趋肤效应(集肤效应)

合集下载

肌肤效应

肌肤效应

肌肤效应集肤效应(skin effect)又叫趋肤效应,表皮效应,当交变电流通过导体时,电流将趋于导体表面流过,这种现象叫集肤效应。

电流以较高的频率在导体中传导时,会聚集于导体表层,而非平均分布于整个导体的截面积中。

频率越高,趋肤效应越显著。

因为当导线流过交变电流时,根据楞次定律会在导线内部产生涡流,与导线中心电流方向相反,。

由于导线中心较导线表面的磁链大,在导线中心处产生的电动势就比在导线表面附近处产生的电动势大。

这样作用的结果,电流在表面流动,中心则无电流,这种由导线本身电流产生之磁场使导线电流在表面流动。

爬电现象、原理、原因、本质1、爬电现象在绝缘材料的性能降低时受天气等外界因素如空气湿度大,接连阴天霉雨季节,潮湿环境等使得带电金属部位与绝缘材料产生象水纹样电弧沿着外皮爬的现象,也有点象闪电一样.2、爬电原理两极之间的绝缘体表面有轻微的放电现象,造成绝缘体的表面(一般)呈树枝状或是树叶的经络状放电痕迹,一般这种放电痕迹不是连通两极的,放电一般不是连续的,只是在特定条件下发生,如天气潮湿、绝缘体表面有污秽、灰尘等,时间长了会导致绝缘损坏。

3、引起爬电现象的原因绝缘部分表面附着污秽,使绝缘部分绝缘强度下降,在空气潮湿发生爬电。

4、爬电的本质绝缘表面电压分布不均匀,造成局部放电。

5、发生爬电的环境发生爬电时电弧的长度受污秽的面积大小、空气湿度、电压高低因素影响。

在电缆的绝缘部分,绝缘材料的绝缘强度、防污秽附着、加长绝缘“距离”等性能会对爬电现象有影响尖端放电强电场作用下,物体尖锐部分发生的一种放电现象称为尖端放电,他属于一种电晕放电。

他的原理是物体尖锐处曲率大,电力线密集,因而电势梯度大,致使其附近部分气体被击穿而发生放电。

形式:尖端放电的形式主要有电晕放电和火花放电两种。

危害:1.引起火灾爆炸。

如上所述,由于火花型尖端放电的放电能量较大,因此很容易引起易燃易爆混合物的燃烧和爆炸,造成重大人身伤亡和财产损失。

高频变压器导线的趋肤效应

高频变压器导线的趋肤效应

高频变压器导线的趋肤效应1、趋肤效应趋肤效应亦称为“集肤效应”。

交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。

这种现象称“趋肤效应”。

趋肤效应使导体的有效电阻增加。

当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。

既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。

因此,在高频电路中可以采用空心导线代替实心导线。

此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。

交变磁场会在导体内部引起涡流,电流在导体横截面上的分布不再是均匀的,这时,电流将主要地集中到导体表面。

这种效应称为趋肤效应。

利用趋肤效应,在高频电路中可用空心铜导线代替实心铜导线以节约铜材。

架空输电线中心部分改用抗拉强度大的钢丝。

虽然其电阻率大一些,但是并不影响输电性能,又可增大输电线的抗拉强度。

2、高频变压器工作频率较高,一般在15-100kHz.因趋肤效应作用,变压器的导线粗细就受到一定限制。

工作频率的提高,趋肤效应影响越大。

因此,在设计绕组选择电流密度和线径时必须考虑趋肤效应引起的有效截面的减小。

导线通有高频交变电流时,有效截面的减少可以用穿透深度来表示。

穿透深度的意义是:由于趋肤效应,交变电流沿导线表面开始能达到的径向深度,用“Δ”表示,计算公式为:Δ——穿透深度(mm);ω——角频率,ω=2πf(rad/s);γ——电导率(S/m),当导线为铜线时,(S/m);μ——磁导率(H/m);铜的相对磁导率,;式中即为真空磁导率 H/m。

导体的穿透深度公式可以简化为:Δ=K×66.1/√f (mm), f是工作频率(Hz), K是常数对铜而言K=1。

铜导体的穿透深度(20 ℃)f(kHZ) 1 3 5 7 10 13 15 18 20 23Δ(mm) 2.089 1.206 0.9346 0.7899 0.6608 0.5796 0.5396 0.4926 0.4673 0.4358f(kHZ) 25 30 35 40 45 50 60 70 80 100Δ(mm) 0.4180 0.3815 0.3532 0.3304 0.3115 0.2955 0.2697 0.2497 0.2336 0.2098 3、高频变压器单股导线的最大线径<2Δ=2*66.1/√f (mm).假若工作频率f=30KHz时,最大线径为0.76mm ,所以选择0.8mm以上的导线就没有意义了.4. 高频变压器线径高频变压器线径公式:j I D ÷×13.1= ;I 是电流,J 是电流密度。

高频变压器导线的趋肤效应

高频变压器导线的趋肤效应

高频变压器导线的趋肤效应1、趋肤效应 趋肤效应 亦称为“集肤效应〞。

交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体外表电流密度越大。

这种现象称“趋肤效应〞。

趋肤效应使导体的有效电阻增加。

当频率很高的电流通过导线时,可以认为电流只在导线外表上很薄的一层中流过,这等效于导线的截面减小,电阻增大。

既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。

因此,在高频电路中可以采用空心导线代替实心导线。

此外,为了削弱趋肤效应,在高频电路中也往往使用多股互相绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。

交变磁场会在导体内部引起涡流,电流在导体横截面上的分布不再是均匀的,这时,电流将主要地集中到导体外表。

这种效应称为趋肤效应。

利用趋肤效应,在高频电路中可用空心铜导线代替实心铜导线以节约铜材。

架空输电线中心部分改用抗拉强度大的钢丝。

虽然其电阻率大一些,但是并不影响输电性能,又可增大输电线的抗拉强度。

2、高频变压器工作频率较高,一般在15-100kHz.因趋肤效应作用,变压器的导线粗细就受到一定限制。

工作频率的进步,趋肤效应影响越大。

因此,在设计绕组选择电流密度和线径时必须考虑趋肤效应引起的有效截面的减小。

导线通有高频交变电流时,有效截面的减少可以用穿透深度来表示。

穿透深度的意义是:由于趋肤效应,交变电流沿导线外表开始能到达的径向深度,用“Δ〞表示,计算公式为:Δ——穿透深度〔mm 〕;ω——角频率,ω=2πf 〔rad/s 〕;γ——电导率〔S/m 〕,当导线为铜线时,(S/m); μ——磁导率〔H/m 〕;铜的相对磁导率,;式中即为真空磁导率 H/m 。

导体的穿透深度公式可以简化为: Δ=K ×66.1/√f (mm), f 是工作频率(Hz), K 是常数对铜而言K=1。

铜导体的穿透深度〔20 ℃〕 f(kHZ) 13 5 7 10 13 15 18 20 23 Δ(mm) 2.089 1.2060.9346 0.7899 0.6608 0.5796 0.5396 0.4926 0.4673 0.4358 f(kHZ) 2530 35 40 45 50 60 70 80 100 Δ(mm) 0.4180 0.3815 0.3532 0.3304 0.3115 0.2955 0.2697 0.2497 0.2336 0.20983、高频变压器单股导线的最大线径<2Δ=2*66.1/√f (mm).假假设工作频率f =30KHz 时,最大线径为0.76mm ,所以选择0.8mm 以上的导线就没有意义了.4. 高频变压器线径高频变压器线径公式:j I D ÷×13.1= ;I 是电流,J 是电流密度。

导体的集肤效应

导体的集肤效应

集肤效应集肤效应又叫趋肤效应,当交变电流通过导体时,电流将集中在导体表面流过,这种现象叫集肤效应。

是电流或电压以频率较高的电子在导体中传导时,会聚集于总导体表层,而非平均分布于整个导体的截面积中。

目录电流在表面流动,中心则无电流,这种由导线本身电流产生之磁场使导线电流在表面流动。

集肤效应是电磁学,涡流学(涡旋电流)的术语。

这种现象是由通电铁磁性材料,靠近未通电的铁磁性材料,在未通电的铁磁性材料表面产生方向相反的磁场,有了磁场就会产生切割磁力线的电流,这个电流就是所谓的涡旋电流,这个现象就是集肤效应。

编辑本段计算公式我们可以计算交变电流集肤效应的深度:δ=1/sqrt(1/2*w*σ*μ)其中,w是交流电频率,σ是导体电导率,μ是导体磁通率。

编辑本段影响在高频电路中可以采用空心导线代替实心导线。

此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。

在工业应用方面,利用趋肤效应可以对金属进行表面淬火。

编辑本段效应考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又增加了导线的机械强度,这些都是利用了集肤效应这个原理集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容易被忽略误解的。

与一般讯号线的夸大宣传所言,集肤效应并不会改变所有的高频讯号,并且不会造成任何相关动能的损失。

正好相反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。

同样地,在陈旧的线束传导体上,集肤效应助长讯号电流在多条线束上的交互跳动,对于声音造成刺耳的记号。

编辑本段电流的集肤效应第一,电子在导体内总是沿着阻力最小的路线流动。

在导体表面及近表层的结构元与导体表面基本平行,电子在其间换位流动阻力较小。

而在导体内部结构元呈上下、左右、前后空间排列,电子在其间定向流动要受到五个方向的阻力,(而在表面只有三个方向的阻力)可见电子在导体表层附近运行的阻力要比在内部小得多,这样就导致了电流的集肤效应。

集肤效应

集肤效应

集肤效应1。

解释集肤效应(skin effect)又叫趋肤效应,当交变电流通过导体时,电流将集中在导体表面流过,这种现象叫集肤效应。

电流或电压以频率较高的电子在导体中传导时,会聚集于导体表层,而非平均分布于整个导体的截面积中。

频率越高,趋肤效用越显著。

因为当导线流过交变电流时,在导线内部将产生与电流方向相反的电动势??。

由于导线中心较导线表面的磁链大,在导线中心处产生的电动势就比在导线表面附近处产生的电动势大。

这样作用的结果,电流在表面流动,中心则无电流,这种由导线本身电流产生之磁场使导线电流在表面流动。

集肤效应是电磁学,涡流学(涡旋电流)的术语。

这种现象是由通电铁磁性材料,靠近未通电的铁磁性材料,在未通电的铁磁性材料表面产生方向相反的磁场,有了磁场就会产生切割磁力线的电流,这个电流就是所谓的涡旋电流,这个现象就是集肤效应。

2。

影响及应用在高频电路中可以采用空心导线代替实心导线。

此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。

在工业应用方面,利用趋肤效应可以对金属进行表面淬火。

考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又增加了导线的机械强度,这些都是利用了集肤效应这个原理。

集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容意被忽略误解的。

与一般讯号线的夸大宣传所言,集肤效应并不会改变所有的高频讯号,并且不会造成任何相关动能的损失。

正好相反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。

同样地,在陈旧的线束传导体上,集肤效应助长讯号电流在多条线束上的交互跳动,对于声音造成刺耳的记号。

skin effect定义在计算导线的电阻和电感时,假设电流是均匀分布于他的截面上。

严格说来,这一假设仅在导体内的电流变化率(di/dt)为零时才成立。

电磁感应集肤效应

电磁感应集肤效应

电磁感应集肤效应
集肤效应,也被称为趋肤效应,是指当交流电(AC)在导体内
流动时,电流会趋向于集中在导体表面流动的一种现象。

这种现象导致电流密度在导体表面附近较高,并随着导体深度的增加呈指数下降。

集肤效应的产生是由于交流电产生的变化磁场在导体内部产生
反向涡流引起的。

这种涡流产生一个与外部电流方向相反的电动势,阻止电流的通过。

由于导体中心处的磁链较大,因此在导体中心处产生的电动势比导体表面附近处产生的电动势大,导致电流主要在导体表面流动。

集肤效应的影响在于减小了导体的有效横截面,从而增加了其
有效电阻。

这意味着在高频交流电下,由于趋肤效应的增强,导体的电阻会显著增加。

因此,在射频和微波电路、传输线(或波导)和天线的分析和设计中需要考虑集肤效应的影响。

此外,集肤效应在工业应用方面也有一些应用,例如可以利用它对金属进行表面淬火。

总之,集肤效应是一种电磁学和涡流学的现象,主要在交流电通过导体时发生。

由于它对电流传输的效率和导体的电阻有显著影响,因此在许多领域都有实际应用。

趋肤效应 集肤效应

趋肤效应 集肤效应

趋肤效应_集肤效应交变电流通过导线时,电流在导线横截面上的分布是不均匀的,导体表面的电流密度大于中心的密度,且交变电流的频率越高,这种趋势越明显,该现象称为趋肤效应(skin effiect),趋肤效应也称集肤效应。

趋肤效应(skin effect),在“GB/T2900.1-2008电工术语基本术语”中定义如下:由于导体中交流电流的作用,靠近导体表面处的电流密度大于导体内部电流密度的现象。

注1:随着电流频率的提高,趋肤效应使导体的电阻增大,电感减小;注2:在更一般的情况下,任何随时间变化的电流都产生趋肤效应。

一、趋肤效应原理趋肤效应实际上是涡流的体现,涡流是电磁感应的一种体现方式,但是,某些文献简单的认为,由于电流流过导体时,导体中心处的磁感应强度大,因电磁感应产生的感应电动势大,根据楞次定理,感应电动势将阻碍电流的变化,这种说法是错误的。

以截面为圆形的长直导线为例,其磁场分布如下图1所示。

图1、截面积为圆形的长直导线内部磁场分布图根据安培环路定理,磁场强度H沿闭合回路的线积分等于闭合回路包含的电流的代数和,与闭合回路之外的电流无关。

均匀材质的导体中,磁感应强度B与磁场强度成正比,选闭合回路为图中所述的各条磁力线,可知,越靠近导体中心,磁力线包围的电流越小,在导体轴线上,磁感应强度为零。

实际上,趋肤效应是涡流效应的结果,如图2所示:图2、涡流与趋肤效应如图,电流I流过导体,在I的垂直平面形成交变磁场,交变磁场在导体内部产生感应电动势,感应电动势在导体内部形成涡流电流i,涡流i的方向在导体内部总与电流I的变化趋势相反,阻碍I变化,涡流i的方向在导体表面总与I的变化趋势相同,加强I变化。

在导体内部,等效电阻变大,而导体表面的等效电阻变小,交变电流趋于在导体表面流动,形成趋肤效应。

趋肤效应使导线通过交变电流的有效截面积减小了,导线的电阻增大了。

趋肤效应下导体的等效电阻变化了,这个等效电阻,称为交流电阻,交流电阻与电流的频率有关,频率越高,交流电阻越大。

趋肤效应

趋肤效应

趋 肤 效 应 图
ห้องสมุดไป่ตู้
理想中(图左)电子在导体中 以平均分布的方式传导流通, 集肤效应(图右)则是电子集 中在导体的近外肤位置上流通, 使横切面的核心部位呈现空泛 状态,进而使电流输送量减少。
原理
趋肤效应使导体的有效 电阻增加。频率越高,趋肤 效应越显著。当频率很高的 电流通过导线时,可以认为 电流只在导线表面上很薄的 一层中流过,这等效于导线 的截面减小,电阻增大。
削弱趋肤效应的方法:
1、在高频电路中可以采用空心导 线代替实心导线。 2、在高频电路中也往往使用多股 相互绝缘细导线编织成束来代替同 样截面积的粗导线,这种多股线束 称为辫线。 3、在工业应用方面,利用趋肤效 应可以对金属进行表面淬火。
4、在导体表面镀银。
所谓淬火:
淬火就是一种热处理的工艺,简单说就是 把工件加热到规定的温度,比如900度,然后 浸入水、盐水或者废机油里面迅速冷却,可 以大大提高工件的硬度和耐磨性,比如普通 的钢锯条,在淬火前很软,可以随意加工, 然后淬火,可以达到洛氏60度以上的硬度, 可以锯钢铁制品。
谢谢
趋肤效应的解析:
导体中的交变电流在趋近导体表面处电流密度 增大的效应。在直长导体的截面上,恒定的电流是 均匀分布的。对于交变电流,导体中出现自感电动 势抵抗电流的通过。这个电动势的大小正比于导体 单位时间所切割的磁通量。以圆形截面的导体为例, 愈靠近导体中心处,受到外面磁力线产生的自感电动 势愈大;愈靠近表面处则不受其内部磁力线消长的 影响,因而自感电动势较小。这就导致趋近导体表 面处电流密度较大。由于自感电动势随着频率的提 高而增加,趋肤效应亦随着频率提高而更为显著。 趋肤效应使导体中通过电流时的有效截面积减小, 从而使其有效电阻变大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集肤效应
在微波频率时,导体的电流密度将不会是平均分布于整个导体内部,而是在表面附近有较大的电流密度,在导体中心部分的电流密度是最小的。

我们称这种现象为〝集肤效应〞。

〈因为电流密度集中于表面处。


图一
高频时的导体电流密度分布情形,大致如<<图一>>所示,由表面向中心处的电流密度逐渐减小。

在此引进一个临界深度δ〈critical depth〉的大小,此深度的电流密度大小恰好为表面电流密度大小的1/e倍:
其中,f为频率,μ为导磁率〈H/m〉,ρ为电阻率〈mho/m〉。

由(1)可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。

因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去。

skin effect
趋肤效应简介
趋肤效应亦称为“集肤效应”。

交变电流(alternating electric current, AC)通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。

这种现象称“趋肤效应”。

趋肤效应使导体的有效电阻增加。

频率越高,趋肤效应越显著。

当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。

既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。

因此,在高频电路中可以采用空心导线代替实心导线。

此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。

在工业应用方面,利用趋肤效应可以对金属进行表面淬火。

交变磁场会在导体内部引起涡流,电流在导体横截面上的分布不再是均匀的,这时,电流将主要地集中到导体表面。

这种效应称为趋肤效应。

电流的频率愈高,趋肤效应越明显。

利用趋肤效应,在高频电路中可用空心铜导线代替实心铜导线以节约铜材。

架空输电线中心部分改用抗拉强度大的钢丝。

虽然其电阻率大一些,但是并不影响输电性能,又可增大输电线的抗拉强度。

利用趋肤效应还可对金属表面淬火,使某些钢件表皮坚硬、耐磨,而内部却有一定柔性,防止钢件脆裂。

原理:
载流导线要产生磁场.首先研究单根导线磁场.载流导线总是两条线,假设电流的回流线相距非常远,回流线磁场不会对单根载流导线的磁场产
生影响.
如果流过导线的电流是直流或低
频电流I,在导线内和导线的周围将产生磁场B,磁场从导体中心向径向方向扩展开来.在导体中心点,磁场包围的电流为零,磁场也为零;由中心点向径向外延伸时,包围的电流逐渐加大,磁场也加强,当
达到导体表面时,包围了全部电流,磁场也最强(H=I/πd-d 为导线直径).在导体外面,包围的电流不变,离开导线中心越远,磁场也越弱.
沿导线长度的横截面,低频电流在整个截面上均匀分布.当导体通过高频电流i 时,变化的电流就要在导体内和导体外产生变化的磁场垂直于电流方向.根据电磁感应定律,高频磁场在导体内沿长度方向的两个平面L 和N 产生感应电势.此感应电势在导体内整个长度方向产生的涡流阻止磁通的变化.这样主电流和涡流之和在导线表面加强,越向导线中心越弱,电流趋向于导体表面.这就是集肤效应.。

相关文档
最新文档