动态规划问题常见解法

合集下载

动态规划求最短路径的两种方法

动态规划求最短路径的两种方法

动态规划1.最短路线问题解(1):将上图该画成下图:记a (1,2)=4,a(1,3)=5,依次类推,表示每个点和值的关系。

逆序递推方程:⎪⎩⎪⎨⎧==+++=0)6(61,2,3,4,5)}1(1),({min )(s f k k s k f k u k s k d k uk s k fAB 1B 2C 1 C 2C 3 C 4D 1D 2 D 3E 1 E 2F4523 6 8 7 75845348435 6 2 314 31234 5 6 789 101112134523 6 8 7 7584534 8435 6 2 314 3如图各状态:逆序递推,找出上一个状态到下一阶段的最小路径值。

例如,当K=4时,状态 它们到F 点需经过中途 点E ,需一一分析从E 到 F 的最短路:先说从D1到F 的最短路 有两种选择:经过 E1, E2, 比较最短。

这说明由 D1 到F 的最短距离为7,其路径为AB 1B 2C 1 C 2C 3 C 4D 1 D 2 D 3E 1 E 2F4523 6 87 75845348435 62 31 4 3第1阶段 第2阶段 第3阶段 第4阶段 第5阶段状态 1状态 2状态3状态 4状态 5状态 6)}(),(),(),(m in{)(252141511414E f E D d E f E D d D f ++=.7}35,43min{=++=.11F E D →→},,{3214D D D S =a=[0,4,5,inf,inf,inf,inf,inf,inf,inf,inf,inf,inf 4,0,inf,2,3,6,inf,inf,inf,inf,inf,inf,inf 5,inf,0,inf,8,7,7,inf,inf,inf,inf,inf,inf inf,2,inf,0,inf,inf,inf,5,8,inf,inf,inf,inf inf,3,8,inf,0,inf,inf,4,5,inf,inf,inf,inf inf,6,7,inf,inf,0,inf,inf,3,4,inf,inf,inf inf,inf,7,inf,inf,inf,0,inf,8,4,inf,inf,inf inf,inf,5,4,inf,inf,inf,0,inf,inf,3,5,inf inf,inf,inf,8,5,3,8,inf,0,inf,6,2,inf inf,inf,inf,inf,inf,4,4,inf,inf,0,1,3,inf inf,inf,inf,inf,inf,inf,inf,3,6,1,0,inf,4 inf,inf,inf,inf,inf,inf,inf,5,2,3,inf,0,3 inf,inf,inf,inf,inf,inf,inf,inf,inf,inf,4,3,0]; s8=min(a(8,11)+a(11,13),a(8,12)+a(12,13)); s9=min(a(9,11)+a(11,13),a(9,12)+a(12,13)); s10=min(a(10,11)+a(11,13),a(10,12)+a(12,13)); s4=min(a(4,8)+s8,a(4,9)+s9); s5=min(a(5,8)+s8,a(5,9)+s9); s6=min(a(6,9)+s9,a(6,10)+s10); s7=min(a(7,9)+s9,a(7,10)+s10); s2=[a(2,4)+s4,a(2,5)+s5,a(2,6)+s6]; s2=min(s2);s3=[a(3,5)+s5,a(3,6)+s6,a(3,7)+s7]; s3=min(s3);s1=min(a(1,2)+s2,a(1,3)+s3)运行结果为:s8 = 7 s9 = 5 s10 = 5 s4 = 12 s5 = 10 s6 = 8 s7 = 9 s2 =13s3 = 15 s1 = 17结果分析:s 表示每个点到终点的最短距离,那么最短路程为17。

动态规划-例题众多-详细讲解

动态规划-例题众多-详细讲解

步骤2:状态转移方程:
步骤3:以自底向上的方法来计算最优解
12
程序的实现
BuyTicks(T, R)
1 n ← length[T]
2 f[0] ← 0
3 f[1] ← T[1]
4 for i ← 2 to n do
5
f[i] ← f[i-2]+R[i-1]
6
if f[i] > f[i-1]+T[i] then
n 0 1 2 3 4 5 6 7 8 9 10 F(n) 1 1 2 3 5 8 13 21 34 55 89
2
递归 vs 动态规划
递归版本:
F(n)
1 if n=0 or n=1 then
2
return 1
3 else
4
return F(n-1) + F(n-2)
太慢!
动态规划:
F(n)
1 A[0] = A[1] ← 1
这里是某支股票的价格清单: 日期 1 2 3 4 5 6 7 8 9 10 11 12 价格 68 69 54 64 68 64 70 67 78 62 98 87 最优秀的投资者可以购买最多4次股票,可行方案中的一种是: 日期 2 5 6 10 价格 69 68 64 62 输入 第1行: N (1 <= N <= 5000),股票发行天数 第2行: N个数,是每天的股票价格。 输出 输出文件仅一行包含两个数:最大购买次数和拥有最大购买次数的方案数(<=231) 当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这2种方 案被认为是相同的。
你的任务是,已知所有N位同学的身高,计算最少需要 几位同学出列,可以使得剩下的同学排成合唱队形。

公共解的三种解法

公共解的三种解法

公共解的三种解法
#### 1. 动态规划
使用动态规划的方法,可以把求解最大公共子序列问题转换为求解最长公共子序列问题。

动态规划的思路是:令dp[i][j]表示字符串A[0..i]和字符串B[0..j]的最长公共子序列的长度,则有状态转移方程:
```
dp[i][j] =
0 (i == 0 || j == 0)
dp[i-1][j-1] + 1 (A[i] == B[j])
max(dp[i-1][j], dp[i][j-1]) (A[i] != B[j])
```
最终结果为dp[n][m],其中n为字符串A的长度,m为字符串B的长度。

#### 2. 递归
递归的思路是:令lcs(i, j)表示字符串A[0..i]和字符串B[0..j]的最长公共子序列的长度,则
有状态转移方程:
```
lcs(i, j) =
0 (i == 0 || j == 0)
lcs(i-1, j-1) + 1 (A[i] == B[j])
max(lcs(i-1, j), lcs(i, j-1)) (A[i] != B[j])
```
最终结果为lcs(n, m),其中n为字符串A的长度,m为字符串B的长度。

#### 3. 滑动窗口
滑动窗口的思路是:定义两个指针i和j,分别指向字符串A和字符串B的开头,比较A[i]
和B[j]的值,如果相等,则将i和j同时向后移动,否则只有一个指针向后移动,直到两个
指针都到达字符串末尾。

最终结果为i和j指针移动的次数,即为最长公共子序列的长度。

动态规划经典——最长公共子序列问题(LCS)和最长公共子串问题

动态规划经典——最长公共子序列问题(LCS)和最长公共子串问题

动态规划经典——最长公共⼦序列问题(LCS)和最长公共⼦串问题⼀.最长公共⼦序列问题(LCS问题)给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共⼦序列,并返回其长度。

例如: A = "Hel lo W o rld" B = "loo p"则A与B的最长公共⼦序列为 "loo",返回的长度为3。

此处只给出动态规划的解法:定义⼦问题dp[i][j]为字符串A的第⼀个字符到第 i 个字符串和字符串B 的第⼀个字符到第 j 个字符的最长公共⼦序列,如A为“app”,B为“apple”,dp[2][3]表⽰ “ap” 和 “app” 的最长公共字串。

注意到代码中 dp 的⼤⼩为 (n + 1) x (m + 1) ,这多出来的⼀⾏和⼀列是第 0 ⾏和第 0 列,初始化为 0,表⽰空字符串和另⼀字符串的⼦串的最长公共⼦序列,例如dp[0][3]表⽰ "" 和“app” 的最长公共⼦串。

当我们要求dp[i][j],我们要先判断A的第i个元素B的第j个元素是否相同即判断A[i - 1]和 B[j -1]是否相同,如果相同它就是dp[i-1][j-1]+ 1,相当于在两个字符串都去掉⼀个字符时的最长公共⼦序列再加 1;否则最长公共⼦序列取dp[i][j - 1] 和dp[i - 1][j]中⼤者。

所以整个问题的初始状态为:dp[i][0]=0,dp[0][j]=0相应的状态转移⽅程为:dp[i][j]=max{dp[i−1][j],dp[i][j−1]},A[i−1]!=B[j−1] dp[i−1][j−1]+1,A[i−1]==B[j−1]代码的实现如下:class LCS{public:int findLCS(string A, int n, string B, int m){if(n == 0 || m == 0)//特殊输⼊return 0;int dp[n + 1][m + 1];//定义状态数组for(int i = 0 ; i <= n; i++)//初始状态dp[i][0] = 0;for(int i = 0; i <= m; i++)dp[0][i] = 0;for(int i = 1; i <= n; i++)for(int j = 1; j<= m; j++){if(A[i - 1] == B[j - 1])//判断A的第i个字符和B的第j个字符是否相同dp[i][j] = dp[i -1][j - 1] + 1;elsedp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}return dp[n][m];//最终的返回结果就是dp[n][m]}};该算法的时间复杂度为O(n*m),空间复杂度为O(n*m)。

动态规划习题详解

动态规划习题详解

动态规划动态规划是运筹学的一个分支,它是解决多阶段决策过程最优化问题的一种方法。

该方法是由美国数学家贝尔曼(R.Bellman)等人在本世纪50年代初提出的。

他们针对多阶段决策问题的特点,提出了解决这类问题的“最优化原理”,并成功地解决了生产管理、工程技术等方面的许多实际问题,从而建立了运筹学的一个新分支——动态规划。

他的名著《动态规划》于1957年出版,该书是动态规划的第一本著作。

动态规划是现代企业管理中的一种重要决策方法,在工程技术、经济管理、工农业生产及军事及其它部们都有广泛的应用,并且获得了显著的效果。

动态规划可用于解决最优路径问题、资源分配问题、生产计划与库存问题、投资分配问题、装载问题、设备更新与维修问题、排序问题及生产过程的最优控制等。

由于它所具有独特的解题思路,在处理某些优化问题时,常常比线性规划或非线性规划方法更有效。

第一节动态规划的基本方法多阶段决策的实际问题很多,下面通过具体例子,说明什么是动态规划模型及其求解方法。

例1:最短路线问题某工厂需要把一批货物从城市A运到城市E,中间可经过B1 、B2、B3、C1、C2、C3、D1、D2等城市,各城市之间的交通线和距离如下图所示,问应该选择一条什么路线,使得从A到E的距离最短?下面引进几个动态规划的基本概念和相关符号。

(1)阶段(Stage)把所给问题的过程,按时间和空间特征划分成若干个相互联系的阶段,以便按次序去求每个阶段的解,阶段总数一般用字母n表示,用字母k表示阶段变量。

如例l中 (最短路线问题)可看作是n=4阶段的动态规划问题,k=2表示处于第二阶段。

(2)状态(State)状态表示每个阶段开始时系统所处的自然状况或客观条件,它描述了研究问题过程状况。

描述各阶段状态的变量称为状态变量,常用字母sk表示第k阶段的状态变量,状态变量的取值范围称为状态集,用Sk表示。

如例l中,第一阶段的状态为A(即出发位置)。

第二阶段有三个状态:B1 、B2、B3,状态变量s2=B2表示第2阶段系统所处的位置是B2。

动态规划算法的常见实例

动态规划算法的常见实例

动态规划算法的常见实例动态规划算法是一种将复杂问题分解为简单子问题来解决的算法,它可被应用于多个领域中,如经济学、生物学、计算机科学等。

在本文中,我们将详细讨论动态规划算法的常见实例。

一、最长公共子序列问题最长公共子序列(LCS)问题是一个经典的计算机科学问题,它要求在两个字符串中找到最长的相同连续子序列。

例如,对于字符串“ABCD”和“ACDF”,最长公共子序列为“ACD”。

使用动态规划方法来解决LCS问题。

首先定义一个m行n列的二维矩阵,其中m和n分别表示两个字符串的长度。

然后,使用以下递推关系:1. 如果一个字符串的长度为0,LCS为0。

2. 如果两个字符不相同,则LCS为它们的前一个字符集合和它们的后一个字符集合的最大值。

3. 如果两个字符相同,则LCS为它们的前一个字符集合和它们的后一个字符集合所组成的子序列中的最大值加1。

最后,矩阵右下角的值就是LCS的长度。

二、背包问题背包问题(Knapsack problem)是一个经典的组合优化问题,被广泛应用于计算机科学和其他领域。

在一个决策者必须决定是否将某些物品放入背包中的场景中,背包问题就发挥了作用。

具体来说,我们要解决的问题是:对于一个固定容量的背包,有一些物品,它们的重量和价值都不同,如何在不超过背包容量的前提下,使所装载物品的总价值最大化。

一种解决方案是使用动态规划方法。

定义一个二维数组,其行表示物品,列表示背包大小。

然后,使用以下递推关系:1. 如果所考虑的物品重量大于背包容量,则不选此物品。

2. 否则,在选取该物品和不选该物品两种情况中选择最优解作为最终结果。

最后,矩阵中右下角的值就是最大的总价值。

三、矩阵链乘法矩阵链乘法是一种计算矩阵乘积的优化算法。

它使用动态规划算法来确定矩阵乘积的最小值。

对于一个长度为n的矩阵链,我们可以定义一个n×n 的矩阵M,其中第i行第j列的元素Mi,j表示第i个矩阵与第j个矩阵相乘的最小次数。

(完整版)动态规划问题常见解法

(完整版)动态规划问题常见解法

(完整版)动态规划问题常见解法动态规划问题常见解法一、背包问题1. 0/1背包问题0/1背包问题是动态规划中的经典问题,解决的是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化。

常见的解法有两种:记忆化搜索和动态规划。

记忆化搜索是一种自顶向下的解法,通过保存子问题的解来避免重复计算,提高效率。

动态规划是一种自底向上的解法,通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。

2. 完全背包问题完全背包问题是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化,且每种物品可以选择任意个。

常见的解法有两种:记忆化搜索和动态规划。

记忆化搜索和动态规划的思路和0/1背包问题相似,只是在状态转移方程上有所不同。

二、最长公共子序列问题最长公共子序列问题是指给定两个序列,求它们之间最长的公共子序列的长度。

常见的解法有两种:递归和动态规划。

递归的思路是通过分别考虑两个序列末尾元素是否相等来进一步缩小问题规模,直至问题规模减小到边界情况。

动态规划的思路是通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。

三、最短路径问题最短路径问题是指在加权有向图或无向图中,求解从一个顶点到另一个顶点的最短路径的问题。

常见的解法有两种:Dijkstra算法和Bellman-Ford算法。

Dijkstra算法是通过维护一个距离表,不断选择距离最短的顶点来更新距离表,直至找到目标顶点。

Bellman-Ford算法是通过进行多次松弛操作,逐步缩小问题规模,直至找到目标顶点或发现负权环。

总结:动态规划是一种解决最优化问题的常见方法,它通过分组子问题、定义状态、确定状态转移方程和填表格的方式,来得到整个问题的最优解。

在解决动态规划问题时,可以采用记忆化搜索或者动态规划的策略,具体选择哪种方法可以根据问题的特点和优化的需要来决定。

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
基本模型
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划问题常见解法
动态规划是一种高效解决优化问题的方法。

它通常用于涉及最
优化问题和最短路径的计算中。

下面是一些常见的动态规划问题解法:
1. 背包问题
背包问题是动态规划中的经典问题之一。

其目标是在给定的背
包容量下,选择一些物品放入背包中,使得物品总价值最大。

解决
这个问题的常见方法是使用动态规划的思想,定义一个二维数组来
记录每个物品放入背包时的最大价值,然后逐步计算出最终的结果。

2. 最长公共子序列问题
最长公共子序列问题是寻找两个字符串中最长的公共子序列的
问题。

解决这个问题的常见方法是使用动态规划的思想,定义一个
二维数组来记录两个字符串中每个位置的最长公共子序列的长度。

然后通过递推关系来计算出最终的结果。

3. 矩阵链乘法问题
矩阵链乘法问题是计算一系列矩阵相乘的最佳顺序的问题。


决这个问题的常见方法是使用动态规划的思想,定义一个二维数组
来记录每个矩阵相乘时的最小乘法次数,然后逐步计算出最终的结果。

4. 最长递增子序列问题
最长递增子序列问题是寻找一个序列中最长的递增子序列的问题。

解决这个问题的常见方法是使用动态规划的思想,定义一个一
维数组来记录每个位置处的最长递增子序列的长度,然后通过递推
关系来计算出最终的结果。

以上是一些常见的动态规划问题解法。

通过灵活运用这些方法,我们可以更高效地解决优化问题和最短路径计算等相关任务。

相关文档
最新文档