求数列的通项公式的十种方法

合集下载

数列通项公式方法大全很经典

数列通项公式方法大全很经典
⑤若an恒大于0,则数列 为等比数列.
⑥若 为正项等差自然数列,则 为等比数列.
⑦ 为等比数列.
⑧ ,n>2m,m、n , .
⑨ .
⑩若
则 .
重要性质
①若 p、q ,且 ,
则 .
②若 且 ,则 p、q .

= .
②若|q|<1,则 .
求数列{an}通项公式的方法
1. = + 型
累加法:
=( - )+( - )+…+( - )+
[解] = · … ·
=(n-1)·(n-2)…1·1=(n-1)!
∴ =(n-1)!(n∈N+)
4. =p + 型(p为常数)
方法:变形得 = + ,
则{ }可用累加法求出,由此求 .
例4.已知{ }满足 =2, =2 + .求 .
[解] = +1
∴{ }为等差数列.
=
∴ =n·
5. =p +q 型(p、q为常数)
评注:本题解题的关键是把递推关系式 转化为 ,从而可知数列 是等比数列,进而求出数列 的通项公式,最后再求出数列 的通项公式。
变式:
已知数列 满足 ,求数列 的通项公式。
已知数列 满足 ,求数列 的通项公式。
(5)对数变换法
例5已知数列 满足 , ,求数列 的通项公式。
解:因为 ,所以 。在 式两边取常用对数得 ⑩

将⑩式代入 式,得 ,两边消去 并整理,得 ,则
,故
代入 式,得
由 及 式,
得 ,
则 ,
所以数列 是以 为首项,以5为公比的等比数列,则 ,因此
则 。

求数列通项公式的11种方法

求数列通项公式的11种方法

求数列通项公式的11种方法数列通项公式是数学中一种重要的概念,它通过确定数列中任意一项的值来描述数列的规律。

它与算法不同,可在一定程度上减少计算量。

本文将介绍求数列通项公式的11种方法,帮助读者更好地理解数列通项公式的意义。

第一种方法是利用数列中已知项,来求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么数列的通项公式为a1+a2+ a3+ a4+a5,通过求和得出该数列的公式。

第二种方法是使用特征系数展开式求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用特征系数展开式求出该数列的通项公式:a1+2a2+3a3+4a4+5a5。

第三种方法是倒数展开式求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以使用倒数展开式求出该数列的通项公式:a1+a2/2+a3/3+a4/4+a5/5。

第四种方法是由观察法求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以通过观察发现,这是一个等比数列,则该数列的通项公式为a1qn-1,其中q为公比。

第五种方法是由增量法求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,增量法可以用来求出a2=a1+d1,a3=a2+d2,a4=a3+d3,a5=a4+d4,其中d1,d2,d3,d4为增量。

将这四式代入原式:a1+a2+a3+a4+a5,即可求出该数列的通项公式:a1+(n-1)(d1+d2+d3+d4)/2+nd5。

第六种方法是由公因式法求数列通项公式。

比如,一个数列已知前五项a1,a2,a3,a4,a5,那么可以将这五项分别除以共同的因子,求出最小因式,例如给定数列a1,a2,a3,a4,a5=2,4,8,16,32,其中32是最大因子,将其他四项都除以32,得到d1=1/2,d2=1/4,d3=1/8,d4=1/16,将d1,d2,d3,d4代入原式a1+a2+a3+a4+a5,即可求出该数列的公式。

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案

数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。

我们逐个讲解一下这些重要的方法。

递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。

这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。

(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。

累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。

数列通项公式办法大全很经典

数列通项公式办法大全很经典

1,数列通项公式的十种求法:(1)公式法(构造公式法)例1已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nna n =-。

评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。

(2)累加法例2已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。

变式:已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

(3)累乘法例3已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式。

求数列通项公式的11种方法

求数列通项公式的11种方法

求数列通项公式的11种办法办法总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法(罕用)不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等级差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-演习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n演习2.已知数列}{n a 知足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:裂项乞降n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21nn n a n a S +=,求数列}{n a 的通项公式.解:由已知)(21nn n a na S +=得)(2111---+-=n n n n n S S nS S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n ,又0>n a 2)1(2+=n n s n ,,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}na 的通项公式为(1)12325!.n n n na n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+nn na a , 即11+=+n na a nn ∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1. 评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出na .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c c dλ所以有:)1(11-+=-+-c d a c c d a n n 是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c da 首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c da c d a 即:1)1(11--⋅-+=-c d c c d a a n n .纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法(阶差法):有时我们从递推关系dca a n n +=+1中把n换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21nn a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:n n n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nn nn n q p p q a p a )(111⋅+=++,令n n n p a b =,则n nn q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即: q q a q p q a n n n n 111+⋅=++,令n nn q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列 设)(11n n n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a的通项公式.解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略 演习.(2003天津理) 设a 为常数,且)(2311N n a a n n n ∈-=--.证实对随意率性n≥1,012)1(]2)1(3[51a a n n n n nn ⋅-+⋅-+=-;3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法 经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-;解题根本步调: 1.肯定()f n =kn+b 2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法)解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得2)(311+-=--+n n n n a a a a .令nn n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即13511-⋅=--+n n n a a ② 再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}n a 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为yn x a y xn a n n ++-+=++-)1()(21比较系数可得:x=-6,y=9,上式即为12-=n n b b所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b即:nn n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如cn b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a )根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n na x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列. 例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式. 解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同) 则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案:nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型 例12 已知数列{}n a 知足3(1)2115nn n na aa ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n na a++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式. 例13.(2005江西卷)已知数列:,}{且满足的各项都是正数n a N n a a a a n n n ∈-==+),4(21,110,(1)证实12,;n n a a n N +<<∈ (2)求数列}{n a 的通项公式an.解:(1)略(2)],4)2([21)4(2121+--=-=+n n n n a a a a 所以21)2()2(2--=-+n n a ann nn n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令又b n =-1,所以1212)21(22,)21(---=+=-=n n n n n b a b 即.办法2:本题用归纳-猜测-证实,也很简捷,请试一试.解法3:设c n n b -=,则c2121-=n n c ,转化为上面类型(1)来解五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a例14. 设正项数列{}n a 知足11=a ,212-=n na a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n na a ,设1log 2+=n a n b ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log 12-=-n a n,∴1212--=n na演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nna --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 双方取经常运用对数得1lg 5lg lg3lg 2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg3lg3lg 2,4164x y ==+ 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg3lg3lg 2lg 04164n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +++是认为lg3lg3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n na -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=++=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =≥,则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -==首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++.八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. (2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a剖析:把已知关系经由过程11,1,2n nn S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n n n n a p a pk a q a q++--=⋅--,个中a pc k a qc -=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p +=+--,个中2ck a d=+.例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:,725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a , 公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求.例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19nn a -=+-. 演习1:已知{}n a 知足11122,(2)21n n n a a a n a --+==≥+,求{}n a 的通项n a答案:3(1)3(1)n nn nna --∴=+-演习2.已知数列{}n a 知足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a答案:135106n na n -∴=-演习3.(2009陕西卷文)已知数列{}n a 知足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证实:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式.答案:(1){}n b 是以1为首项,12-为公比的等比数列.(2)1*521()()332n n a n N -=--∈.十一:特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列 (已知 a1;a2)形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n nn a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,nn a c nc c c α=+是待定常数)再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n na a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n nn a c c =⋅+⋅, 由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25已知数列{}n a 知足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=演习1.已知数列{}n a 知足*12211,2,441()n n n a a a a a n N ++===--∈,求数列{}n a 的通项演习2.已知数列{}n a 知足*12211,2,444()n n n a a a a a n n N ++===---∈,求数列{}n a 的通项解释:(1)若方程2x px q =+有两不合的解s , t,则)(11-+-=-n n n n ta a s ta a , )(11-+-=-n n n n sa a t sa a ,由等比数列性质可得1121)(-+-=-n n n s ta a ta a , 1121)(-+-=-n n n t sa a sa a ,,s t ≠ 由上两式消去1+n a 可得()()()nn n t t s t sa a s t s s ta a a ..1212-----=.(2)若方程2x px q =+有两相等的解t s =,则()()12121211)(ta a s ta a s ta a s ta a n n n n n n n -==-=-=-----+ ,21211s ta a s a s a n n n n -=-∴++,等于⎭⎬⎫⎩⎨⎧n n s a 等差数列, 由等差数列性质可知()2121.1ssa a n s a s a n n --+=, 所以nn s n s sa a s sa a s a a ⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛--=.2122121. 例26.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}n a 的通项.解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n nn n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg 2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.四种根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.例27. 数列{n a }知足01=a ,n a a n n 21=++,求数列{a n }的通项公式. 剖析 1:结构 转化为)(1n f a a n n =-+型解法1:令n nn a b )1(-=则n a a a a b b n n n n n n n n n n 2)1()()1()1()1(111111⋅-=+-=---=-++++++.2≥n 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=⨯⋅-=--⋅-=--⋅-=-----012)1()2(2)1()1(2)1(112121211a b b b n b b n b b n n n n n n各式相加:[]1)1(2)1()2()1()1()1(2231⋅-+⋅-++--+--=- n n b n n n当n 为偶数时,n n n b n =⎥⎦⎤⎢⎣⎡-⋅-+-=22)1()1(2. 此时n b a n n == 当n 为奇数时,1)21(2+-=--=n n b n 此时n n a b -=,所以1-=n a n .故 ⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n解法2: na a n n 21=++∴2≥n 时,)1(21-=+-n a a n n ,两式相减得:211=--+n n a a . ∴,,,,531 a a a 组成以1a ,为首项,以2为公役的等差数列; ,,,,642 a a a 组成以2a ,为首项,以2为公役的等差数列∴22)1(112-=-+=-k d k a a k k d k a a k 2)1(22=-+=.∴⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n 评注:成果要还原成n 的表达式.例28.(2005江西卷)已知数列{a n }的前n 项和S n 知足 S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n }的通项公式. 解:办法一:因为),3()21(31112≥-⋅=++=-----n a a a a S S n n n n n n n 所以 以下同上例,略答案 ⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=--.,)21(34,,)21(3411为偶数为奇数n n a n n n)(1n f a a n n =⋅+型(1)若p a a n n =⋅+1(p 为常数),则数列{n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项.例29. 已知数列满足}{n a )(,)21(,3*11N n a a a nn n ∈=⋅=+,求此数列的通项公式.注:同上例相似,略.。

求数列通项公式的11种方法

求数列通项公式的11种方法

求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法(少用)不动点法(递推式是一个数列通项的分式表达式)、特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得111()nn k a a f n +=-=∑例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。

例2已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-= 评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

求数列通项公式的十种方法

求数列通项公式的十种方法

时间:二O二一年七月二十九日1. 不雅察法(求出 a1、a2、a3,然后找规律)之邯 郸勺丸创作时间:二 O 二一年七月二十九日即归纳推理,就是不雅察数列特征,找出各项配合的组成规律,然后利用数学归纳法加以证明即可.,,若 ,求及数列 的通项公式.解:由题意可知:,,.因此猜测.下面用数学归纳法证明上式.(1)当 n=1 时,结论显然成立.(2)假设当 n=k 时结论成立,即.(3)则,即当 n=k+1 时结论也成立. 由(1)、(2)可知,对于一切正整数.(最后一句总结很重要),都有2.定义法(已知数列为等差或者等比)直接利用等差数列或等比数列的定义求通项的办法叫定义法,这种办法适应于已知数列类型的题目.满足,,求 的通项公式.时间:二O二一年七月二十九日时间:二O二一年七月二十九日解:设等差数列 的公役为 .因为,所以 .又因为,所以,故 .所以.3.公式法若已知数列的前 n 项和 与 的关系,求数列的通项 可用公式 (Ⅰ)求数列解:(Ⅰ)由的前 项和为 ,已知 的通项公式.可得:当 时,,当 时,而,所以4.累加法 当递推公式为. 满足 ,且 为 解:由题意得: 5.累乘法时,通常解法是把原递推公式转化为 ( ),则数列{ }的前 10 项和时间:二O二一年七月二十九日时间:二O二一年七月二十九日当递推公式为时,通常解法是把原递推公式转化为,利用累乘法(逐商相乘法)求解.满足 解:由条件知 在上式中辨别令 即,求的通项公式., ,得 个等式累乘之,,即又6.机关法(拼凑法)-共 5 种题型,第 2、3 种办法不必掌握1、当递推公式为(其中 均为常数,且)时,通常解法是把原递推公式转化为,其中,再利用换元法转化为等比数列求解.例题:已知数列 满足,求 的通项公式.解:由得又所以是首项为 ,公比为 的等比数列所以因此数列 的通项公式为.时间:二O二一年七月二十九日时间:二O二一年七月二十九日2、当递推公式为 解法是把原递推公式转化为时,通常 ,其中 的值由方程给出.(了解即可,不必掌握)例题:在数列 中, =2, =,求数列 的通项 .解:由得又所以数列是首项为 ,公比为 的等比数列所以,即.3、当递推公式为(其中 均为常数,且 )时,通常解法是把原递推公式转化为.① 若 , 则,此时数列 是以 为首项,以 为公役的等差数列,则,即.② 若,则可化为形式求解.(了解即可,不必掌握)例题:已知数列{ }中, =1, =,求数列的通项公式.解:由得所以数列是首项为 = , 的等比数列所以=,即=时间:二O二一年七月二十九日时间:二O二一年七月二十九日4、当递推公式为( 为常数,且)时,通常两边同时取倒数,把原递推公式转化为.①若 ,则是以 为首项,以 为公役的等差数列,则,即.② 若 , 则 可 转 化 为(其中)形式求解.例 10.已知数列{ }满足 ,且数列{ }的通项公式. 解:原式可变形为两边同除以得(),求…… ⑴机关新数列,使其成为公比 的等比数列即整理得满足⑴式使∴∴数列是首项为,q= 的等比数列∴ 5、当递推公式为 归)时,将原递推公式∴.( 均为常数)(又称二阶递 转化为 - =时间:二O二一年七月二十九日时间:二O二一年七月二十九日( - ).其中 、 由解出,由此可得到数列{ - }是等比数列. 例题:设数列 的前 项和为 , .已知 , , ,且当 时, 证明:因为 所以 即 因为 所以.证明:为等比数列;因为所以数列是以比数列.时间:二 O 二一年七月二十九日为首项,以 为公比的等时间:二O二一年七月二十九日。

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n na 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。

二、累加法 )(1n f a a n n =--例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。

例3已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+ 三、累乘法 )(1n f a a n n =- 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求数列通项公式的十种方法
一.SA 法
⎩⎨⎧≥-==-)2(1)(n
11n S S S S n n
n 注意具体可分为两种方法 1.改写相减,消去S n
2.S n -S n-1直接替换掉a n ,求出S n ,再求出a n
例 1. 已知各项均为正数的数列{n a }的前n 项和为n S 满足1S >1且6n S =(1)(2)n n a a ++ n ∈N * 求{n a }的通项公式。

的通项公式
和,求数列项和为的前,数列项和为的前:已知数列例}{}{2}{22}{12n n n n n n n b a b T n b n n S n a -=+=
的通项公式
求各项均为正数,满足:已知数列例}{,21}{2n n n
n n a S a a a =+
的通项公式
并求数列试确定常数最大值为的
且项和的前:已知数列练习}{,.8),(2
1}{12
n n n n a k S N k kn n S n a *∈+-=
n
n n n n a S a n n S 求)已知(求)已知(:
练习,2232,732122-⋅=-+-=
二.累加累乘法(也可用迭代法求解)
用“累加”
形如二用“累乘”形如一)()(),()(11n f a a n f a a n n n n +==++
的通项公式
求满足:已知数列例}{,1,21}{1211n n n n a n
n a a a a ++==+
的通项公式
求项和前中,:已知数列例}{,3
2
,1}{21n n n a a n S n a a +==
的通项公式求,满足:已知数列练习n n n n a n a n n a a a ),1(2
31
33}{111≥+-=
=+
的通项公式
求数列满足:已知数列练习}{a ,a a ,5a }{a 2n 2)1(311n
n n
n n ++==
三.差商法
实质是已知数列的前n 项和或前n 项积,求数列的通项公式
的通项公式
求数列满足:已知数列例}{),(4
4
44}{11
32
21n n n n a N n n
a a a a a *-∈=+++
}{,2,1}{223211n n n a n a a a a n N n a a 求时都有且对所有中,:已知数列例=⋅⋅≥∈=*
四.构造法”“)(1n f pa a n n +=+ ,只能用此法。

若构造等比数列再累加求通项
两边同除)和三,构造二,构造一q p xq a q p q pa a y xn a q kn pa a p q
a q pa a n n n n n n n n n n n =+≠+=++++=-++=++++++},{2. ,p
1. 10,()(}{)(}
1{)(1
n 11111
的通项公式
求中,:已知数列例}{),(32,1}{111n n n n a N n a a a a *+∈+==
的通项公式
求满足:已知数列例}{),2(123,4}{211n n n n a n n a a a a ≥-+==-
的通项公式
求数列中,:已知数列例}{,)2
1(31,65}{31
11n n n n n a a a a a +++==
的通项公式
求中,:在数列练习}{,1232}{111n n n n n a n a a a +++=++
五.构造法之“取倒”
}
a 1{}1
{,1111,0,n 111a
b c
b a a a
c a a b a a c
a a
b a ab
c b ca aa a n n n n n n n n -+≠+==+
⋅=≠+=+++时,构造等比数列当成等差数列
则时,当去倒数得对于
的通项公式
求数列满足:已知数列例}{,1,1
3}{1111
n n n n n a a a a a a =+=--
通项公式
求数列且满足:已知数列例}{),2(1
23,23
}{2111n n n n n a n n a na a a a ≥-+==--
六.构造法之特征根法
为等差数列
,则根若特征方程只有一个实都为等比数列与,则,个相异实根若有对应的特征方程为}{
.2}{}{2.1)0,(1212212n
n
n n n n n n n a a a a a q
px x q p qa pa a α
αβαβα++++++--+=≠+=
的通项公式求中,:已知数列例}{,3
1
32,2,1}{11221n n n n n a a a a a a a +=
==++
的通项公式
求数列满足的两个实根,数列是方程:已知例}{,,,}{0,2212212n n n n n x qx px x q p x p x x q px x ---=-===+-βα
七.构造法之不动点法
为周期数列
没有不动点,则)若(为等差数列;
则只有唯一不动点)若(为等比数列;则有两个相异的不动点)若(的不动点
的解成为该方程
对应的特征方程为递推数列}{)(3}1
{,)(2}{
,,)(1)(,)0(1n n n n n n n a x f p a p x f q
a p
a q p x f d cx b
ax x f d
cx b
ax x bc d ca b aa a ---++=++=≠++=
+的通项公式
求且(:已知例}{,3),3
24111n n n n a a N n a a a =∈++=*+
八.构造法之取对法(少见)
1
1
}log {,1log log ),0,1,1,0(11-=
++=∈>≠≠>=+*+r x x a a r a p N n a r p p pa a n p n p n p n r
n n 是等比数列,其中则的对数,可得为底型,两边同时取以对于的通项公式
求数列中,已知数列例}{,2,1}{:12
11n n n n a a a a a ==+
九.构造法之换元法(不要求)
的通项公式
求数列满足已知数列}{a ,1a )
a 241a 41(161
a }{a 11n n n n n =+++=+
十.数学归纳法
的通项公式。

求数列满足已知数列}{a ,9
8
a ,)
32()12()
1(8a a }{a 12
21n n n n n n n =++++=+。

相关文档
最新文档