景展示,引入问题
情景一:比萨斜塔(展示图片)
师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?
情景二:河流、梵净山(展示图片)
师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?
引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)
1 经纬仪:测量度数
2卷尺:测量距离
长.
[分析]
由余弦定理得cos∠
=100+36-196
2×10×6
=-
∴∠ADC=120°,∠
在△ABD中,由正弦定理得
sin∠ADB
、如图,要测底部不能到达的烟囱的高AB,从
[分析]
如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADB
BCD中用余弦定理求得BC.
如下图,为了测量河宽,在岸的一边选定两点A
CAB=45°,∠CBA=75°,
________米.
[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得
AC=AB·sin∠ABC
sin∠ACB
=
120×sin75°
sin60°
=20(32+
,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),
∴河的宽度为20(3+3)米.
五个量中,a,
两个小岛相距10 n mile,从
岛望C岛和A岛成
岛之间的距离为________n
=45°,由正弦定理
.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )
[解析] 要测
γ.
2.某观察站C
和500米,测得灯塔
在观察站C正西方向,
A.500米 B
C.700米 D
[解析]如图,由题意知,∠3002+5002+2×300
七、板书设计
八、教学反思
1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.
2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。