求最长子序列的长度
LCS(最长公共子序列)、LIS(最长上升子序列)、LCIS(最长公共上升子序列)

LCS(Longest Common Subsequence)
LCS(Longest Common Subsequence)
LCS(Longest Common Subsequence)
LCIS(Longest Common Increasing Subsequence) O(nm) 123645 123457 定义状态F[ i ][ j ]表示以a串的前i个字符b串的 前j个字符且以b[ j ]为结尾构成的LCIS的长度 当a[ i ] != b[ j ] F[ i ][ j ] = F[ i - 1][ j ] 当a[ i ] == b[ j ] F[ i ][ j ]=max(F[ i-1 ][ k ])+1 1<=k<=j-1&&b[ j ]>b[ k ]
LCIS(Longest Common Increasing Subsequence) O(nm)
LCIS(Longest Common Increasing Subsequence)
LIS(O(nlogn))
递归输出
LCS(Longest Common Subsequence) O(n^2) BDCABA ABCBDAB
DP[ i ][ j ] 代表以A串第i个字符结尾以第j个字符 结尾的最长子串
当a[ i ] = b[ j ]时
DP[ i ][ j ] = DP[i - 1][j - 1] + 1 当a[ i ] != b[ j ]时
LIS(Longest Increasing Subsequence)
16326548965362136546963 DP[ i ] 代表以第 i 个数字结尾的最长子序列的长度 DP[ i ] = Max ( DP[ j ] + 1) { 1 <= j <= i - 1}
leetcode常见dp题状态转移方程

Leetcode常见DP题状态转移方程一、概述动态规划(Dynamic Programming, DP)是算法设计中的一种常用方法,它通常用于优化递归算法,解决重叠子问题。
Leetcode上有许多经典动态规划问题,而理解状态转移方程是解决这些问题的关键。
本文旨在总结Leetcode常见DP题的状态转移方程,帮助读者更好地理解和掌握动态规划算法的应用。
二、背包问题1. 0-1背包问题问题描述:给定一组物品,每种物品都有重量和价值,要求在限定的总重量下,如何使得所装载的物品总价值最高。
状态转移方程:```dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i]), 1 <= i <= n, 1 <= j <= C```其中,dp[i][j]表示前i个物品中最大重量不超过j时的最大价值,weight[i]表示第i个物品的重量,value[i]表示第i个物品的价值,C 表示背包的容量,n为物品的个数。
2. 完全背包问题问题描述:给定一组物品,每种物品都有重量和价值,每种物品不限数量,要求在限定的总重量下,如何使得所装载的物品总价值最高。
状态转移方程:```dp[i][j] = max(dp[i-1][j], dp[i][j-weight[i]] + value[i]), 1 <= i <= n, 1 <= j <= C```其中,dp[i][j]表示前i个物品中最大重量不超过j时的最大价值,weight[i]表示第i个物品的重量,value[i]表示第i个物品的价值,C 表示背包的容量,n为物品的个数。
3. 多重背包问题问题描述:给定一组物品,每种物品都有重量和价值,每种物品有限数量,要求在限定的总重量下,如何使得所装载的物品总价值最高。
状态转移方程:```dp[i][j] = max(dp[i-1][j], dp[i-1][j-k*weight[i]] + k*value[i]), 1 <= i <= n, 1 <= j <= C, 0 <= k <= num[i]```其中,dp[i][j]表示前i个物品中最大重量不超过j时的最大价值,weight[i]表示第i个物品的重量,value[i]表示第i个物品的价值,num[i]表示第i个物品的数量,C表示背包的容量,n为物品的个数。
数学奥林匹克竞赛题目

数学奥林匹克竞赛题目尽管数学奥林匹克竞赛的题目复杂多样,但它们都有一个共同点,那就是挑战参赛者的思维能力和数学解题技巧。
以下是一些数学奥林匹克竞赛题目的示例,展示了数学之美以及对于问题求解的创新思维。
1. 最长公共子序列题目:给定两个字符串s1和s2,找出它们最长的公共子序列的长度。
解析:这是一个经典的动态规划问题。
我们可以使用一个二维数组dp来记录状态,其中dp[i][j]表示s1的前i个字符和s2的前j个字符的最长公共子序列的长度。
通过状态转移方程,我们可以逐步填充整个dp数组,最后的答案即为dp[m][n],其中m和n分别为s1和s2的长度。
2. 素数判定题目:给定一个正整数n,判断它是否为素数。
解析:素数判定是一个经典的数论问题。
可以使用试除法来判断一个数是否为素数,即判断它是否有除了1和它自身以外的因子。
从2开始到根号n,依次判断n是否能整除这些数,如果能整除,则n不是素数,反之,则是素数。
3. 数字组合题目:给定一个正整数n,找出所有由1到n个数字组成的排列。
解析:这是一个典型的回溯算法问题。
我们可以使用递归的方式来生成所有的排列。
每次递归时,从1到n中选择一个数字,并将其加入当前排列中,在继续递归生成剩余的排列。
我们使用一个布尔数组visited来记录某个数字是否已经在当前排列中出现过,以防止重复选择。
4. 数列求和题目:给定一个数列1, 3, 5, 7, 9, ...,求前n个数的和。
解析:这是一个等差数列的求和问题。
可以使用数学公式来解决,即等差数列的和公式:S = (首项 + 末项) * 项数 / 2。
根据题目给出的数列,我们可以得到首项为1,末项为(2n - 1),项数为n,代入公式即可求得和。
5. 二进制矩阵计算题目:给定一个二进制矩阵,求相邻的1所组成的区域的面积。
解析:这是一个图的深度优先搜索问题。
我们可以遍历整个二进制矩阵,对于每个为1的位置,递归地搜索与其相邻的1,并计算区域的面积。
软考中级软件设计师算法题

软考中级软件设计师算法题软考中级软件设计师考试中,算法题是一个重要的考点,也是考生容易失分的地方。
本文将介绍一些常见的软考中级软件设计师算法题,并给出解题思路和算法实现,以帮助考生更好地备考。
一、选择排序算法题目描述:给定一个包含n个元素的数组,对其进行选择排序,找出最小元素的下标,并输出其下标。
解题思路:选择排序的基本思想是在每一趟遍历过程中,找出最小元素,将其放到已排序序列的末尾。
具体步骤如下:1.从数组的第一个元素开始,依次遍历数组;2.记录当前遍历到的最小元素的下标min_index;3.将当前遍历到的元素与min_index对应的元素进行交换;4.将min_index向前移动一位,继续遍历下一个元素;5.重复步骤2-4,直到遍历完整个数组。
算法实现:```c++intmin_index(intarr[],intn){intmin_index=0;for(inti=1;i<n;i++){if(arr[i]<arr[min_index]){min_index=i;}}returnmin_index;```二、最长递增子序列问题题目描述:给定一个长度为n的数组,求其最长递增子序列的长度。
解题思路:可以使用动态规划来解决该问题。
定义一个长度为n+1的数组dp,其中dp[i]表示以arr[i]结尾的最长递增子序列的长度。
初始时,所有元素都为1,除了最后一个元素外。
然后从左到右遍历数组,对于每个元素arr[j],如果它比前一个元素arr[i]大,则将dp[j]更新为max(dp[j],dp[i]+1)。
最终,dp[n]就是最长递增子序列的长度。
算法实现:```c++intlongest_increasing_subsequence(intarr[],intn){intdp[n+1];for(inti=1;i<=n;i++){dp[i]=1;for(intj=0;j<i;j++){if(arr[i]>arr[j]){dp[i]=max(dp[i],dp[j]+1);}}}returndp[n];```三、最长公共子序列问题题目描述:给定两个长度为n和m的序列,求它们的最长公共子序列的长度。
用Python计算最长公共子序列和最长公共子串(转)

⽤Python计算最长公共⼦序列和最长公共⼦串(转)1. 什么是最长公共⼦序列?什么是最长公共⼦串?1.1. 最长公共⼦序列(Longest-Common-Subsequences,LCS)最长公共⼦序列(Longest-Common-Subsequences,LCS)是⼀个在⼀个序列集合中(通常为两个序列)⽤来查找所有序列中最长⼦序列的问题。
这与查找最长公共⼦串的问题不同的地⽅是:⼦序列不需要在原序列中占⽤连续的位置。
最长公共⼦序列问题是⼀个经典的计算机科学问题,也是数据⽐较程序,⽐如Diff⼯具,和⽣物信息学应⽤的基础。
它也被⼴泛地应⽤在版本控制,⽐如Git⽤来调和⽂件之间的改变。
1.2 最长公共⼦串(Longest-Common-Substring,LCS)最长公共⼦串(Longest-Common-Substring,LCS)问题是寻找两个或多个已知字符串最长的⼦串。
此问题与最长公共⼦序列问题的区别在于⼦序列不必是连续的,⽽⼦串却必须是连续的。
2. 如何求解最长公共⼦序列?例如序列str_a=world,str_b=wordl。
序列wo是str_a和str_b的⼀个公共⼦序列,但是不是str_a和str_b的最长公共⼦序列,⼦序列word是str_a和str_b的⼀个LCS,序列worl也是。
暴⼒查找?寻找LCS的⼀种⽅法是枚举X所有的⼦序列,然后注意检查是否是Y的⼦序列,并随时记录发现的最长⼦序列。
假设X有m个元素,则X有2^m个⼦序列,指数级的时间,对长序列不实际。
分析问题,设str_a=<x1,x2,…,xm>和str_b=<y1,y2,…,yn>为两个序列,LCS(str_a,str_b)表⽰str_a和str_b的⼀个最长公共⼦序列,可以看出如果str_a[m] == str_b[n],则LCS (str_a, str_b) = str_a[m] + LCS(str_a[1:m-1],str_b[1:n-1])如果str_a[m] != str_b[n],则LCS(str_a,str_b)= max{LCS(str_a[1:m-1], str_b), LCS (str_a, str_b[n-1])}LCS问题也具有重叠⼦问题性质:为找出LCS(str_a,str_b),可能需要找LCS(str_a[1:m-1], str_b)以及LCS (str_a, str_b[n-1])。
动态规划经典——最长公共子序列问题(LCS)和最长公共子串问题

动态规划经典——最长公共⼦序列问题(LCS)和最长公共⼦串问题⼀.最长公共⼦序列问题(LCS问题)给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共⼦序列,并返回其长度。
例如: A = "Hel lo W o rld" B = "loo p"则A与B的最长公共⼦序列为 "loo",返回的长度为3。
此处只给出动态规划的解法:定义⼦问题dp[i][j]为字符串A的第⼀个字符到第 i 个字符串和字符串B 的第⼀个字符到第 j 个字符的最长公共⼦序列,如A为“app”,B为“apple”,dp[2][3]表⽰ “ap” 和 “app” 的最长公共字串。
注意到代码中 dp 的⼤⼩为 (n + 1) x (m + 1) ,这多出来的⼀⾏和⼀列是第 0 ⾏和第 0 列,初始化为 0,表⽰空字符串和另⼀字符串的⼦串的最长公共⼦序列,例如dp[0][3]表⽰ "" 和“app” 的最长公共⼦串。
当我们要求dp[i][j],我们要先判断A的第i个元素B的第j个元素是否相同即判断A[i - 1]和 B[j -1]是否相同,如果相同它就是dp[i-1][j-1]+ 1,相当于在两个字符串都去掉⼀个字符时的最长公共⼦序列再加 1;否则最长公共⼦序列取dp[i][j - 1] 和dp[i - 1][j]中⼤者。
所以整个问题的初始状态为:dp[i][0]=0,dp[0][j]=0相应的状态转移⽅程为:dp[i][j]=max{dp[i−1][j],dp[i][j−1]},A[i−1]!=B[j−1] dp[i−1][j−1]+1,A[i−1]==B[j−1]代码的实现如下:class LCS{public:int findLCS(string A, int n, string B, int m){if(n == 0 || m == 0)//特殊输⼊return 0;int dp[n + 1][m + 1];//定义状态数组for(int i = 0 ; i <= n; i++)//初始状态dp[i][0] = 0;for(int i = 0; i <= m; i++)dp[0][i] = 0;for(int i = 1; i <= n; i++)for(int j = 1; j<= m; j++){if(A[i - 1] == B[j - 1])//判断A的第i个字符和B的第j个字符是否相同dp[i][j] = dp[i -1][j - 1] + 1;elsedp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}return dp[n][m];//最终的返回结果就是dp[n][m]}};该算法的时间复杂度为O(n*m),空间复杂度为O(n*m)。
最长子序列算法

最长子序列算法最长子序列(Longest Common Subsequence,LCS)算法是一种常见的动态规划算法,用于解决字符串匹配问题。
它的主要目的是找到两个字符串中最长的公共子序列。
在介绍该算法之前,我们需要先了解什么是子序列。
一个字符串的子序列是指从该字符串中删除某些字符而不改变其相对顺序后得到的新字符串。
例如,对于字符串“abcdefg”,“abc”、“ace”、“bdf”都是它的子序列。
那么,最长公共子序列就是指两个字符串中都存在的最长子序列。
例如,对于字符串“abcdefg”和“acdfg”,它们的最长公共子序列为“adf”。
接下来,我们将介绍如何使用动态规划求解最长公共子序列。
1. 状态定义我们可以使用一个二维数组dp[i][j]来表示第一个字符串前i个字符和第二个字符串前j个字符之间的最长公共子序列长度。
其中dp[0][j]和dp[i][0]表示空串与另一个串之间的LCS长度均为0。
2. 状态转移方程当第一个字符串的第i个字符与第二个字符串的第j个字符相同时,则该字符必然属于LCS中,并且LCS长度加一:dp[i][j] = dp[i-1][j-1] + 1。
当第一个字符串的第i个字符与第二个字符串的第j个字符不同时,则该字符不能同时属于LCS中,此时需要考虑两种情况:(1)第一个字符串的前i-1个字符与第二个字符串的前j个字符之间的LCS长度大于等于第一个字符串的前i个字符与第二个字符串的前j-1个字符之间的LCS长度,即dp[i][j] = dp[i-1][j]。
(2)第一个字符串的前i-1个字符与第二个字符串的前j个字符之间的LCS长度小于第一个字符串的前i个字符与第二个字符串的前j-1个字符之间的LCS长度,即dp[i][j] = dp[i][j-1]。
综上所述,状态转移方程可以表示为:dp[i][j] = dp[i-1][j-1] + 1, if str1[i]==str2[j]dp[i][j] = max(dp[i-1][j], dp[i][j-1]), if str1[i]!=str2[j]3. 最终结果最终结果即为dp[m][n],其中m和n分别为两个字符串的长度。
lrcs公式

lrcs公式
LRCs公式是用于计算最长公共子序列(Longest Common Subsequence,LCS)的公式,可以用于衡量两个序列的相似度。
该公式将LCS长度分解为两个部分,即相干部分和非相干部分,相干部分对应于两个序列中的公共子序列,而非相干部分对应于两个序列中的不同部分。
具体来说,LRCs公式的计算公式如下:
LRCs = LCS(X, Y) + β2 PCS(X, Y)
其中,LCS(X, Y)表示X和Y的最长公共子序列长度,β为参数,PCS(X, Y)
表示X和Y的相干部分长度。
当β取值为无穷大时,相当于只考虑LCS(X, Y)。
另外,还有ROUGE-L的公式,用于评估机器翻译模型的性能。
该公式基于LRCs公式进行计算,具体如下:
ROUGE-L = (1 + β2) ROUGE-L P / (β2 P + ROUGE-L P)
其中,ROUGE-L P表示模型生成的摘要与参考摘要之间的最长公共子序列长度,β为参数,P表示参考摘要中单词的个数。
当β取值为无穷大时,相当于只考虑ROUGE-L P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,最长递增子序列问题的描述
设L=<a1,a2,…,a n>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<a K1,a k2,…,a km>,其中k1<k2<…<k m且a K1<a k2<…<a km。
求最大的m值。
二,第一种算法:转化为LCS问题求解
设序列X=<b1,b2,…,b n>是对序列L=<a1,a2,…,a n>按递增排好序的序列。
那么显然X与L的最长公共子序列即为L的最长递增子序列。
这样就把求最长递增子序列的问题转化为求最长公共子序列问题LCS了。
最长公共子序列问题用动态规划的算法可解。
设Li=< a1,a2,…,a i>,Xj=<
b1,b2,…,b j>,它们分别为L和X的子序列。
令C[i,j]为Li与Xj的最长公共子序列的长度。
则有如下的递推方程:
这可以用时间复杂度为O(n2)的算法求解,由于这个算法上课时讲过,所以具体代码在此略去。
求最长递增子序列的算法时间复杂度由排序所用的O(nlogn)的时间加上求LCS的O(n2)的时间,算法的最坏时间复杂度为O(nlogn)+O(n2)=O(n2)。
三,第二种算法:动态规划法
设f(i)表示L中以a i为末元素的最长递增子序列的长度。
则有如下的递推方程:
这个递推方程的意思是,在求以a i为末元素的最长递增子序列时,找到所有序号在L前面且小于a i的元素a j,即j<i且a j<a i。
如果这样的元素存在,那么对所有a j,都有一个以a j为末元素的最长递增子序列的长度f(j),把其中最大的f(j)选出来,那么f(i)就等于最大的f(j)加上1,即以a i为末元素的最长递增子序列,等于以使f(j)最大的那个a j为末元素的递增子序列最末再加上a i;如果这样的元素不存在,那么a i自身构成一个长度为1的以a i为末元素的递增子序列。
这个算法由Java实现的代码如下:
public void lis(float[] L)
{
int n = L.length;
int[] f = new int[n];//用于存放f(i)值;
f[0]=1;//以第a1为末元素的最长递增子序列长度为1;
for(int i = 1;i<n;i++)//循环n-1次
{
f[i]=1;//f[i]的最小值为1;
for(int j=0;j<i;j++)//循环i 次
{
if(L[j]<L[i]&&f[j]>f[i]-1)
f[i]=f[j]+1;//更新f[i]的值。
}
}
System.out.println(f[n-1]);
}
这个算法有两层循环,外层循环次数为n-1次,内层循环次数为i次,算法的时间复杂度
所以T(n)=O(n2)。
这个算法的最坏时间复杂度与第一种算法的阶是相同的。
但这个算法没有排序的时间,所以时间复杂度要优于第一种算法。