卷积积分图解法

合集下载

卷积分

卷积分

-T0
T0 h(-T0/2- τ)
-T0 -2T0 0 2T0 A2
T0
-T0
T0
卷积与相关
(7) t= -T0时,y( -T0)=A T0
2
x(t)
y(t) 2A2T0
-T0
T0 h(-T0- τ)
-T0 -2T0 0 2T0 A2
T0
-T0
T0
卷积与相关
x(t)
(8) t= -3T0/2时,y( -3T0/2)=3A2T0/2
-T0 -2T0 0 2T0 A2
T0
-T0
T0
卷积与相关
x(t)
(5) t= 2T0时,y(2T0)=0
y(t) 2A2T0
-T0
T0 h(T0/2- τ)
-T0 -2T0 0 2T0 A2
T0
-T0
T0
卷积与相关
(6) t= -T0/2时,y( -T0/2)=3A T0/2
2
x(t)
y(t) 2A2T0
x(t)
(1)反折; 反折; 反折 (2)平移; 平移; 平移
0 t (4)积分
h(t)
(3)相乘; 相乘; 相乘 (4)积分。 积分。 积分
t
0
t (1) (1)反折
x(t)
h(-τ)
0 x(t) h(t1 -τ)
0
τ
(2)平移
(3)相乘
h(t1 -τ)

00
0
τ
卷积与相关
4 含有脉冲函数的卷积 • 设 h(t)=[δ(t-T)+ δ(t+T)] • 卷积为
卷积与相关
• 例 三角脉冲频谱计算
x(t) h(0-τ)

卷积积分基础

卷积积分基础

f
(i 2
j
)
(t
)
f (t)
f1(1) (t)
f (1) 2
(t
)
d dt
f1(t)
t
f2 ()d
常数信号(直流信号) f (t) E ( t ) 经微分后为零,需特殊考虑, 不能用微分性质
15
三、与冲激函数或阶跃函数的卷积
f (t) (t) f (t)
f (t) (t) ( ) f (t )d f (t)
1 1
2
1
1 2
(t
)d
3t 3 4 16
7
r(t) e(t) h(t) e( )h(t )d
h(t )
e( )
t
(3) 1 t 3 2
e(t) h(t) 3 t 3 4 16
(4) 3 t 3
e( )
2
h(t )
t
e(t) h(t) 1 1 1 (t )d
t2
4
t 4
1 16
( 1 t 1) 2
r(t) e(t) h(t)
r(t)
43
t
3 16
(1 t 3) 2
t2
t
3
( 3 t 3)
4 2 4 2
0
其它
t
卷积结果所占的时宽等于两个函数各自时宽的总和
10
P842 14(1) f (t) u(t) u(t 1),求s(t) f (t) f (t)
(1) t 0时, s(t) 0
(2)
0 t 1时,
s(t)
t
d t
0
(3)
1 t 2时,
s(t)
1

卷积计算(图解法)

卷积计算(图解法)

(1) n<0
x(m) m 0 4 h(n-m) m n-6 n0
y(n) = x(n) ∗ h(n) = 0
x(m) m
(2)在0≤n≤4区间上
0
4 h(n-m) m
n-6 0 n 4
∴ y(n) = ∑ x(m)h(n − m) = ∑1⋅ a
m=0 n m=0
n
n
n−m
=a
n
m=0
∑a
−m
1− a =a −1 1− a
n
−( n+1)
1− a =1− a
1+n
x(m)
(3)在4<n≤6区间上
m 0 4 h(n-m) m n-6 0
1+n
∴ y(n) = ∑x(m)h(n − m)
m=0
4
= ∑1⋅ a
m=0 n
4
n−m
=a
n
m=0
∑a
n−4
4
−m
4 6 n
1− a a −a =a = −1 1− a 1− a
−(1+4)
x(m) m 0 4 h(n-m) m 0 n-6
7
(4)在6<n≤10区间上
∴ y(n) = =
m=n−6
∑x(m)h(n − m)
=a
n m=n−6 −( 4+1)
n
m=n−6
∑1⋅ a
n
n
n−m
∑a
=
4
−m
6
n
10
=a
a
−( n−6)
−a −1 1− a
a
n−4
−a 1− a
综合以上结果, 可归纳如下: 综合以上结果,y(n)可归纳如下: 可归纳如下

电路原理课件-卷积积分

电路原理课件-卷积积分
3
7) t≥7时,
y(t ) 0
注意:积分上下限应由被 积函数存在的时域范围的 上下限确定。
卷积积分在电路分析中的应用
例1、电路如图所示,uS=15e-0.25t(t)V。采用卷积计算uC。
解:以uC为响应,求单位阶跃响应
uC (0 ) uC (0 ) 0
uCf 40 1 0.5V 40 40
t t
t t
t 0
d dt t t
卷积积分上下限分析
t
0
r t h t f t f t h t
卷积符合交换律
δ t f t δ f t dτ τ τ
k 0
f (t ) f a (t )
f ( k ) ( t k ) ( t ( k 1) )
k 0 n 1

k 0 n 1
k 0
n 1
(t k ) (t (k 1) ) f (k )
例2、电路如图,R=10,L=1H,激励uS的波形如图 所示,求零状态响应i(t)。
解:以电流i 为响应,求单位阶跃响应为:
R t 1 g( t ) (1 e L ) ( t ) R 0.1(1 e 10 t ) ( t )
则单位冲激响应为:
dg( t ) h (t ) e 10 t ( t ) dt
40 40 RC 0.05 1s 40 40
uC ( t ) uCf (1 e ) ( t ) 0.5(1 e t ) ( t )V
t
单位阶跃响应为:
g(t ) 0.5(1 e t ) (t )

2-3-卷积积分

2-3-卷积积分
− 2t
= 6∫ e
0
t
− 2τ
dτ ε (t ) = 3(1 − e
) ε (t )
f1 (t ) ∗ f 3 (t ) = =


−∞
f1 (τ ) f 3 (t − τ )dτ


−∞
3e ε (τ ) ⋅ 2ε (t − τ − 2)dτ
− 2τ
=6

t −2
e
− 2τ
0
dτ = 3(1 − e
问:
y2 (t ) = [ f (t − t1 )ε (t − t1 )]∗ [h(t − t 2 )ε (t − t 2 )]
y1 (t ) = [ f (t − t0 )ε (t − t0 )]∗ [h(t )ε (t )]
2)反因果信号 )
=
t
y (t ) = [ f (t )ε (− t )]∗ [h(t )ε (t )]

(1)翻转 ) (2)平移 ) (3)相乘 ) (4)积分 )
f1 (τ ) → f1 (−τ )或 : f2 (τ ) → f2 (−τ )
f1(−τ ) → f1(t −τ )或f2 (−τ ) → f2 (t −τ )
f1 ( t − τ ) f 2 (τ )或f 2 ( t − τ ) f1 (τ )
(1)

-1 0
1 t o t0 t o t 0-1 t 0 t 0+1 t
图 2.2 – 3 例2.2 - 3图 图
例2.4-3 周期性单位冲激序列
δ T (t ) =
试求
f (t ) = f0 (t ) ∗ δ T (t )
∞ m = −∞
m = −∞

卷积积分基础

卷积积分基础
y(t) y(t) (t) y(t t0 ) y(t) (t t0 ) f1(t) f2 (t) (t t0 )
f1(t) f2 (t t0 ) f1(t t0 ) f2 (t)
20
P842 14(1) f (t) u(t) u(t 1),求s1(t) f (t) f (t)
f
(i 2
j
)
(t
)
f (t)
f1(1) (t)
f (1) 2
(t
)
d dt
f1(t)
t
f2 ()d
常数信号(直流信号) f (t) E ( t ) 经微分后为零,需特殊考虑, 不能用微分性质
15
三、与冲激函数或阶跃函数的卷积
f (t) (t) f (t)
f (t) (t) ( ) f (t )d f (t)
1 t
2
t
h(t ) e( )
t
(1) t 1 2
e(t) h(t) 0
5
r(t) e(t) h(t) e( )h(t )d
h(t ) e( )
(1) t 1 2
h(t )
e(t) h(t) 0
t
(2) 1 t 1
e( )
2
e(t) h(t)
t2
4
t 4
1 16
( 1 t 1) 2
r(t) e(t) h(t)
r(t)
43
t
3 16
(1 t 3) 2
t2
t
3
( 3 t 3)
4 2 4 2
0
其它
t
卷积结果所占的时宽等于两个函数各自时宽的总和
10
P842 14(1) f (t) u(t) u(t 1),求s(t) f (t) f (t)

计算卷积的方法.ppt

计算卷积的方法.ppt
' t
dg ( t ) r ( t ) e ( t ) h ( t ) e ( t ) dt
de (t) *g(t) dt
e ( t ) e ( t ) u ( t )
de ( t ) d ( e ( t ) u ( t ))de ( t ) u ( t ) e ( t ) ( t ) dt dt dt
方法一:

h (t )
t
e( )
0


*
0
h(t ) 非零值下限是- 卷积分下限是零 u( ) 非零值下限是 0
h(t ) 非零值上限是 t 卷积分上限是 t u( ) 非零值上限是
若两个函数的左边界分别为tl1,tl2,右边界分别为 tr1,tr2,积分的 下限为max[tl1,tl2];积分的上限为min[tr1,tr2].


f f ( ) f ( t ) d 1 2 1 2 f
0 t-2 1
t
3 . if 1 t 2
1
b ab 2 ab 2 t a ( t ) d ( t ) 0 t 0 2 4 4
t
a t-2 0 t 1
ab (2 t 1 ) 4
2.各分段内卷积积分限的确定 。
分解成单位阶跃分量之和
f (t1 )
f( t t ) 1 1 f ( 0)
t1
t1
u ( t ) g ( t ) DaHarma ln tegr
*.Duharmal integral
r(t) e(0 )g(t) e ( )g(t )d 0
1
b ab 2 1 f f a ( t ) d ( t ) 1 2 0 02 4

卷积积分的运算

卷积积分的运算
§2.5 卷积积分的运算和图解
y(t) x(t) h(t) x( )h(t )d
1)将x(t)和h(t)中的自变量由t改为,成为函数的自 变量; 2)把其中一个信号翻转、平移;
h( ) 翻转h( ) 平移th(( t)) h(t )
3)将x() 与h(t )相乘;对乘积后的图形积分。
例11:画出下列系统的模拟图
y(t) 5 y(t) 3 y(t) 3x(t) x(t)
例:引入辅助函数q(t)
q(t) 5q(t) 3q(t) x(t) 利用微分特性法 y(t) 3q(t) q(t)
q(t) x(t) 5q(t) 3q(t)
例12:根据系统的模拟图写出其微分方程模型
et
d
r t
d
et
rt
et
rt
et
T rt
rt de(t)
dt
t
r(t) e(t)dt
rt et rt et T
例10:试用系统模拟图来表示下列方程所描述的LTI系统
a2 y(t) a1 y(t) a0 y(t) b2 x(t) b1 x(t) b0 x(t) a2 y(t) b2 x(t) b1 x(t) b0 x(t) a1 y(t) a0 y(t)
y(t )
1 a2
[b2 x(t )
b1 x(t )
b0 x(t )
a1
y(t)
a0
y(t )]
y(t )
1 a2
[b2 x(t )
b1 x(1) (t )
b0 x(2) (t ) a1 y(1) (t ) a0 y(2) (t )]
根据该式,可直接画出系统模拟图
y(t)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档