组合数学_第3章3.2
组合数学(引论)

组合数学中有二个常用的技巧: 1. 一一对应 2. 奇偶性
1.、一一对应
第 10 页
结束
1. 一一对应
二个事件之间如计果算存:在一一对应关系,则
可用解易解的来替代第难一解轮的:。50场比赛 (一人轮空)
应用举例 第二轮: 25场比赛 (一人轮空)
决出例冠1军. 共有要10进1行个注反一多选第第第意之场少手三四五:,比场参轮轮轮每要赛比加:::场淘。赛象1比汰63?棋3场场场赛一淘比比比必 人汰赛赛赛淘也赛汰必,((一 一一须问人 人人进要轮 轮,行空 空))
结束
3. 幻方
3. 幻方
2)麦哲里克方法 (与德拉鲁布方法类似)
将1置正中央上方,然后按向右上方的方向依次放后 继数; 到顶行后翻到底行,到达最右列后转最左列; 其余情况放正上方2格。
第 22 页
结束
3. 幻方
3. 幻方
2)麦哲里克方法 (与德拉鲁布方法类似)
将1置正中央上方,然后按向右上方的方向依次放后 继数; 到顶行后翻到底行,到达最右列后转最左列; 其余情况放正上方2格。
第4章 Burnside引理与Polya定理
4.1 群的概念 4.2 置换群 4.3 循环、奇循环与偶循环 4.4 Burnside引理 4.5 Polya定理 4.6 鸽巢原理 4.7 鸽巢原理举例 4.8 鸽巢原理的推广 4.9 Ramsey数
第4页
结束
一、一组、合组数合学数简学介简介
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
总统 副总统 财务大臣 秘书
0
1
2
2
43
2
1
一种选法 一一对应 一个四位数
组合数学讲义3章递推关系

组合数学讲义3章递推关系递推关系§3.1 基本概念(一)递推关系定义3.1.1 (隐式)对数列aii 0 和任意自然数n,一个关系到an和某些个ai i n 的方程式,称为递推关系,记作F a0,a1, ,an 0 (3.1.1)__例an an 1 an 2 a0 n 0an 3an 1 2an 2 2a1 1 0定义3.1.1'(显式)对数列aii 0 ,把an与其之前若干项联系起来的等式对所有n≥k均成立(k为某个给定的自然数),称该等式为ai 的递推关系,记为an F an 1,an 2, ,an k (3.1.1)'例an 3an 1 2an 2 2a1 1 (二)分类(1)按常量部分:① 齐次递推关系:指常量=0,如Fn Fn 1 Fn 2;② 非齐次递推关系,即常量≠0,如hn 2hn 1 1。
(2)按ai的运算关系:组合数学讲义① 线性关系,F是关于ai的线性函数,如(1)中的Fn与hn均是如此;② 非线性关系,F是ai的非线性函数,如hn h1hn 1 h2hn2 hn 1h1。
(3)按ai的系数:① 常系数递推关系,如(1)中的Fn与hn;② 变系数递推关系,如pn npn 1,pn 1之前的系数是随着n而变的。
(4)按数列的多少:① 一元递推关系,其中的方程只涉及一个数列,如(3.1.1)和(3.1.1)'均为一元的;② 多元递推关系,方程中涉及多个数列,如an 7an 1 bn 1bn 7bn 1 an 1(5)显式与隐式:yn 1(三)定解问题xn 1yn h yn 1 2 yn 1定义3.1.2 (定解问题)称含有初始条件的递推关系为定解问题,其一般形式为F a0,a1, ,an 0,(3.1.2)a0 d0,a1 d1, ,ak 1 dk 1所谓解递推关系,就是指根据式(3.1.1)或(3.1.2)求an的与a0、a1、、an-1无关的解析表达式或数列{an}的母函数。
组合数学第三章习题解答

m
i 0 nm
(c )
C (m l 1, m 1) C (m l , m) C (m l , m 1) C (m l , m 2) ...
(1)l C (m l , m l )
(a)
C (n m, n k ) C (n m, k m)
设这66个元素为a1<a2<a3<...<a66
构造b1=a2-a1, b2=a3-a1,…, b65=a66-a1, 令B={b1,b2,…,b65} 这65个元素属于1到326,如果这65个元素有任何一个属于P1, 则定理得证。 否则: B p2 p3 p4 p5 (2)因为。 65 1 1 17 4 因此至少有一个集合含至少B中17个元素,设这个集合为p2。 设这6个元素为: bi1 bi2 ... bi1 7
证明(a)
(a) A B与A B关于B互为余集, 因此 A B B A B
(b) A BC C AC B C A B C A B C与(C B) (C A)互为余集. A B C C (C B) (C A) C C A C B A B C
否则: e1 , e2 p5 构造: e2 e1 同样可证明e2-e1既可表示成p1中数之差,也可表示成p2p3p4中 数之差。 e2-e1是1到326中的数,设f=d2-d1
e p1 p2 p3 p4
因此:1到326的326个整数任意分成5部分,其中必有一部分 其中有一个数是另两个数之差,设ai=aj-ah,那么反过来: aj=ai+ah
3.12,一年级有100名学生参加中文、英文和数学的考试,其中92 人通过中文考试,75人通过英语考试,65人通过数学考试;其中 65人通过中英文考试,54人通过中文和数学考试,45人通过英语 和数学考试,求通过三门学科考试的学生数?
3、组合数学第三章排列组合(1)

P(5,3)
(2)同(1),若不限制每天考试的次数,问有多 少种排法?
53
例3.8 排列26个字母,使得在a 和 b之间正好有7个 字母,问有多少种排法?
例3 用26个字母排列,是元音 a,e,i,o,u 组不相继 出现,有多少种排法?
(1)排列所有辅音:P(21,21)=21! (2)在辅音前后的22个空档中排元音:
n2 +... + nk .
2若r=n,则N= n! ; n1 !n2 !...nk !
3若r < n且对一切i,i =1, 2,..., k,有ni ? r,则N=kr ; 4若r < n,且存在着某个ni < r,则对N没有一般的求解公式。
§3.5 多重集的组合
多重集S中r个元素进行无序选择,构成一个多重 集的r-组合。 篮子里有2个苹果,1个桔子,3个香蕉,篮子里 的水果构成“多重集”。
解1 (1)任意坐: n=9! (2)不相邻:A先就坐,B不相邻:7 其余8人排序:8! m=7*8! (3) P=m/n=7*8!/9!=7/9
例6 10个人为圆桌任意就坐,求指定的两个人 A与B不相邻的概率。
解2 (1)任意坐: n=9! (2)A,B相邻:A先就坐,B左右相邻:2 其余8人排序:8! k=2*8! (3)不相邻:m=9!-2*8! (4) 两人不相邻的概率 P=m/n=(9!-2*8!)/9!=1-2/9=7/9
证明
(1) 从{ 1,2,…,n }中选出2-组合有
C
2 n
(2) 另一种选法:
最大数为k的2-组合共有k-1个,k=1,2,…,n
有加法原理,共有 0+1+2+…+(n-1) 个2-组合
组合数学(第3章3.3)

多重集的排列及组合
主要内容
多重集排列应用 多重集的组合及应用
回顾:多重集排列计数
定理3.4.2:令S是多重集,它有k个不同的 元素,每个元素的重复数分别为n1,n2,…, nk,那么,S的排列数等于 n! n1! n 2 !… n k ! 其中n= n1+n2+…+nk
多重集排列与集合划分
6 = 84
解:(1)方程x1+x2+x3+x4=10 (B)的正整数
例
3. 方程x1+x2+x3+x4=20的整数解的个数是多少?其中 x1≥3, x2≥1, x3≥0, x4≥5. 解:作变量代换:y1=x13, y2=x21, y3=x3, y4=x45,那么,得到方程: y1+y2+y3+y4=11。原 方程的解个数与该方程的非负整数解个数相同。 故为:
r + k - 1 r + k - 1 = r k -1
定理的证明
(1) 令S={∞a1, ∞a2,…, ∞ak},那么S的一个r-组合 具有形式{x1a1, x2a2,…, xkak},其中 x1+x2+…+xk=r (A) A xi是非负整数。 (2) 方程(A)的任何一个解确定S的一个r-组合,因 此,S的r-组合个数等于方程(A)解的个数。
11 + 4 1 14 11 = 11
问题?
令多重集S={n1a1, n2a2, …, nkak},n= n1+n2+…+nk ,求S的r-组合数,其中0≤r≤n. 方程: x1+x2+…+xk=r 满足条件 0≤x1≤n1,0≤x2≤n2,…, 0≤xk≤nk 的整数解的个数。
组合数学_第3章3.1_ (1)

显然,当k1 k2, 则n2 整除n1,否则n1整除n2。
例:对于任意给定的52个非负整数,证明:其中必存 在两个非负整数,要么两者的和能被100整除,要么 两者的差能被100整除。
证:对于任意一个非负整数,其整除100的余数可能 为{0, 1, 2, …, 99}中之一。 对这100个余数进行分组,构造如下51个集合:
何整数n, n = 2k a ,其中,a为奇数,k0。
❑ 200内只能有100个不同奇数,故可对101个 数运用鸽巢原理。
例. 从整数1, 2, ,200中选取101个整数。证明 所选的数中存在两个整数,使得其中一个是另 一个的因子。
证:对于1到200间的整数n,n可写作以下形 式:n = 2k a , 其中a只能是200内的奇数。 由于要选取101个整数,但是 200内只有100个奇 数,应用鸽巢原理知必存在两个数n1与n2除以2 的余数相等。假设
思考:随意地把一个3行9列棋盘的每个方格涂成红色 或蓝色,求证:必有两列方格的涂色方式是一样的。
1 23 456 78 9
每列的涂色方式一共有23= 8种
思考:
(英国数学奥林匹克1975年的问题)在一个半 径为1单位的圆板上钉7个钉,使得两个钉的 距离是大于或等于1,那么这7个钉一定会有一 个位置恰好是在圆心上。
吾尝从君济于河,鼋 衔左骖以入砥柱之流。 当是时也,冶少不能
吾仗兵而却三军者再,若开疆之功, 游,潜行逆流百步,
亦可以食桃,而无与人同矣
顺流九里,得鼋而杀
之,左操骖尾,右挈
鼋头,鹤跃而出
◼ 宋代费衮的《梁溪漫志》中,就曾运用抽屉原理 来批驳“算命”一类迷信活动的谬论
组合数学第三章课后习题答案

3.1题(宗传玉)某甲参加一种会议,会上有6位朋友,某甲和其中每人在会上各相遇12次,每二人各相遇6次,每三人各相遇3次,每五人各相遇2次,每六人各相遇一次,1人也没有遇见的有5次,问某甲共参加了几次会议解:设A i为甲与第i个朋友相遇的会议集,i=1,…,6.则故甲参加的会议数为:28+5=33.3.2题(宗传玉)求从1到500的整数中被3和5整除但不被7整除的数的个数.解:设A3:被3整除的数的集合A5:被5整除的数的集合A7:被7整除的数的集合所以3.3.题(宗传玉)n个代表参加会议,试证其中至少有2人各自的朋友数相等。
解:每个人的朋友数只能取0,1,…,n-1.但若有人的朋友数为0,即此人和其他人都不认识,则其他人的最大取数不超过n-2.故这n个人的朋友数的实际取数只有n-1种可能.,所以至少有2人的朋友数相等.3.4题(宗传玉)试给出下列等式的组合意义.解:(a) 从n 个元素中取k 个元素的组合,总含有指定的m 个元素的组合数为)()(kn mn m k m n --=--。
设这m 个元素为a 1,a 2,…,a m ,Ai 为不含a i 的组合(子集),i=1,…,m.()∑∑∑==∈⊄==⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=-+⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛-=ml l m l l m i i lj i lk l n k m A k n k n m n k l n l j 01),(),...,(1m1i i i i i 1)1(A A A A 111213.5题(宗传玉)设有三个7位的二进制数:a1a2a3a4a5a6a7,b1b2b3b4b5b6b7,c1c2c3c4c5c6c7.试证存在整数i 和j,1≤i≤j≤7,使得下列之一必定成立:a i=a j=b i=b j,a i=a j=c i=c j,b i=b j=c i=c j.证:显然,每列中必有两数字相同,共有种模式,有0或1两种选择.故共有·2种选择.·2=6.现有7列,.即必有2列在相同的两行选择相同的数字,即有一矩形,四角的数字相等.3.6题(宗传玉)在边长为1的正方形内任取5个点试证其中至少有两点,其间距离小于证:把1×1正方形分成四个(1/2)×.则这5点中必有两点落在同一个小正方形内.而小正方形内的任两点的距离都小于.3.7题(王星)在边长为1的等边三角形内任取5个点试证其中至少有两点,期间距离小于1/2.证:把边长为1的三角形分成四个边长为1/2的三角形,如上图:则这5点中必有两点落在同一个小三角形中.小三角形中任意两点间的距离都小于1/2.3.8题(王星)任取11个整数,求证其中至少有两个数它们的差是10的倍数。
组合数学【第5版】(英文版)第3章答案

Math475Text:Brualdi,Introductory Combinatorics5th Ed. Prof:Paul TerwilligerSelected solutions for Chapter31.For1≤k≤22we show that there exists a succession of consecutive days during which the grandmaster plays exactly k games.For1≤i≤77let b i denote the number of gamesplayed on day i.Consider the numbers{b1+b2+···+b i+k}76i=0∪{b1+b2+···+b j}77j=1.There are154numbers in the list,all among1,2,...,153.Therefore the numbers{b1+b2+···+b i+k}76i=0∪{b1+b2+···+b j}77j=1.are not distinct.Therefore there exist integers i,j(0≤i<j≤77)such that b i+1+···+b j=k.During the days i+1,...,j the grandmaster plays exactly k games.2.Let S denote a set of100integers chosen from1,2,...,200such that i does not divide j for all distinct i,j∈S.We show that i∈S for1≤i≤15.Certainly1∈S since 1divides every integer.By construction the odd parts of the elements in S are mutually distinct and at most199.There are100numbers in the list1,3,5,...,199.Therefore each of 1,3,5,...,199is the odd part of an element of S.We have3×5×13=195∈S.Therefore none of3,5,13,15are in S.We have33×7=189∈S.Therefore neither of7,9is in S.We have11×17=187∈S.Therefore11∈S.We have shown that none of1,3,5,7,9,11,13,15 is in S.We show neither of6,14is in S.Recall33×7=189∈S.Therefore32×7=63∈S. Therefore2×32×7=126∈S.Therefore2×3=6∈S and2×7=14∈S.We show10∈S. Recall3×5×13=195∈S.Therefore5×13=65∈S.Therefore2×5×13=130∈S. Therefore2×5=10∈S.We now show that none of2,4,8,12are in S.Below we list the integers of the form2r3s that are at most200:1,2,4,8,16,32,64,128,3,6,12,24,48,96,192,9,18,36,72,144,27,54,108,81,162.In the above array each element divides everything that lies to the southeast.Also,each row contains exactly one element of S.For1≤i≤5let r i denote the element of row i that is contained in S,and let c i denote the number of the column that contains r i.We must have c i<c i−1for2≤i≤5.Therefore c i≥6−i for1≤i≤5.In particular c1≥5so r1≥16,and c2≥4so r2≥24.We have shown that none of2,4,8,12is in S.By the above comments i∈S for1≤i≤15.3.See the course notes.4,5,6.Given integers n≥1and k≥2suppose that n+1distinct elements are chosen from{1,2,...,kn}.We show that there exist two that differ by less than k.Partition{1,2,...,nk}=∪ni=1S i where S i={ki,ki−1,ki−2,...,ki−k+1}.Among our n+1chosen elements,there exist two in the same S i.These two differ by less than k.17.Partition the set{0,1,...,99}=∪50i=0S i where S0={0},S i={i,100−i}for1≤i≤49,S50={50}.For each of the given52integers,divide by100and consider the remainder. The remainder is contained in S i for a unique i.By the pigeonhole principle,there exist two of the52integers for which these remainders lie in the same S i.For these two integers the sum or difference is divisible by100.8.For positive integers m,n we consider the rational number m/n.For0≤i≤n divide the integer10i m by n,and call the remainder r i.By construction0≤r i≤n−1.By the pigeonhole principle there exist integers i,j(0≤i<j≤n)such that r i=r j.The integer n divides10j m−10i m.For notational convenience define =j−i.Then there exists a positive integer q such that nq=10i(10 −1)m.Divide q by10 −1and call the remainder r. So0≤r≤10 −2.By construction there exists an integer b≥0such that q=(10 −1)b+r. Writingθ=m/n we have10iθ=b+r 10 −1=b+r10+r102+r103+···Since the integer r is in the range0≤r≤10 −2this yields a repeating decimal expansion forθ.9.Consider the set of10people.The number of subsets is210=1024.For each subset consider the sum of the ages of its members.This sum is among0,1,...,600.By the pigeonhole principle the1024sums are not distinct.The result follows.Now suppose we consider at set of9people.Then the number of subsets is29=512<600.Therefore we cannot invoke the pigeonhole principle.10.For1≤i≤49let b i denote the number of hours the child watches TV on day i.Consider the numbers{b1+b2+···+b i+20}48i=0∪{b1+b2+···+b j}49j=1.There are98numbers in the list,all among1,2,...,96.By the pigeonhole principle the numbers{b1+b2+···+b i+20}48i=0∪{b1+b2+···+b j}49j=1.are not distinct.Therefore there existintegers i,j(0≤i<j≤49)such that b i+1+···+b j=20.During the days i+1,...,j the child watches TV for exactly20hours.11.For1≤i≤37let b i denote the number of hours the student studies on day i.Considerthe numbers{b1+b2+···+b i+13}36i=0∪{b1+b2+···+b j}37j=1.There are74numbers in the list,all among1,2,...,72.By the pigeonhole principle the numbers{b1+b2+···+b i+13}36i=0∪{b1+b2+···+b j}37j=1are not distinct.Therefore there exist integers i,j(0≤i<j≤37)such that b i+1+···+b j=13.During the days i+1,...,j the student will have studied exactly13hours.12.Take m=4and n=6.Pick a among0,1,2,3and b among0,1,2,3,4,5such that a+b is odd.Suppose that there exists a positive integer x that yields a remainder of a(resp.b) when divided by4(resp.by6).Then there exist integers r,s such that x=4r+a and x=6s+bining these equations we obtain2x−4r−6s=a+b.In this equation the2left-hand side is even and the right-hand side is odd,for a contradiction.Therefore x does not exist.13.Since r (3,3)=6there exists a K 3subgraph of K 6that is red or blue.We assume that this K 3subgraph is unique,and get a contradiction.Without loss we may assume that the above K 3subgraph is red.Let x denote one of the vertices of this K 3subgraph,and let {x i }5i =1denote the remaining five vertices of K 6.Consider the K 5subgraph with vertices{x i }5i =1.By assumption this subgraph has no K 3subgraph that is red or blue.The only edge coloring of K 5with this feature is shown in figure 3.2of the text.Therefore we may assume that the vertices {x i }5i =1are labelled such that for distinct i,j (1≤i,j ≤5)the edge connecting x i ,x j is red (resp.blue)if i −j =±1modulo 5(resp.i −j =±2modulo5).By construction and without loss of generality,we may assume that each of x 1,x 2is connected to x by a red edge.Thus the vertices x,x 1,x 2give a red K 3subgraph.Now the edge connecting x and x 3is blue;otherwise the vertices x,x 2,x 3give a second red K 3subgraph.Similarly the edge connecting x and x 5is blue;otherwise the vertices x,x 1,x 5give a second red K 3subgraph.Now the vertices x,x 3,x 5give a blue K 3subgraph.14.After n minutes we have removed n pieces of fruit from the bag.Suppose that among the removed fruit there are at most 11pieces for each of the four kinds.Then our total n must be at most 4×11=44.After n =45minutes we will have picked at least a dozen pieces of fruit of the same kind.15.For 1≤i ≤n +1divide a i by n and call the reminder r i .By construction 0≤r i ≤n −1.By the pigeonhole principle there exist distinct integers i,j among 1,2,...,n +1such that r i =r j .Now n divides a i −a j .bel the people 1,2,...,n .For 1≤i ≤n let a i denote the number of people aquainted with person i .By construction 0≤a i ≤n −1.Suppose the numbers {a i }n i =1are mutually distinct.Then for 0≤j ≤n −1there exists a unique integer i (1≤i ≤n )such that a i =j .Taking j =0and j =n −1,we see that there exists a person aquainted with nobody else,and a person aquainted with everybody else.These people are distinct since n ≥2.These two people know each other and do not know each other,for a contradiction.Therefore the numbers {a i }n i =1are not mutually distinct.17.We assume that the conclusion is false and get a bel the people 1,2,...,100.For 1≤i ≤100let a i denote the number of people aquainted with person i .By construction 0≤a i ≤99.By assumption a i is even.Therefore a i is among 0,2,4,...,98.In this list there are 50numbers.Now by our initial assumption,for each even integer j (0≤j ≤98)there exists a unique pair of integers (r,s )(1≤r <s ≤100)such that a r =j and a s =j .Taking j =0and j =98,we see that there exist two people who know nobody else,and two people who know everybody else except one.This is a contradiction.18.Divide the 2×2square into four 1×1squares.By the pigeonhole principle there exists a 1×1square that contains at least two of the five points.For these two points the distance apart is at most √2.319.Divide the equilateral triangle into a grid,with each piece an equilateral triangle of side length1/n.In this grid there are1+3+5+···+2n−1=n2pieces.Suppose we place m n=n2+1points within the equilateral triangle.Then by the pigeonhole principle there exists a piece that contains two or more points.For these two points the distance apart is at most1/n.20.Color the edges of K17red or blue or green.We show that there exists a K3subgraph of K17that is red or blue or green.Pick a vertex x of K17.In K17there are16edges that contain x.By the pigeonhole principle,at least6of these are the same color(let us say red).Pick distinct vertices{x i}6i=1of K17that are connected to x via a red edge.Consider theK6subgraph with vertices{x i}6i=1.If this K6subgraph contains a red edge,then the twovertices involved together with x form the vertex set of a red K3subgraph.On the other hand,if the K6subgraph does not contain a red edge,then since r(3,3)=6,it contains a K3subgraph that is blue or green.We have shown that K17has a K3subgraph that is red or blue or green.21.Let X denote the set of sequences(a1,a2,a3,a4,a5)such that a i∈{1,−1}for1≤i≤5 and a1a2a3a4a5=1.Note that|X|=16.Consider the complete graph K16with vertex set X.We display an edge coloring of K16with colors red,blue,green such that no K3 subgraph is red or blue or green.For distinct x,y in X consider the edge connecting x and y.Color this edge red(resp.blue)(resp.green)whenever the sequences x,y differ in exactly 4coordinates(resp.differ in exactly2coordinates i,j with i−j=±1modulo5)(resp. differ in exactly2coordinates i,j with i−j=±2modulo5).Each edge of K16is now colored red or blue or green.For this edge coloring of K16there is no K3subgraph that is red or blue or green.22.For an integer k≥2abbreviate r k=r(3,3,...,3)(k3’s).We show that r k+1≤(k+1)(r k−1)+2.Define n=r k and m=(k+1)(n−1)+2.Color the edges of K m with k+1colors C1,C2,...,C k+1.We show that there exists a K3subgraph with all edges the same color.Pick a vertex x of K m.In K m there are m−1edges that contain x.By the pigeonhole principle,at least n of these are the same color(which we may assume is C1).Pick distinct vertices{x i}ni=1of K m that are connected to x by an edge colored C1.Considerthe K n subgraph with vertices{x i}ni=1.If this K n subgraph contains an edge colored C1,then the two vertices involved together with x give a K3subgraph that is colored C1.On the other hand,if the K n subgraph does not contain an edge colored C1,then since r k=n, it contains a K3subgraph that is colored C i for some i(2≤i≤k+1).In all cases K m hasa K3subgraph that is colored C i for some i(1≤i≤k+1).Therefore r k≤m.23.We proved earlier thatr(m,n)≤m+n−2n−1.Applying this result with m=3and n=4we obtain r(3,4)≤10.24.We show that r t(t,t,q3)=q3.By construction r t(t,t,q3)≥q3.To show the reverse inequality,consider the complete graph with q3vertices.Let X denote the vertex set of this4graph.Color the t -element subsets of X red or blue or green.Then either (i)there exists a t -element subset of X that is red,or (ii)there exists a t -element subset of X that is blue,or (iii)every t -element subset of X is green.Therefore r t (t,t,q 3)≤q 3so r t (t,t,q 3)=q 3.25.Abbreviate N =r t (m,m,...,m )(k m ’s).We show r t (q 1,q 2,...,q k )≤N .Consider the complete graph K N with vertex set X .Color each t -element subset of X with k colors C 1,C 2,...,C k .By definition there exists a K m subgraph all of whose t -element subsets are colored C i for some i (1≤i ≤k ).Since q i ≤m there exists a subgraph of that K m with q i vertices.For this subgraph every t -element subset is colored C i .26.In the m ×n array assume the rows (resp.columns)are indexed in increasing order from front to back (resp.left to right).Consider two adjacent columns j −1and j .A person in column j −1and a person in column j are called matched if they occupy the same row of the original formation.Thus a person in column j is taller than their match in column j −1.Now consider the adjusted formation.Let L and R denote adjacent people in some row i ,with L in column j −1and R in column j .We show that R is taller than L.We assume that L is at least as tall as R,and get a contradiction.In column j −1,the people in rows i,i +1,...,m are at least as tall as L.In column j ,the people in rows 1,2,...,i are at most as tall as R.Therefore everyone in rows i,i +1,...,m of column j −1is at least as tall as anyone in rows 1,2,...,i of column j .Now for the people in rows 1,2,...,i of column j their match stands among rows 1,2,...,i −1of column j −1.This contradicts the pigeonhole principle,so L is shorter than R.27.Let s 1,s 2,...,s k denote the subsets in the collection.By assumption these subsets are mutually distinct.Consider their complements s 1,s 2,...,s k .These complements are mutu-ally distinct.Also,none of these complements are in the collection.Therefore s 1,s 2,...,s k ,s 1,s 2,...,s k are mutually distinct.Therefore 2k ≤2n so k ≤2n −1.There are at most 2n −1subsets in the collection.28.The answer is 1620.Note that 1620=81×20.First assume that 100i =1a i <1620.We show that no matter how the dance lists are selected,there exists a group of 20men that cannot be paired with the 20women.Let the dance lists be bel the women 1,2,...,20.For 1≤j ≤20let b j denote the number of men among the 100that listed woman j .Note that 20j =1b j = 100i =1a i so ( 20j =1b j )/20<81.By the pigeonhole principle there exists an integer j (1≤j ≤20)such that b j ≤80.We have 100−b j ≥20.Therefore there exist at least 20men that did not list woman j .This group of 20men cannot be paired with the 20women.Consider the following selection of dance lists.For 1≤i ≤20man i lists woman i and no one else.For 21≤i ≤100man i lists all 20women.Thus a i =1for 1≤i ≤20and a i =20for 21≤i ≤100.Note that 100i =1a i =20+80×20=1620.Note also that every group of 20men can be paired with the 20women.29.Without loss we may assume |B 1|≤|B 2|≤···≤|B n |and |B ∗1|≤|B ∗2|≤···≤|B ∗n +1|.By assumption |B ∗1|is positive.Let N denote the total number of objects.Thus N = n i =1|B i |and N = n +1i =1|B ∗i |.For 0≤i ≤n define∆i =|B ∗1|+|B ∗2|+···+|B ∗i +1|−|B 1|−|B 2|−···−|B i |.5We have∆0=|B∗1|>0and∆n=N−N=0.Therefore there exists an integer r(1≤r≤n)such that∆r−1>0and∆r≤0.Now0<∆r−1−∆r=|B r|−|B∗r+1|so|B∗r+1|<|B r|.So far we have|B∗1|≤|B∗2|≤···≤|B∗r+1|<|B r|≤|B r+1|≤···≤|B n|.Thus|B∗i|<|B j|for1≤i≤r+1and r≤j≤n.Defineθ=|(B∗1∪B∗2∪···∪B∗r+1)∩(B r∪B r+1∪···∪B n)|.We showθ≥ing∆r−1>0we have|B∗1|+|B∗2|+···+|B∗r|>|B1|+|B2|+···+|B r−1|=|B1∪B2∪···∪B r−1|≥|(B1∪B2∪···∪B r−1)∩(B∗1∪B∗2∪···∪B∗r+1)|=|B∗1∪B∗2∪···∪B∗r+1|−θ=|B∗1|+|B∗2|+···+|B∗r+1|−θ≥|B∗1|+|B∗2|+···+|B∗r|+1−θ.Thereforeθ>1soθ≥2.6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 鸽巢原理的简单形式
3.2 鸽巢原理的加强形式 3.3 Ramsey定理
回顾:鸽巢原理的简单形式
定理3.1.1 如果把n+1个物体放进 n个盒子, 那么至少有一个盒子包含两个或者更多的物体。
鸽巢原理的应用——数论
1. 如果从{1, 2, …, 2n}中任意选择n+1个不同的整数,那么一 定存在两个整数,它们之间差为1。
(2) 至少需要 677/������������ = ������������个教室。
例: 如果有5个可能的成绩A,B,C,D,E,F,那么 在一个班里最少有多个学生才能保证至少6个 学生得到相同的分数?
解: 由鸽巢原理的加强形式知,若有N个学生,则一 定有一个成绩,使得, 得到该成绩的学生个数至少为 N/������ 。 由题意知使得 N/������ =6的最小整数为N=26。 如果学生人数为25,则每个成绩的人数可能出现都为 5的情况,不满足题意。 因此最少有26个学生才能保证至少6个学生得到相同 的分数
=20000
例. 设A= a1a2···a20 是 10个0和10个1 组成的20位2进 制数。B=b1b2···b20 是 任意的 20位 2 进制数。令
设m和n都是正整数。如果m个物体放入n个盒 子,则至少有一个盒子包含至少 m/n 个物体。 加强形式的特殊形式: q1=q2=…=qn= m/n
例: (1) 在100个人当中至少有多少人生在同一 个月?
(2) 一个大学一周有38个时间段排课,一共677 门不同的课,至少需要多少个教室?
解: (1) 在100个人当中至少有 100/������������ =9个人 生在同一个月。
例 (中国剩余定理) 令 m, n是互素的正整数,a和b分别是 小于m和n的非负整数。那么,存在正整数x,使得x除以
m余数为a, 且除以n余数为b,即 x=pm+a;x =qn+b。
证:考虑n个除以m余数为a的整数: a,a+m,,(n1)m+a
假设存在两个数 im+a 和 jm+a (0 ≤i ≤j ≤n-1) 除以n的余 数都为r,即存在非负整数k和l 使得
小碟子扇形区编号
旋转
ቤተ መጻሕፍቲ ባይዱ
1
23
位置
S1 f(1,1) f(1,2) f(1,3)
S2 f(2,1) f(2,2) f(2,3)
200
… f(1,200)
… f(3,200)
旋转 位置1
旋转 位置2
2 1
旋转 位置3
3 旋转 4 位置4
旋转 8 位置8 7
旋转 位置7
5 旋转 6 位置5
旋转 位置6
x
3(mod
5)
x 2(mod 7)
《孙子算经》:“今有物不知其数,三三数之剩二,五 五数之剩三,七七数之剩二,问物几何?”
宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》 对“物不知数”问题做出完整系统的解答。
明朝数学家程大位编成了歌决:
三人同行七十稀,五树梅花廿一枝, 七子团员整半月,除百零五便得知。
im+a=kn+r, jm+a=ln+r 上两式相减得(j-i)m=(l-k)n。由于m, n互素,因此n是j-i
的因子。又由于0≤ j-i ≤n-1,矛盾。 故上述n个整数除以n的余数各不相同。 由鸽巢原理,n个数0, 1, 2, ,n1中都出现在这些余 数集之中, 因此b也出现。设对应除以n余数为b的数为 x=pm+a (0pn1),同时x=qn+b (0qn1) ,结论成立.
5. 一间房屋内有10个人,他们当中没有人超过60岁(年龄只能以 整数给出),但又至少不低于1岁。则总能找出两组人(不含相同 的人)的年龄和是相同的。题中的10能换成更小的数吗?
典型应用:连续时间问题
例:某厂在五年期间的每一个月里至少试制一种新产 品,每年最多试制19种新产品。试证明:一定存在连 续几个月,恰好试制24种新产品。
接连接数为1 因此,计算机的直接连接数只能有5个数。由鸽巢原理,6 台计算机中至少有两台的直接连接数相同。
中国剩余定理
韩信点兵传说:韩信带1500名兵士打仗,战死 四五百人。命令士兵
3人一排,多出2名;
x 2(mod 3)
5人一排,多出3名; 7人一排,多出2名。 韩信马上说出人数:1073人。
例. 证明:从任意给出的5个正整数中必能选出3个数 ,它们的和能被3整除。
证明:任意正整数除以3的余数只能为0,1或2。 设A为任意给出的5个正整数的集合。 设t1,t2,t3为A中除以3余数分别为0,1,2的数的 个数。
(1) 若t1, t2, t3均不为0, 则一定有三个数除以3的余 数分别 为0,1,2,则这三个数的和能被3整除。
证:设五年间每个月新产品数分别为a1, a2, …, a59, a60。 构造出数列an的前n项和的数列s1, s2, …, s59, s60, 则有:1≤a1=s1<s2<…<s59<s60 ≤ 19×5=95, 而序列s1+24, s2+24, …, s59+24, s60+24也是一个严格递 增序列: 25≤s1+24<s2+24<…<s59+24<s60+24 ≤95+24=119。 于是,这120个数s1,s2,…s59,s60和s1+24,s2+24,… ,s59+24,s60+24都在区间[1,119]内。 根据鸽巢原理,必定存在两个数 相等。
例:某厂在五年期间的每一个月里至少试制一 种新产品,每年最多试制19种新产品。试证明 :一定存在连续几个月,恰好试制24种新产品。
证: (续):由于s1, s2, …, s59, s60 与s1+24, s2+24, …, s59+24, s60+24 均为严格单调的,因此必然 存在一个i和j,使得si=sj+24。 因此该厂在从第j+1个月起到第i个月的这几个 月时间里,恰好试制了24种新产品。
(用于判断满足条件的最小物品总数)
特殊形式: q1 = q2 = … = qn= r
推论:设 n 和 r 都是正整数。如果n(r-1)+1个物 体放入n个盒子,则至少有一个盒子包含至少r 个物体。
假设第i个盒子里放入的物品数为 mi, 即m1+m2+…+mn= n(r-1)+1. 则至少有一个 mi ≥ r。
因此平均颜色重合数 为20000/200=100。
由鸽巢原理的加强形 式知,肯定存在一种 方式,其颜色重合数
在所有位置上,所有颜色重合的总数为: 至少为100.
200 200
200 200
S1+ S2+… +S200=
f(i,k) =
f(i,k) =200×100
i 1 k 1
k 1 i 1
S3 f(3,1)
f(3,2)
f(3,3)
… f(3,200) …
当配色确定时,通过 旋转小碟, 共有 200 种可能的对应方式,
… S200 f(200,1) f(200,2) f(200,3)
f(200,200)
200
有对任意的k, f(i,k) 100 (每列)
i 1
即第k个小碟子在所有位置上的颜色重合数为100。
或者第1个盒子至少含有q1个物体, 或者第2个盒子至少含有q2个物体,, 或者第n个盒子至少含有qn个物体。
例: 5个盒子,3+4+1+7+2-5+1= 13个物品, 则不会出现:第1个盒子少于3个物品
第2个盒子少于4个物品 第3个盒子少于1个物品 第4个盒子少于7个物品 第5个盒子少于2个物品
2. 在m个整数a1, a2, , am中, 存在0 k< l m, 使得ak+1+ ak+2+ +al 能够被 m 整除。 3. 从整数1, 2, ,200中选取101个整数。证明所选的数中存在 两个整数,使得其中一个是另一个的因子。
4. 对于任意给定的52个非负整数,证明:其中必存在两个非负整 数,要么两者的和能被100整除,要么两者的差能被100整除。
1/2
1/2
1/2
1/2
例:两个大小不一的碟子,均被分成200个相等扇形。 在大碟子中任选100个扇形涂成红色,其余的涂成
蓝色。 小碟子中,每一个扇形随机地涂成红色或者蓝色,
数目无限制。 将小碟子与大碟子中心重合。
试证能够通过适合旋转,存在两个碟子相同颜色重 合的扇形数存在至少是100个的情形。
(q1–1)+(q2–1) ++ (qn–1) = q1+q2++qn–n, 矛盾。因此,至少存在一个i=1,…, n,使得第i个盒 里至少有qi个物体。
例. 一篮水果装有苹果、梨和桔子。为了保 证或者至少8个苹果,或者至少6个梨或者至 少9个桔子,则放入篮子中的水果的最少件数 是多少?
解:由鸽巢原理的加强形式,放入篮子中的水果为8 +6+9-3+1=21 件时,无论如何选择,都将满足 题目要求。 但当放入篮子中的水果数为20时,可能出现7个苹果, 5个香蕉和8个桔子的情形,不满足题目要求。因此 最少件数是的21。
应用-计算机网络
例. 假设有一个由6台计算机组成的网络,证明在这 样网络中至少存在两台计算机直接连接数量相同的 其他计算机。
证:每台计算机的直接连接数大于等于0,小于等于5, 且0和5不能同时出现。 • 若一个计算机的直接连接数为0,此时其他计算机最大