关于利用微分与积分性质计算卷积的条件
函数的卷积及其公式的应用

函数卷积及其应用摘要 卷积是一个很重要的数学概念.它描述了对两个〔或多个〕函数之积进展变换的运算法则,是频率分析的最有效的工具之一。
本文通过对卷积的概念,性质,具体应用以及对卷积公式,卷积定理等方面进展较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。
关键词 卷积 卷积公式 性质 应用1引言卷积是在信号与线性系统的根底上或背景中出现的。
狄拉克为了解决一些瞬间作用的物理现象而提出了"冲击函数〞这一符号,而卷积的诞生正是为了研究"冲击函数〞效劳的;卷积是一种数学积分变换的方法,也是分析数学中一种重要的运算。
卷积在物理学,统计学,地震预测,油田勘察等许多方面有十分重要的应用。
本文通过对卷积的概念,性质,应用等方面进展较为全面和系统的论述和总结,使得对卷积的内涵有更全面更深刻的理解和认识。
2卷积的定义和性质 2.1卷积的定义〔根本内涵〕设:)(),(x g x f 是1R 上的两个可积函数,作积分:()()τττd x g f -⎰+∞∞- 随着*的不同取值,这个积分就定义了一个新函数)(x h ,称为函数()x f 与)(x g 的卷积,记为)(x h =)()(x g x f *(或者()()x g f *) .注(1)如果卷积的变量是序列()()n h n x 和,则卷积的结果:∑+∞-∞=*=-=i n h n x i n h i x n y )()()()()(,其中星号*表示卷积。
当时序n=0时,序列h(-i)是)(i h 的时序i 取反的结果;时序取反使得)(i h 以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积.另外,n 是使)(i h -位移的量,不同的n 对应不同的卷积结果. 〔2〕如果卷积的变量是函数)(t x 和)(t h ,则卷积的计算变为:)()()()()(t h t x dp p t h p x t y *=-=⎰+∞∞-,其中p 是积分变量,积分也是求和,t 是使函数)(p h -位移的量,星号*表示卷积.〔3〕由卷积得到的函数g f *一般要比g f 和都光滑.特别当g 为具有紧致集的光滑函数,f 为局部可积时,它们的卷积g f *也是光滑函数. 2.2卷积的性质性质〔交换律〕设)(x f ,)(x g 是1R 上的两个可积函数,则)()()()(x f x g x g x f *=*. 证=*)()(x g x f ()()τττd x g f -⎰+∞∞-令τ-=x u ,则u x -=τ,τd du -= 所以=*)()(x g x f ()()τττd x g f -⎰+∞∞-=()()du u g u x f ⎰-∞∞+--=()()du u x f u g ⎰+∞∞--=)()(x f x g *性质〔分配律〕设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]x h x g x f +*)()()()()(x h x f x g x f *+*=.证 根据卷积定义()()[]x h x g x f +*)(=()()()[]ττττd x h x g f -+-⎰+∞∞-=()()τττd x g f -⎰+∞∞-+()()τττd x h f -⎰+∞∞-性质〔结合律〕设)(),(x g x f )(x h 是1R 上的三个可积函数,则()()[]()x h x g x f **()()()[]x h x g x f **=.证 令()()=*=x g x f x m )(()()τττd x g f -⎰+∞∞-,()()()()()dv x h v x g x h x g x s ⎰+∞∞--=*=,则()()[]()x h x g x f **=()()x h x m *=()()du u x h u m -⎰+∞∞-=()()()du u t h d u g f -⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞-+∞∞-τττ=()()τττd du u t h u g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)(令v x u u x v -=-=则,,上式=()()τττd dv v h v x g f ⎥⎦⎤⎢⎣⎡--⎰⎰+∞∞-+∞∞-)( =()()du u x s f -⎰+∞∞-τ=()()x s x f *性质()()x g x f x g x f *≤*)()(. 证明 =*)()(x g x f ()()τττd x g f -⎰+∞∞-≤()()τττd x g f -⋅⎰+∞∞-=()()x g x f *.性质〔微分性〕设)(),(x g x f 是1R 上的两个可积函数,则())()()()()()(x g x f x g x f x g x f dxd'*=*'=*. 证明 ()()()()()τττττd h dxx df d dx x dg x f x g x f dx d ⎰⎰∞+∞-∞+∞-=-=*-)()( 即意义 卷积后求导和先对其任一求导再卷积的结果一样. 性质〔积分性〕设()()()x h x g x f *=,则()()()()()()()x h x g x h x g x f11)1(---*=*=.意义 卷积后积分和先对其任一积分再卷积的结果一样. 推广 ()()()()()()()()x h x g x h x g x fn n n *=*=.性质〔微积分等效性〕设)(x f ,)(x g 是1R 上的两个可积函数,则()()ττd g x f x g x f x⎰∞-*'=*)()(.例2.1设()0010≥<⎩⎨⎧=x x x f ,()000≥<⎩⎨⎧=-x x e x g x ,求()x g x f *)(.解 由卷积定义知()x g x f *)(=()()τττd x g f -⎰+∞∞-=()()t t t tx e e e d e-----=-=⋅⎰1110ττ例2.2 设函数试计算其卷积()()()t f t f t y 21*=. 解 由卷积定义知所以()()()t f t f t y 21*==()()τττd t f f -⎰+∞∞2-1显然这个积分值与函数()ttt ><⎩⎨⎧=-τττμ01,所取非零值有关,即与参数t 的取值有关.()1当t 0<时,因30<<<τt ,所以()0=-τμt ,此时()()()t f t f t y 21*==003)(=⋅⎰--ττd e t()2当30<<t 时,只有t <<τ0时,有()1=-τμt ,此时()()()t f t f t y 21*==t tt e d e ----=⎰10)(ττ()3当3>t 时,因为t <<<30τ,所以()1=-τμt ,此时()()()t f t f t y 21*==()t t e e d e ----=⎰1330)(ττ综上所述,有()()()t f t f t y 21*==()33001-103><<<⎪⎩⎪⎨⎧⋅---t t t e e e tt3.卷积定理3.1 时域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω[],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()()()(2121~ωωF F t f t f s ⋅=*上式称为时域卷积定理,它说明两信号在时域的卷积积分对应于在频域中该两信号的傅立叶变换的乘积.证明 []=*)()(21~t f t f s ()()dt e d t f f t j ωτττ-+∞∞-+∞∞-⎰⎰⎥⎦⎤⎢⎣⎡-21 =()()τττωd dt e t f f tj ⎥⎦⎤⎢⎣⎡-⎰⎰+∞∞--+∞∞-21=()()τωτωd e F f t j -+∞∞-⎰21=()()ττωωd e f F t j -+∞∞-⎰12=()()=⋅ωω12F F ),()(21ωωF F ⋅ 3.2频域卷积定理设两函数)(),(21t f t f ,的傅里叶变换分别为:[],)()(1~1t f s F =ω[],)()(1~1t f s F =ω则两函数卷积的傅里叶变换为:[]),()(21)()(2121~ωωπF F t f t f s *=上式称为频域卷积定理,它说明两信号在时域的乘积对应于这两个函数傅氏变换的卷积除以π2.证明 ()()()()ωππωωπωd e du u w F u F F F s tj ⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡*21211-~212121 于是例3.1 求积分方程的解,其中()()t f t h ,为函数,且()()()t h t f t g 和,的Fourier 变换都存在. 解 假设()[](),ωG t g F =()[](),ωH t h F =()[](),ωF t f F = 由卷积定义知现对积分方程两端取Fourier 变换可得解得所以原方程的解为例3.2 求常系数非齐次线性微分方程 的解,其中()t f 为函数. 解 设()[]()[]()ωωF t f F Y t y F ==),(现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得 解得所以原方程的解 由卷积定理得=()()τττd e f t f et t--∞+∞--⎰=*212. 例3.3求微分积分方程的解.其中c b a t ,,,+∞<<∞-均为常数. 解 设()[]()()[]()ωωH t h F X t x F ==,现对原方程两端取Fourier 变换,并根据Fourier 变换的性质可得解得()()()⎪⎭⎫⎝⎛-+=++=ωωωωωωωc a i b H i c b ai H X ,所以原方程的解4.卷积公式及其应用与推广 4.1卷积公式设X 和Y 的联合密度函数为)y x f ,(,则Y X Z +=得概率密度为证明 Y X Z +=的分布函数是:⎰⎰=≤+=≤=Dz xy f p z Z p Z F )()z Y X ()()(其中D ={}z y x y x ≤+:),(于是⎰⎰⎰⎰⎰⎰+∞∞-∞-+=+∞∞--∞-≤+-===zy x u yz zy x Z dudy y y u f dxdyy x f dxdy y x f Z F ),(),(),()(=⎰⎰∞-+∞∞--z dydu y y u f ),(从而⎰+∞∞--='=dy y y z f Z F Z f z z ),()()(由X 和Y 的对称性知⎰+∞∞--='=dx x x z f Z F Z f z z ),()()(。
第二章 (4)卷积积分的性质

f 1 (t )
f 2 (t )
2
1
0
2
0 1
1
2 3
t
1
3
t
解法一: 解法一:图示法
f 1 (τ
t <1 ,
)
f (t ) = 0
2
0
1
2 3
τ
f 2 (t τ
t2
)
1
t 0
1
τ
解法一: 解法一:图示法
f 1 (τ
t <1 ,
)
t
f (t ) = 0
1< t < 2 ,
f (t ) = ∫ 2dτ = 2(t 1)
(2) e ε(t + 3) ε(t 5) 2t e ε (t + 3) ε (t 5) ∞ 2τ = ∫ e ε (τ + 3) ε (t τ 5)dτ ∞
2t
=∫t 53e2τ1 2(t 5) 6 e = e 2 6 1 2( t 2) = e 1 e 2
[
1 2τ dτ = e 2
' ∞ ∞
上式称为杜阿密尔积分. 上式称为杜阿密尔积分. 杜阿密尔积分 其物理含义为: 其物理含义为:LTI系统的零状态响应等于激励的 系统的零状态响应等于激励的
f ' (t )与系统的阶跃响应 g(t )的卷积积分. 的卷积积分. 导数
例2.4-4 求图示函数 f1(t ) 与 f2 (t ) 的卷积 f (t ) .
若f (t ) = f1(t ) f2(t ),则 f1(t t1 ) f2(t t2 ) = f1(t t2 ) f2 (t t1 ) = f (t t1 t2 )
推广4 推广
§2.4 卷积积分的性质

二、与冲激或阶跃信号的卷积
1. f (t ) (t ) (t ) f (t ) f (t )
证: f (t ) (t )
南航电子信息
f (t ) (t t0 )dt f (t0 ) f (t ) (t ) f (t )
注意:当 f1(t)=1 , f2(t) = e – tε(t)时
套用 f1 (t ) f 2 (t ) f1(t ) f ( 1) (t ) 0 f ( 1) (t ) 0 显然是错误的 f1 () 0
▲ ■ 第 7页
四、卷积的时移特性
若 f(t) = f1(t)* f2(t), 则 f1(t –t1)* f2(t –t2) = f1(t –t1 –t2)* f2(t) = f1(t)* f2(t –t1 –t2) = f(t –t1 –t2)
f1 (t ) f 2 (t ) f (t ) f 2
(i ) 1 ( i )
(t )
f
(i )
(t ) f
▲
( j) 1
(t ) f 2
(i j )
(t )
第 6页
■
例1: f1(t) 如图, f2(t) = e – tε(t),求f1(t)* f2(t) 南航电子信息
( 1) 解: f1 (t ) f 2 (t ) f1 (t ) f 2 (t )
f1 (t ) (t ) (t 2)
f1(t ) (t ) (t 2)
t 0
f
( 1) 2
(t ) e ( )d [ e d ] (t )
考研专业课郑君里版《信号与系统》第二章补充习题——附带答案详解

第二章 连续时间系统的时域分析1.已知连续时间信号1()e ()t f t u t -=和2()e ()t f t u t =-,求卷积积分12()()()f t f t f t =*,并画出()f t 的波形图。
解:1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰反褶1()f τ得1()f τ-,右移t 得11[()]()f t f t ττ--=-,作出2()f τ图形及不同t 取值的1()f t τ-图形,由此可得:当0t ≤时,21()e e ee e 2ttt tt f t d d τττττ---∞-∞===⎰⎰当0t ≥时,0021()e e e e e 2t t t f t d d τττττ----∞-∞===⎰⎰综上,||111()e ()e ()e 222t t t f t u t u t --=-+=()f t 是个双边指数函数。
讨论:当1()f t 、2()f t 为普通函数(不含有()t δ、()t δ'等)时,卷积结果()f t 是一个连续函数,且()f t 非零取值区间的左边界为1()f t 、2()f t 左边界之和,右边界为1()f t 、2()f t 右边界之和,也就是说,()f t 的时宽为1()f t 、2()f t 时宽之和。
τttt2.计算题图2(a )所示函数)(1t f 和)(2t f 的卷积积分)()()(21t f t f t f *=,并画出)(t f 的图形。
解法一:图解法1212()()()()()f t f t f t f t f d τττ∞-∞=*=-⎰其中1()f t τ-的波形见题图2(b),由此可得: 当10t +≤,即1t ≤-时,()0f t = 当011t ≤+≤,即10t -≤≤时,120()2(1)t f t d t ττ+==+⎰当11t +≥但10t -≤,即01t ≤≤时,1()21f t d ττ==⎰当011t ≤-≤,即12t ≤≤时,121()21(1)t f t d t ττ-==--⎰当11t -≥,即2t ≥时,()0f t =综上,220,1,2(1),10()1,011(1),12t t t t f t t t t ≤-≥⎧⎪+-≤≤⎪=⎨≤≤⎪⎪--≤≤⎩ ()f t 波形见题图2(c)。
卷积的几种计算方法以及程序实现FFT算法

e ( t 1) )u(t 2)
Made by 霏烟似雨
数字信号处理
ht 1
e
t 2
u (t ) u (t 2)
e t 1
e t u (t )
O
t
波形
O
2
t
2. 今有一输油管道,长 12 米,请用数字信号处理的方法探测管道内部的损伤,管道的损伤可能为焊 缝,腐蚀。叙述你的探测原理,方法与结果。 (不是很清楚) 探测原理:因为输油管道不是很长,可以考虑设计滤波器器通过信号测量来测试管道的损伤,当有 焊缝时,所接受的信号会有所损失,当管道式腐蚀时,由于管壁变得不再是平滑的时候,信号的频率 就会有所改变。
rk r ( k N / 2)
,则后半段的 DFT 值表达式:
X 1[
N N / 2 1 N / 2 1 r ( k ) N N rk k ] x1[r ]WN / 22 x1[r ]WN , k ] X 2 [k ] ( k=0,1, … ,N/2-1 ) / 2 X 1[ k ] ,同样, X 2 [ 2 2 r 0 r 0
d it L Ri t et dt
t
t 2
u(t ) u(
i(t )
L 1H
2) 冲激响应为 h(t ) e u(t ) 3)
i(t ) e( ) h(t ) d
程序: function test x = rand(1 , 2 .^ 13) ; tic X1 = fft(x) ; toc tic X2 = dit2(x) ; toc tic X3 = dif2(x) ; toc tic X4 = real_fft(x) ; toc max(abs(X1 - X2)) max(abs(X1 - X3)) max(abs(X1 - X4)) return ; function X = dit2(x) N = length(x) ; if N == 1 X=x; else X1 = dit2(x(1:2:(N-1))) ; X2 = dit2(x(2:2:N)) ; W = exp(-1i * 2 * pi / N * (0:(N/2-1))) ; X = [X1 + W .* X2 , X1 - W .* X2] ; end return ;
信号与系统 卷积积分的性质

信号与系统
d x t dt
h d
t
2
1
1 0
2
c
1
t
0
4
t
d
dxt t h d 15 dt 8
t
9 8
2
dxt t h d dt
3
1 0
2
2
6
1 0
2 3
6
t
f
e
信号与系统
t t t
[ 1 d ]u (t 1) [ 1 d ]u (t 2)
1 2
t
t
(t 1)u (t 1) (t 2)u (t 2)
(t 1)[u (t 1) u (t 2)] 3u (t 2) 0 t 1 3
0 t a 1 e d 1 e at 0 a
f t
1
1 d ]u(t ) 1 e at u t a
t 0
f d
t 0
t
e at
1 a
0
a
t
0
b
t
信号与系统
作业 13-4-16
t
y( )d f (t ) h( )d h(t ) f ( )d
t
y(t)的一重积分
y ( 1) (t ) f (t ) h( 1) (t ) f ( 1) (t ) h(t )
推广:
y ( m) (t ) f (t ) h( m) (t ) f ( m) (t ) h(t )
讲义二:卷积与微分方程的数值法求解

讲义二:卷积与微分方程的数值法求解一、 从离散卷积和到连续卷积序列f 1(k )和f 2(k )的离散卷积定义式为()()()()1212i f k f k f i f k i ∞=−∞∗=−∑ 用来计算离散卷积的函数为:f=conv(f1,f2) f1,f2为参与卷积运算的两个序列,f 为卷积的结果,长度为length(f1)+length(f2)-1。
[f,r]=deconv(f1,f2) 解卷运算,使f1=conv(f,f2)+r 成立EX 错误!文档中没有指定样式的文字。
-1 ()()1sin ,010x k k k =≤≤,()20.8,015k x k k =≤≤,计算离散卷积和()y k =()1x k ∗()2x k 。
%程序5_1 计算离散卷积和k1=0:10; %x1的变量取值范围x1=sin(k1); %构建x1序列k2=0:15; %x2的变量取值范围x2=0.8.^k2; %构建x2序列y=conv(x1,x2); %计算卷积结果%显示卷积结果subplot(3,1,1);stem(k1,x1);title('x_1(k)');subplot(3,1,2);stem(k2,x2);title('x_2(k)');k=0:length(y)-1;subplot(3,1,3);stem(k,y);title('y(k)');下面讨论连续卷积的计算:连续时间函数1()f t 和2()f t 的卷积定义为:()()()()()1212f t f t f t f f t d τττ∞−∞=∗=−∫由于计算机实际处理的数据必须满足:1、离散存储;2、有限数据量。
连续信号的处理必须首先经过数值化的过程,以离散的形式被分析、保存和处理。
用数值方法计算卷积需要将卷积积分看作信号的分段求和来实现,这样会得到一定的精确度要求下的卷积。
()()()()()()()1212120lim k f t f t f t f f t d f k f t k τττ∞∞−∞Δ→=−∞=∗=−=Δ−ΔΔ∑∫ 如果我们只求当t n =Δ(n 为整数)时f (t )的值()f n Δ,则得:()()()()1212[()]k k f n f k f n k f k f n k ∞∞=−∞=−∞Δ≈ΔΔ−ΔΔ=ΔΔ−Δ∑∑ 式中的()12[()]k f k f n k ∞=−∞Δ−Δ∑实际上就是连续信号f 1(t )和f 2(t )经等时间间隔Δ均匀抽样的离散序列1()f k Δ和2()f k Δ的离散卷积和。
《信号与系统教学课件》§2.6 卷积及其性质和计算

将卷积的微分性质和积分性质加以推广,可以得到
s
t
nm
f (n) 1
t
f (m) 2
t
f (m) 1
t
f (n) 2
t
X
二、卷积的性质
注意函数的积分和微分并不是一个严格的可逆关系, 因为函数加上任意常数后的微分与原函数的微分是相 同的。因此,对于等式
f1 t
f2 t
f1' t
k
d
k
f
3
t
d
令w k
f1
k
f2
w f3
t
k
w d w d k
令st f2t f3t
f1 k s t k d k
f1 t st
f1 t
f2 t
f3 t
f 1
t f2 t
f3 t
X
二、卷积的性质
一、代数性质 • 结合律
对于函数f1 t , f2 t , f3 t ,存在
h2 t
r(t)
h1 t
图2.6.2 卷积交换律的系统意义
X
二、卷积的性质
一、代数性质
• 结合律
对于函数f1 t , f2 t , f3 t ,存在
f1 t f2 t f3 t f1 t f2 t f3 t
根据卷积的定义
f1 t
f2
t
f3
t
f1
k
f2
X
三、卷积的计算
根据卷积的定义,卷积计算是由若干基本的信号运算组成的, 对于
s
t
f1
f2
t
d
第一步 反褶:将 f1 t 反褶运算,得到 f1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于利用微分与积分性质计算卷积的条件
微积分是数学中非常重要的研究分支,可以用来计算函数的微分和积分,当处理函数时,
微分和积分特性在各方面都有重要作用。
而卷积作为理论物理学中重要的概念之一,在现实应用中也有着重要的地位。
因此,利用微分和积分性质来计算卷积也变得尤为重要。
卷积的定义如下:它是两个函数(或称信号)的乘积,它们各自用一个变量从某一时间段(截止到时间t)表示。
即函数f (t)与g(t)的卷积为f (t) * g (t) 或 C (t)。
利用微分和积分来计算卷积,要求有三个条件:其一,函数f(t)与g(t)必须可导,即f’(t),g’(t)必须存在;其二,尤其是f’(t)和g’(t)必须连续变化或有限;其三,尤其是函数f(t)和
g(t)有定义域,该定义域必须是有限的或者可以用积分的二阶定义域近似。
当这三个条件满足时,即可利用微分和积分计算卷积,具体方法如下:根据泰勒展开式,
函数f (t)和g(t)之间的卷积可以以f (t)正余弦级数的形式表示(其中t为时间):
f (t) = f (0) + f' (0) t + \frac{d^2 f(t)}{2!} t^2 +...
g (t) = g (0) + g' (0) t + \frac{d^2 g(t)}{2!} t^2 + ...
因此,
C (t) = f(t) * g(t) = \int_0^t \left[f (0) g(u) + f' (0) g(u) + \frac{d^2 f(t)}{2!}g (u)+…\right]du 显然,以上表达式即为函数f (t)和g(t)的卷积,表明利用微分和积分计算卷积是可行的。
从而可见,利用微分和积分计算卷积,可以有效地处理不同函数的卷积,从而在实际应用
中发挥重要作用。
但要满足利用微分和积分性质来计算卷积的条件,就必须满足三个条件:函数f (t)和g(t)必须可导,尤其是f’(t)和g’(t)必须连续变化或有限,同时还要求定义域是
有限的或可用积分的二阶定义域近似。