2动态规划

合集下载

动态规划.pdf

动态规划.pdf

第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。

即决策过程可划分为明显的阶段。

二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。

广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。

三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。

四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。

•连续型动态决策问题。

2、按决策过程演变的性质分为:•确定型动态决策问题。

•随机型动态决策问题。

五1、阶段(stage)n :作出决策的若干轮次。

n = 1、2、3、4、5。

2、状态(state)S n :每一阶段的出发位置。

构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。

阶段的起点。

3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。

构成决策集,记为D n (S n )。

阶段的终点。

D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。

4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。

如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。

动态规划的基本思想

动态规划的基本思想

动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。

这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。

一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。

它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。

动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。

二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。

2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。

3. 设置边界条件:确定最简单的子问题的解,即边界条件。

4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。

5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。

三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。

问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。

解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。

根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。

2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。

动态规划的应用举例大全

动态规划的应用举例大全
多背包问题
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。

动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。

它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。

1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。

2.定义状态:确定存储子问题解的状态变量和状态方程。

3.确定边界条件:确定初始子问题的解,也称为边界状态。

4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。

5.求解最优解:通过遍历状态变量找到最优解。

1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。

可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。

2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。

给定一个序列,找到其中最长的递增子序列。

可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。

3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。

给定一系列矩阵,求解它们相乘的最小计算次数。

可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。

4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。

可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。

动态规划方法求解线性规划问题

动态规划方法求解线性规划问题

动态规划方法求解线性规划问题引言概述:线性规划是一种常见的优化问题,动态规划是一种常用的解决优化问题的方法。

本文将介绍动态规划方法在线性规划问题中的应用。

首先,我们将讨论线性规划问题的定义和特点,然后介绍动态规划方法的基本原理和步骤。

接下来,我们将详细阐述动态规划方法在线性规划问题中的五个关键点,并对每一个关键点进行详细的解释。

最后,我们将总结动态规划方法在线性规划问题中的应用优势、限制和未来研究方向。

正文内容:1. 线性规划问题的定义和特点1.1 线性规划问题的定义线性规划是一种数学优化问题,目标是在一组线性约束条件下,找到使目标函数最优的变量值。

线性规划问题的目标函数和约束条件均为线性函数。

1.2 线性规划问题的特点线性规划问题具有可加性、线性性和可分性的特点。

可加性意味着问题可以分解为多个子问题进行求解;线性性意味着目标函数和约束条件均为线性函数;可分性意味着问题的解可以通过分别求解子问题得到。

2. 动态规划方法的基本原理和步骤2.1 动态规划方法的基本原理动态规划方法是一种将问题分解为相互重叠的子问题,并通过存储子问题的解来避免重复计算的方法。

它通过构建一个状态转移方程来描述问题的最优解与子问题的最优解之间的关系。

2.2 动态规划方法的步骤动态规划方法的步骤包括问题建模、状态定义、状态转移方程的定义、边界条件的确定和最优解的计算。

首先,将原问题转化为子问题,并定义问题的状态。

然后,通过定义状态转移方程,将问题的最优解与子问题的最优解建立关系。

确定边界条件后,可以通过迭代计算得到问题的最优解。

3. 动态规划方法在线性规划问题中的五个关键点3.1 线性规划问题的拆分将线性规划问题拆分为多个子问题,使得每一个子问题都是一个线性规划问题。

这样可以降低问题的复杂度,使得问题更易于求解。

3.2 子问题的状态定义根据线性规划问题的特点,定义子问题的状态。

状态可以包括变量的取值范围、目标函数值和约束条件等信息。

动态规划问题的基本要素和最优化原理ppt课件

动态规划问题的基本要素和最优化原理ppt课件
2、正确选择状态变量
选择变量既要能确切描述过程演变又要满足无后效性, 而且各阶段状态变量的取值能够确定。一般地,状态变量 的选择是从过程演变的特点中寻找。
3、确定决策变量及允许决策集合
通常选择所求解问题的关键变量作为决策变量,同时要 给出决策变量的取值范围,即确定允许决策集合。
精品课程《运筹学》
ppt精选版
4、确定状态转移方程
根据k 阶段状态变量和决策变量,写出k+1阶段状态变 量,状态转移方程应当具有递推关系。
5、确定阶段指标函数和最优指标函数,建立动 态规划基本方程
阶段指标函数是指第k 阶段的收益,最优指标函数是指 从第k 阶段状态出发到第n 阶段末所获得收益的最优值, 最后写出动态规划基本方程。
f1(s1)
最优目标函数值
V 1 * ,n V 1 * ,n (s 1 * ,u 1 * 子, 从策略k ,的到s 最终n * 优点,u 目最n * 标优)函策数略值
fs ov ps tu s
, , ,
k k
k ,n k k
uu , ,
k
n
n 1
精品课程《运筹学》
ppt精选版
§2.2 动态规划的基本思想
最优化原理:作为整个过程的最优策略具有这样 的性质:无论过去的状态和决策如何,相对于前面 的决策所形成的状态而言,余下的决策序列必然构 成最优子策略。”也就是说,一个最优策略的子策 略也是最优的。
精品课程《运筹学》
ppt精选版
§2.3 建立动态规划模型的步骤
1、划分阶段
划分阶段是运用动态规划求解多阶段决策问题的第一步, 在确定多阶段特性后,按时间或空间先后顺序,将过程划 分为若干相互联系的阶段。对于静态问题要人为地赋予 “时间”概念,以便划分阶段。

动态规划及其应用(二)

动态规划及其应用(二)

前一颗珠子头标记为m,尾标记为r 后一颗珠子头标记为r,尾标记为n 聚合后的珠子头标记为m,尾标记为n

给定一个项链,求最大能释放多少能量 n <= 100 NOIP 2006 senior p1
能量项链

区间DP

先考虑链上的问题 区间[i,j]无论如何操作,最后聚合出的珠子的标记是固定的 枚举决策分界点k,区间[i,k]和区间[k+1,j]分别聚合成一颗 珠子后,两者再聚合 破环成链 等长复制一遍 DP一遍后取最值

除最后一位外,r的每一位严格小于它右边相邻的那一 位。

f[i][j]表示长度为i且最低位不超过j的数的个数 递推方程 f[i][j] = f[i][j-1] + f[i-1][j-1]

答案统计


Σ f[i][2^k - 1],i∈[1, w/k ] (下取整) 枚举最高位x,Σ f[w/k][2^k – 1 - x]

条件 A:对于所有的i,g2������ > g2������ −1,且g2������ > g2������ +1; 条件 B:对于所有的i,g2������ < g2������ −1,且g2������ < g2������ +1。

请问,栋栋最多能将多少株花留在原地 1 <= n <= 100,000, 0 <= hi <= 1,000,000 NOIP 2013 senior day2 p2



游戏中,乌龟棋子自动获得起点格子的分数,并且在后续 的爬行中每到达一个格子,就得到该格子相应的分数。 求小明最多能得到多少分 N <= 350, M <= 120 NOIP2010 senior p2

动态规划的基本思想

动态规划的基本思想

动态规划的基本思想动态规划是一种常用于解决具有重叠子问题和最优子结构特征的问题的算法思想。

它将问题分解成一系列子问题,并通过解决子问题构建出整个问题的最优解。

动态规划的基本思想是将原始问题转化成一个或多个相似的子问题,然后通过解决这些子问题获得原始问题的解。

这种思想在很多实际问题中都能够得到应用。

动态规划的基本流程一般包括以下几个步骤:1. 将原始问题分解为子问题:首先需要将原问题划分为多个子问题,并且确保这些子问题之间有重叠的部分。

2. 定义状态:确定每个子问题需要求解的状态,也即问题需要达成的目标。

3. 确定状态转移方程:根据子问题之间的关系,确定子问题之间的状态转移方程,即如何将子问题的解转移到原问题的解。

4. 解决首个子问题:解决最基本的子问题,获得初始状态下的解。

5. 填充状态表格:根据状态转移方程,依次求解其他子问题,并且填充状态表格。

6. 求解原问题:通过填充状态表格,在保证状态转移方程的基础上求解原问题的最优解。

动态规划的关键在于将原问题转化为子问题,通过递归或者迭代的方式求解子问题,最终获得原问题的最优解。

在这个过程中,重叠子问题的求解是动态规划的特点之一。

由于问题的子问题存在重叠,所以在求解的过程中我们可以保存已经求解过的子问题的解,避免重复计算,从而提高效率。

动态规划还要求问题具有最优子结构特征,即问题的最优解可以通过子问题的最优解构建出来。

通过利用已解决的子问题的最优解,可以有效地解决原问题。

动态规划算法在实际应用中有着广泛的应用。

它可以用于解决很多经典的问题,如最长公共子序列、0-1背包问题、最大子数组和等。

动态规划算法可以有效地解决这些问题,使得它们的时间复杂度得到了有效的降低。

总结来说,动态规划的基本思想是将原始问题转化为子问题,并通过解决子问题构建整个问题的最优解。

动态规划算法通过保存已经解决的子问题的解来避免重复计算,从而提高算法的效率。

动态规划算法在实际应用中具有广泛的应用,是解决具有重叠子问题和最优子结构特征的问题的常用算法思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
算法总体思想
在每种情况下 , 列出各种可能的局部解 , 然 后按某些条件 , 从局部解(或中间解)中 挑选出 可能产生最佳解的结果 ,而扬弃其余。
10
? 最短路径问题 ——求A0到A6的最短路径
5 A
0
3
1 A3 16
B
8 7
16
A6 28
3
B
25
C3 23
8 D4
2
A2 32
B1 32 C3 33
2
学习要点:
? 多阶段决策过程的最优化问题 ? 动态规划算法的基本要素 ? (1)最优子结构性质 ? (2)重叠子问题性质 ? 设计动态规划算法的步骤: ? (1)找出最优解的性质,并刻划其结构特征。 ? (2)递归地定义最优值。 ? (3)以自底向上的方式计算出最优值。 ? (4)根据计算最优值时得到的信息,构造最优解。
3 动态规划
1
动 态 规 划 (dynamic programming) 是 求 解 决 策 过 程 (decision process)最优化的数学方法。20世纪50年代初美国 数学家 R.E.Bellman 等人在研究多阶段决策过程 (multistep decision process)的优化问题时,提出了著名的最优化原理 (principle of optimality),把多阶段过程转化为一系列单阶段 问题,逐个求解, 创立了解决这类过程优化问题的新方法 —
状态
x1
阶段1
状态
x2
阶段2 状x态3 ...状x态k
阶段k 状x态k+1...状x态n 阶段n
状态
xn+1
T1
T2
Tk
Tn
阶段是按决策进行
的时间或空间上先
后顺序划分的。 5
多阶段决策问题
动态规划方法与 “时间” 关系很密切,随着 时间过程的发展而决定各时段的决策,产生一个 决策序列,这就是 “动态” 的意思。然而它也可 以处理与时间无关的静态问题,只要在问题中人 为地引入“时段”因素,就可以将其转化为一个 多阶段决策问题。在本章中将介绍这种处理方法。
A3 45 B5 42
6 C 46
A4
5
A
6
B5
5
穷举法的工作量: 共有 2*3*2*2*2*1=48 条路径 进行48*5次加法, 计算每条路径的长度 进行47次比较,找最短路径
11
? 最短路径问题 ——求A0到A6的最短路径
5 A
0
3
1 A3 16
B
8 7
16
A6 28
3
B
25
C3 23
8 D4
2
A2 32
B1 32 C3 33
动态规划法(递推法,多段判断问题)
A3 45 B5 42
6 C 46
A4
5
A
6
B5
5
K=6: f(A 5)=4 f(B 5)=5
K=5: f(A 4)= min{ d(A 4,A5)+f(A 5) , d(A4,B5)+f(B 5) }=min { 3+4, 5+5}=7 f(B4)= min{ d(B 4,A5)+f(A 5) , d(B 4,B5)+f(B 5) }=min { 5+4, 2+5}=7 f(C4)= min{ d(C 4,A5)+f(A 5) , d(C 4,B5)+f(B 5) }=min { 6+4, 6+5}=10
8
算法总体思想
? 如果能够保存已解决的子问题的答案,而在需要时再找出已求 得的答案,就可以避免大量重复计算,从而得到多项式时间算 法。
=n T(n)
n/2
n/2
n/2
n/2
T(n/4) T(n/4)
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4)
— 动 态 规 划 。 1957 年 出 版 了 他 的 名 著 Dynamic
Programming,这是该领域的第一本著作。动态规划问世以 来,在经济管理、生产调度、工程技术和最优控制等方面得 到了广泛的应用。例如最短路线、库存管理、资源分配、设 备更新、排序、装载等问题,用动态规划方法比用其它方法 求解更为方便。
6
算法总体思想
? 基本思想 : 将待求解问题分解成若干个子问题
T(n)
=nΒιβλιοθήκη T(n/2)T(n/2)
T(n/2)
T(n/2)
7
算法总体思想
? 经分解得到的子问题往往不是互相独立的。 不 同子问题的数目常常只有多项式量级。
T(n)
=n
n/2
n/2
n/2
n/2
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4)T(n/4) T(n/4)T(n/4)T(n/4) T(n/4
d(i,j): 顶点i?顶点j 的边长
12
? 最短路径问题 ——求A0到A6的最短路径
5 A
0
3
1 A3 16
B
8 7
16
A6 28
3
B
25
C3 23
8 D4
2
A2 32
B1 32 C3 33
动态规划法(递推法,多段判断问题)
A3
4
B 42
6 C
4
A4
5
A
6
B5
5
K=6: f(A 5)=4 f(B 5)=5
K=5: f(A 4)= min{ d(A 4,A5)+f(A 5) , d(A4,B5)+f(B 5) }=min { 3+4, 5+5}=7 f(B4)= min{ d(B 4,A5)+f(A 5) , d(B 4,B5)+f(B 5) }=min { 5+4, 2+5}=7 f(C4)= min{ d(C 4,A5)+f(A 5) , d(C 4,B5)+f(B 5) }=min { 6+4, 6+5}=10
d(i,j): 顶点i?顶点j 的边长
13
? 最短路径问题 ——求A0到A6的最短路径
5 A
0
3
1 A3 16
B
8 7
16
A6 28
3
B
25
C3 23
8 D4
2
A2 32
B1 32 C3 33
动态规划法(递推法,多段判断问题)
A3
4
B 42
6 C
4
A4
5
A
6
B5
5
K=4: f(A 3)= min{ d(A 3,A4)+f(A 4) , d(A3,B4)+f(B 4) }=min { 2+7, 2+7}=9 f(B3)= min{ d(B 3,B4)+f(B 4) , d(B3,C4)+f(C4) }=min { 1+7, 2+10}=8 f(C3)= min{ d(C 3,B4)+f(B 4) , d(C3,C4)+f(C4) }=min { 3+7, 3+10}=10
3
? 应用范例
? (1)最短路径 ? (2)矩阵连乘问题; ? (3)流动推销员 ? (4)流水作业调度; ? (5)背包问题; ? (6)最优二叉搜索树。
4
多阶段决策问题
多阶段决策过程特点 :
把所给问题恰当地划 分为若干个相互联系 又有区别的子问题, 称之为阶段。
决策u1 决策u2
决策uk
决策un
相关文档
最新文档