固体物理总复习题
固体物理题目总汇

填空题1、根据固体材料中原子排列的方式可以将固体材料分为晶体、非晶体和准晶体。
2、晶体结构=点阵+ 基元。
3、晶体的比热包括晶格比热和电子比热。
4、结晶学中,属于立方晶系的布拉维晶胞有简单立方、体心立方和面心立方三种。
5、密堆结构有两种:六方密堆积和立方密堆积。
6、原子电负性在一个周期内由左到右不断升高,周期表由上到下,负电性逐渐降低。
7、限定波矢q的取值范围在第一布里渊区8、金属的未满能带叫价带或导带。
1、人们利用X射线衍射测定晶体结构。
3、晶体的热学性质,如比热、热膨胀和热传导等就与晶格振动密切有关。
4、声子是一种准粒子,不具有通常意义下的动量,常把ħq称为声子的准动量。
5、根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷~线缺陷、面缺陷和体缺陷。
6、V心是F心的反型体。
1、晶体的基本结构单元称为基元。
2、面心立方晶胞的晶格常数为a,其倒格子原胞的体积等于32 3/a3。
3、布拉维空间点阵共有14 种,归为7种晶系。
5、一维双原子链的色散关系中频率较低的一支叫声学支(声频支),它很像单原子链中的声学支,;频率较高的一支则叫光学支(光频支)。
6、面缺陷有堆垛层错、小角晶界和晶粒间界三种主要形式。
8、一般情况下晶体电子的近似质量是张量,自由电子的惯性质量是标量。
9、对复式晶格,格波可分为声学波和光学波。
1、体心立方结构的第一布里渊区是菱形十二面 体。
2、已知某晶体的基矢取为1a 、2a 、3a ,某一晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为()6233、倒格矢体现了晶面的面间距 和 法向。
8、晶体中的载流子是 电子 和 空穴 。
2、正格子原胞体积Ω与倒格子原胞体积*Ω之积为 ()32π 3、金刚石晶体的基元含有 2 个原子,其晶胞含有 8 个碳原子。
6、准晶是介于周期性晶体 和非晶玻璃之间的一种新的固体物质形态。
8、晶格振动的简化模型主要有爱因斯坦模型和德拜模型。
1、面心立方结构的第一布里渊区是 十四面 体。
固体物理题目总汇

固体物理题目总汇填空题1、根据固体材料中原子排列的方式可以将固体材料分为晶体、非晶体和准晶体。
2、晶体结构=点阵+基元3、晶体的比热包括晶格比热和电子比热。
4、结晶学中,属于立方晶系的布拉维晶胞有简单立方、体心立方和面心立方三种。
5、密堆结构有两种:六方密堆积和立方密堆积。
6、原子电负性在一个周期内由左到右不断升高,周期表由上到下,负电性逐渐降低。
7、限定波矢q的取值范围在第一布里渊区8、金属的未满能带叫价带或导带。
1、人们利用某射线衍射测定晶体结构。
3、晶体的热学性质,如比热、热膨胀和热传导等就与晶格振动密切有关。
4、声子是一种准粒子,不具有通常意义下的动量,常把q称为声子的准动量。
5、根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷~线缺陷、面缺陷和体缺陷。
6、V心是F心的反型体。
1、晶体的基本结构单元称为基元2、面心立方晶胞的晶格常数为a,其倒格子原胞的体积等于323/a33、布拉维空间点阵共有14种,归为7种晶系。
5、一维双原子链的色散关系中频率较低的一支叫声学支(声频支),它很像单原子链中的声学支,;频率较高的一支则叫光学支(光频支)。
6、面缺陷有堆垛层错、小角晶界和晶粒间界三种主要形式。
8、一般情况下晶体电子的近似质量是张量,自由电子的惯性质量是标量。
9、对复式晶格,格波可分为声学波和光学波。
1、体心立方结构的第一布里渊区是菱形十二面体。
2、已知某晶体的基矢取为a1、a2、a3,某一晶面在三个基矢上的截距分别为3,2,-1,则该晶面的晶面指数为2363、倒格矢体现了晶面的面间距和法向。
8、晶体中的载流子是电子和空穴2、正格子原胞体积与倒格子原胞体积之积为233、金刚石晶体的基元含有2个原子,其晶胞含有8个碳原子。
6、准晶是介于周期性晶体和非晶玻璃之间的一种新的固体物质形态。
8、晶格振动的简化模型主要有爱因斯坦模型和德拜模型。
1、面心立方结构的第一布里渊区是十四面体。
2、代表基元中的几何点称为格点。
固体物理复习题

固体物理复习题一、名词解释1、布拉菲格子2、共价键的方向性和饱和性3、布洛赫波函数4、简单格子和复式格子5、声子6、p3杂化轨道7、费米面8、第一布里渊区9、倒格子二、证明1、只考虑近邻相互作用(待定力常数为)和简谐近似下,试证明一维单原子链晶格振动波的色散关系为:(q)2Minaq2采用周期性边界条件讨论q的取值,并说明它和介质弹性波波矢取值的差异。
2、利用线性谐振子模型证明两个极性分子间的吸引能与它们之间距离的六次方成正比。
3、证明一维晶格的布洛赫定理。
24、证明倒格矢G晶面(h1h2h3),并且G(d为晶面(h1h2h3)的面间距)dE(kG)E(k)E(k)E(k)5、证明能带的对称性:n,nhnn三、简答2、金刚石结构有几支格波几支声学波几支光学波设晶体有N个原胞,晶格振动模式数为多少3、试用能带论阐述导体、绝缘体、半导体中电子在能带中填充的特点.4、原子间的排斥作用和吸引作用有何关系?起主导的范围是什么?5、什么是原胞?什么是单胞?二者有何区别?6、金刚石结构的晶体为何种布拉维格子?配位数是多少?每个原胞有几个原子?该晶体的倒格子是什么类型7、、什么是原子的电离能、亲和能和负电性?8、石墨中是电子还是电子导致石墨的导电性?简述原因。
9、什么是简正模?什么是格波?格波和弹性波之间有什么区别?10、解释布里渊区的物理意义,在布里渊区边界上能带有何特点四、计算1、晶格常数为a的体心立方格子的倒格子为什么格子?并给出晶格常数。
2、一维简单正方晶格,晶格常数为a,每个原胞有一个原子,每个原子只有一个态价电子,使用近束缚紧似,只计入近邻相互作用。
(1)求出电子组成的能带的E(k)函数;(2)求出能带带顶和带底的位置和能量值;如果换成二维结果又如何?如果换成体心立方结果又如何?3、利用线性谐振子模型讨论两个极性分子间的吸引能与它们之间距离的六次方成正比。
4、求金刚石结构的几何结构因子消光条件。
固体物理复习总结题

固体物理复习题第一章 晶体结构1、简单立方的配位数为_______(6),体心立方的配位数为_______(8),面心立方的配位数为_____(12),六角密排的最大配位数为________(12)。
2、晶体中两原子的位矢为31132a a R +=,321223a a a R ++=,那么这两个原子连线所成的晶向为___________(]131[)。
3、某格点的位矢为32132a a a R ++=,该格矢与晶向]111[的夹角余弦为______。
4、晶向[1 2 3]与[2 3 4]的夹角余弦为_____。
5、已知j i a j i a 2,21+=+=,212a a R A +=,212a a R B +=,则AB 连线的晶向为_____(]011[),方向为______(j )。
6、已知A 点格矢为k j i R A 543++=,则A 到过原点的晶列[1 2 3]的距离为____。
7、对于简单立方k a a j a a i a a ===321,,,则面(1 2 3)的面间距d=______,该面的法线方向为______,它与321432b b b G ++=的夹角余弦为______。
8、已知j i a j i a 2,21+=+=,则相应的倒格矢=1b ______,=2b ______,倒格子的原胞大小为_______。
9、面心立方中面(2 3 4)与面(1 3 5)的夹角余弦为_________。
10、体心立方中A 点的格矢322a a R +=与过原点的晶列[1 1 3]的距离为____。
11、j a j i a 5),60sin 60(cos 521=︒+︒=的倒格矢=1b ________,=2b _______,倒格矢的原胞大小为_______。
第二章 固体的结合12、两离子之间的势能函数为243)(rr r U +-=(长度单位为Å,能量单位为eV ),其平衡位置=0r ______,两离子间结合能为_______,在=r _____处两离子之间的吸引力最大,最大吸引力为=m ax f ______,相应的势能为=)(r U _________。
固体物理考题汇总 (无答案)

第一章晶体结构一、填空1、晶面有规则,对称配置的固体,具有长程有序特点的固体称为;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为。
由晶粒组成的固体,称为。
2、化合物半导体材料GaAs晶体属于闪锌矿类结构,晶格常数为a,其配位数为。
一个惯用元胞(结晶学元胞)内的原子数,其布喇菲格子是。
其初基原胞(固体物理学原胞)包含原子数,体积为。
初基元胞的基矢为,,。
3、半导体材料Si具有金刚石型晶体结构,晶格常数为a,其配位数为。
一个惯用元胞(结晶学元胞)内的原子数。
属于布喇菲格子。
写出其初基元胞(固体物理学元胞)的基矢________,_______,_______。
晶格振动色散关系中支声学波,支光学波,其总的格波数。
4、简立方结构如果晶格常数为a,其倒格子元胞基矢为是_______,______,_________ 。
在倒格子空间中是结构,第一布里渊区的形状为______,体积为______ 。
5、某元素晶体的结构为体心立方布喇菲格子,其格点面密度最大的晶面的密勒指数____ ,并求出该晶面系相邻晶面的面间距________。
(设其晶胞参数为a )。
6、根据三个基矢的大小和夹角的不同,十四种布喇菲格子可归属于_____ 晶系,其中当 90,=====γβαc b a 时称为 _____类晶系,该晶系的布喇菲格子有 ______ 。
7、NaCl 晶体是由两个 _ 格子沿体对角线滑移1/4长度套构而成;设惯用原胞的体积为a 3,一个惯用元胞内的原子数 ;其配位数为 ,最近邻距离 ;初基原胞体积为 ,第一布里渊区体积为______;晶体中有 支声学波, 支光学波。
8、对晶格常数为a 的SC ,与倒格矢 242K i j k a a aπππ=+- 正交的晶面族的晶面指数为____,其面间距为 __ 。
9、半导体材料Si 具有金刚石型晶体结构,晶格常数为a ,一个惯用元胞内的原子数 ,一个固体物理学原胞内的原子数 ;固体物理学原胞的体积 ,倒格子原胞的体积 __ ,第一布里渊区的体积为 ;晶格振动色散关系中 支声学波,______ 支光学波。
固体物理期末复习真题

(c)对初基矢量 a1, a 2, a3 互相正交的晶体点阵,有
d ( hkl ) 1 h k l a a a 1 2 3
2 2 2
八、在量子固体中,起主导作用的排斥能是原子的零点能。考虑晶态 4He 一个非常粗 略的一维模型,即每个氦原子局限在长为 L 的线段上,把线段 L 取为基态波函数 的半波长, (a)试求每个粒子的零点动能; (b)推导维持该线度不发生膨胀所需要的力的表达式; (c)在平衡时,动能所导致的膨胀倾向被范德瓦尔斯作用所平衡。如果非常粗 略地给出最近邻间的范德瓦尔斯能为 u ( L) 1.6 L6 10 60 erg ,其中 L 以 cm 表示, 求 L 的平均值。 九、 (a)证明对于波矢为 K ,频率为 的格波 u s ue i ( sKa t ) 一维单原子点阵的总动量 为 P( K ) iMue it e isKa ;
5
三十四. 在金属自由电子的模型中,假定传导电子可以近似看作是自由电子气,电子 数密度为 n,驰豫时间为 ,试导出金属电导率的表达式
m * 为电子有效质量.
ne 2 m*
三十五. 对三维晶体, 利用德拜模型,求
1、高温时 0 ~ D 范围内的声子总数,并证明晶格热振动能与声子总数成正比; 2、极低温时 0 ~ D 范围内的声子总数,并证明晶格热容与声子总数成正比。
q F U 0 kBT ln k T q B
其中 U 0 为系统平衡时的结合能. 三十三. 一维晶格基矢为 ai ,假设其晶体势是由围绕原子的一系列矩形势阱所组成, 每个阱的深度都是 V0 ,宽度 a 5 .用近自由电子模型计算前三个能隙,并比较这些 能隙的数值.
固体物理复习题试卷.doc

2、 原子间的排斥力主要是什么原因引起的?库仑斥力与泡利原理引起的 3、 固体呈现宏观弹性的微观本质是什么?[解答]固休受到外力作用时发卞形炎,外力撤消后形殳消失的性质称为固休的弹性.设无外力时相邻原子间的距 离为当相邻原了间的距离吋,吸引力起主导作用;当相邻原了间的距离吋,排斥力起主导作用.当固体受挤压时,^<r o,原子间的排斥力抗山•着这一形变.当固体受拉伸时,r>r o,原子间的吸引力抗山•肴这一形变.因此,固体朵现宏观弹忡.的微观本质足原子间存在着相互作用力,这种作W 力既包含着吸引力,乂包含 肴排斥力. 4、简述产生范德瓦斯力的三个来源,为什么分子晶体是密堆积结构?答:米源:1、极件分子间的固有偶极矩产生的力称力Kecsen 力;2、感应偶极矩产生的力称为Debye 力:3、非极 性分了•间的瞬时偶极矩产t 的力称为London 力。
由丁•范德瓦耳斯力引起的吸引能4分子间的距离r 的6次方成反比,因此,只有岀分子间的距离r 很小时范德 瓦戽斯力才能起作用。
而分f 晶体的排斥能与分广间的距离r 的12次方成反比,凶此排斥能随分丁间的距离增加 而迅速减少。
范徳瓦耳斯力没何方向性.也小受感应电荷是否异同号的限制,因此.分了晶体的配位数越人越好。
配位数越大,原子排列越密集,分子晶体的结合能就越大,分子晶体就越稳定,在自然界排列最密集的晶体结构为 面心V 方或六方密堆积结构。
5、晶体结合类型及机理。
周期表中元索和化合物晶体结合的规律性。
(见课本)答:结合类型及机理:离子晶体一离子键分子晶体一范德瓦尔斯力共价晶体一井价键金属晶体一金属键M 键席休一氢键。
6、试述共价键定义,为什么共价键具有饱和性和方向性的特点?答:共价键是化学键的一种,两个成多个原了•共同使用它们的外层电了,/I:理想情况下达到电了•逛®的状态,由此 组成比较稳定和坚固的化学结构叫做共价键。
当原•丫中的电了 M 配对后,便再不能再与笫个电丫•配对,囚此当个原•丫与其他原丫结合吋,能够形成共 价键的数目何一个敁人值,这个敁人值取决于它所含有的未配对的电了数。
2022固体物理复习题及答案

2022固体物理复习题及答案固体物理卷(A)第一部分:名词解释(每小题5分,共40分)1.原胞:在完整晶体中,晶格在空间的三个方向上都具有一定的周期对称性,这样可以取一个以结点为顶点,边长等于这三个方向上的周期的平行六面体作为最小的重复单元,来概括晶格的特征,这样的重复单元称为初基原胞或简称原胞。
2.晶面指数:一个晶面得取向可以由这个晶面上的任意三个不共线的点确定,如果这三个点处在不同的晶轴上,则通过有晶格常量a1,a2,a3表示这些点的坐标就能标定它们所决定的晶面,它们具有相同比率的最小整数称为晶面指数3.布拉格定律:假设入射波从晶体中的平行原子平面作镜面反射,每个平面反射很少一部分辐射,就像一个轻微镀银的镜子一样。
在这种类似镜子的镜面反射中,其反射角等于入射角。
当来自平行原子平面的反射发生相长干涉时,就得出衍射束。
考虑间距为d的平行晶面,入射辐射线位于纸面平面内。
相邻平行晶面反射的射线行程差是2din某,式中从镜面开始量度。
当行程差是波长的整数倍时,来自相继平面的辐射就发生了相长干涉。
这就是布拉格定律。
布拉格定律用公式表达为:2din某=n某λ(d为平行原子平面的间距,λ为入射波波长,某为入射光与晶面之夹角),布拉格定律的成立条件是波长小于等于2d。
布拉格定律是晶格周期性的直接结果。
4.简述三维空间的晶系种类及其所包括的晶格类型三斜1,单斜2,正交4,四角2,立方3,三角1,六角1。
5.布里渊区:在固体物理学中,第一布里渊区是动量空间中晶体倒易点阵的原胞。
固体的能带理论中,各种电子态按照它们波矢的分类。
在波矢空间中取某一倒易阵点为原点,作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分为一系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;各布里渊区体积相等,都等于倒易点阵的元胞体积。
周期结构中的一切波在布里渊区界面上产生布喇格反射,对于电子德布罗意波,这一反射可能使电子能量在布里渊区界面上(即倒易点阵矢量的中垂面)产生不连续变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理总复习题一、填空题1.原胞是的晶格重复单元。
对于布拉伐格子,原胞只包含个原子。
2.在三维晶格中,对一定的波矢q,有支声学波,支光学波。
3.电子在三维周期性晶格中波函数方程的解具有形式,式中在晶格平移下保持不变。
4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为;能带的表示有、、三种图式。
5.按结构划分,晶体可分为大晶系,共布喇菲格子。
6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为格子,由若干个布喇菲格子相套而成的格子,叫做格子。
其原胞中有以上的原子。
7.电子占据了一个能带中的所有的状态,称该能带为;没有任何电子占据的能带,称为;导带以下的第一满带,或者最上面的一个满带称为;最下面的一个空带称为;两个能带之间,不允许存在的能级宽度,称为。
8.基本对称操作包括,,三种操作。
9.包含一个n重转轴和n个垂直的二重轴的点群叫。
10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为。
11.具有晶格周期性势场中的电子,其波动方程为。
12.在自由电子近似的模型中,随位置变化小,当作来处理。
13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作处理。
这是晶体中描述电子状态的模型。
14.固体可分为,,。
15.典型的晶格结构具有简立方结构,,,四种结构。
16.在自由电子模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。
17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为,表达式为。
18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。
19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。
20.晶体的五种典型的结合形式是、、、、。
21.两种不同金属接触后,费米能级高的带电,对导电有贡献的是的电子。
22.固体能带论的三个基本假设是:、、。
23.费米能量与和因素有关。
二、名词解释1.声子;2.布拉伐格子;3. 能带理论的基本假设.4.费米能;5. 晶体的晶面;6. 近自由电子近似。
7.晶体;8. 晶格;三、简述题1.试说明在范德瓦尔斯结合、金属性结合、离子性结合和共价结合中,哪一种或哪几种结合最可能形成绝缘体、导体和半导体。
2.什么是声子?声子与光子有什么相似之处和不同之处?3.什么是德拜温度?它有什么物理意义?4.试叙述原子能级与能带之间的对应关系。
5.简述布洛赫定理,解释简约波矢k的物理意义,并阐述其取值原则。
6.试说明晶体结合的基本类型及其特点?7.共价结合中为什么有”饱和性”和”方向性”?8.什么是晶体热容的爱因斯坦模型和德拜模型?比较其主要结果。
9.什么是晶体振动光学支和声学支格波?它们有什么本质上的区别?10.近自由电子模型与紧束缚模型各有何特点?它们有相同之处?11.金属晶体的结合力是什么?一般金属晶体具有何种结构,最大配位数为多少?12.德拜模型在低温下理论结果与实验数据符合相对较好但是仍存在偏差,其产生偏差的根源是什么?13.原子间的排斥作用取决于什么原因?14.试述固体物理学原胞和结晶学原胞的相似点和区别?15.根据结合力的不同,晶体可分为几种类型其各自的结合力分别是什么?16.爱因斯坦模型在低温下理论结果与实验数据存在偏差的根源是什么?17.什么是“空穴”?简述空穴的属性。
固体物理总复习题答案一、填空题1、最小;12、3; 33-n3、)(r u e k rk i k ρρρρρ=ψ ;)(r u k ρρ 4、禁带(带隙);扩展能区图式法;简约布里渊区图式法;周期性能区图式法 5、7;146、布喇菲;复式;两个7、满带;空带;价带;导带;带隙8、 平移;旋转 ;反演9、 双面群10、简正振动11、)()()](2[22r E r r V m ρρρηψψ=+∇-12、周期势场; 微扰13、 微扰;紧束缚14、晶体;非晶体;准晶体15、体心立方;面心立方;六角密排16、na K π=;n V 217、 原子轨道线性组合法;)()(∑-=m m i m R r a r ρρρϕψ18、频率;格波19、顶点;面心、体心;20、离子结合;共价结合;金属结合;范德瓦尔斯结合;氢键结合21、正;费米面附近22. 绝热近似;单电子近似;周期场近似23.、电子密度;温度二、名词解释1.晶格振动中格波的能量量子。
每个振动模式的能量均以ωη为单位,能量递增为ωη的整数倍——声子的能量,一个格波就是一个振动模式,对应一种声子。
2.由332211a l a l a l ρρρ++确定的空间格子。
3.(1)绝热近似:将固体分开为电子系统及离子实系统的一种近似方法;(2)单电子近似(自洽场近似):利用哈特里 —— 福克方法将多电子问题归结为单电子问题;(3)周期场近似:假定单电子势场具有与晶格同样的平移对称性。
4.电子按泡利不相容原理,能量从低至高填充,所达到的最高能级。
5.在布拉伐格子中作一族平行的平面,这些相互平行、等间距的平面可以将所有的格点包括无遗,这些相互平行的平面称为晶体的晶面。
6.假定周期场的起伏比较小,作为零级近似,可以用势场的平均值V 代替V(x),把周期起伏 [ V(x)—V ] 做为微扰来处理。
7.晶体是由完全相同的原子、分子或原子团在空间有规则地周期性排列构成的固体材料。
8.晶体中的原子是规则排列的,用几组平行直线连接晶体中原子形成的网络,称为晶格。
三、简述题1.试说明在范德瓦尔斯结合、金属性结合、离子性结合和共价结合中,哪一种或哪几种结合最可能形成绝缘体、导体和半导体。
答:离子晶体主要依靠正负离子之间的静电库仑力而结合,结合力较强,结构甚为稳定,结合能较大,因此,导电性能差,这种结合可能形成半导体和绝缘体。
共价结合的晶体为原子晶体,是由两原子之间一对自旋相反的共有化电子形成的,其结合力较强,导电性能差,这种结合可能形成半导体和绝缘体。
金属性结合的晶体,原子失去价电子而成为离子实,价电子为全体离子实所共有,金属性结合就是价电子与离子实之间的相互作用而形成的,结合能较 小,易形成导体。
范德瓦尔斯结合的晶体为分子晶体,这种结合是一种弱的结合,电离能大,易形成绝缘体。
2.什么是声子?声子与光子有什么相似之处和不同之处?答:晶格振动的能量是量子化的,把晶格振动能量的量子称为声子。
声子与光子相类似,凡是应用到光子上的理论,几乎都可以应用到声子上,相同之处是它们都是波色子,碰撞过程中能够被产生、或被消灭,能量的交换是一份一份的,即能量是量子化的。
不同之处是声子只代表振动的机械状态,而不具有动量。
光子可以在真空中传播,而声子只能在介质中传播。
3.什么是德拜温度?它有什么物理意义?答:德拜弹性波模型的截止频率m ω按B mk ωη关系式换算得到的温度称为德拜温度D Θ。
热容量的特征完全由德拜温度确定,它近似地代表经典比热理论适用的高温范围同低温适用的低温范围的分界温度。
可以粗略地指示出晶格振动频率的数量级。
4.试叙述原子能级与能带之间的对应关系。
答:原子能级与能带之间存在着两种对应关系,一是简单的一一对应,原子的各不同能级在固体中将产生一系列相应的能带,低能级的能带较窄,高能级的能带较宽。
二是在形成晶体的过程中,不同原子态之间有可能相互混和,使对应关系变的比较复杂,可认为主要是由几个能级相近的原子态相互结合而形成能带,能带发生了明显的重叠。
5.简述Bloch定理,解释简约波矢k的物理意义,并阐述其取值原则。
答:在晶体周期性势场中运动的电子的波函数是按晶格周期调幅的平面波,即电子的波函数具有如下形式其中k为电子的波矢,R n为格矢,上述理论称为布洛赫定理。
平移算符和能量算符是对易算符,具有相同的本征态,为了使平移算符在波矢k的某个范围内,一个本征值对应于一个波函数,我们把波矢限制在⎪⎭⎫⎝⎛-2,2kk范围内,这一区域称为简约布里渊区。
在此范围内的波矢,我们称为简约波矢。
6.试说明晶体结合的基本类型及其特点?答:晶体中的原子之所以能够结合成具有一定几何结构的稳定晶体,是由于原子之间存在着结合力,而这种结合力与原子的结构有关,不同类型的原子之间具有不同性质的结合力,由于结合力的性质不同,晶体会具有不同类型的结合。
一般晶体的结合可以概括为离子性结合、共价结合、金属性结合和范德瓦尔斯结合四种基本形式。
离子晶体的典型晶格中,正、负离子相间排列,作用力的总效果为库仑引力,具有结构很稳定、导电性能差、熔点高、硬度高、膨胀系数小的特点;共价结合的晶体是一对近邻原子相互靠近,波函数交叠,形成共价键,具有饱和性和方向性;金属性结合是共有化的价电子与离子实之间的价键结合,结构密排,具有熔点高、硬度高、导电、导热性能好、无饱和性和方向性等特点;范德瓦尔斯结合产生在原来稳定电子结构的原子或分子之间,结合后仍保持原来的电子结构,具有结合力小、熔点很低、硬度很小的特点。
7.共价结合中为什么有”饱和性”和”方向性”?答: 设N为一个原子的价电子数目,对于ⅣA,ⅤA,ⅥA,ⅦA族元素,价电子壳层一共有8个量子态,最多能接纳(8-N)个电子,形成(8-N)个共价键。
这就是共价结合的“饱和性”。
共价键的形成只能在特定的方向上,这些方向是配对电子波函数的对称轴方向,在这个方向上交迭的电子云密度最大。
这就是共价结合的“方向性”。
8.什么是晶体热容的爱因斯坦模型和德拜模型?比较其主要结果。
答:爱因斯坦模型是假设晶体中的所有原子都以相同的频率0ω,作相互独立的振动。
德拜模型是把晶体看作各向同性的连续介质,格波视为弹性波,色散关系为直线。
爱因斯坦模型忽略了各格波的频率差别,假设过于简单,理论值的关系与实验值不符。
德拜模型在低温时,热容决定于最低频率的振动,理论值与实验值相符。
9.什么是晶体振动光学支和声学支格波?它们有什么本质上的区别?答:在一维双原子的简单复式晶格中,求解原子的运动方程。
对应于每一个q值,都有频率-ω和+ω的两类振动,且+->ωω,对应于+ω的格波称为光学分支的格波。
对应于-ω的格波称为声学分支的格波。
对于光学分支的格波,相邻两不同原子的振动方向相反。
而对于声学分支的格波,相邻两原子的振动方向相一致,且在长波情况下,声学分支的格波与弹性波相一致。
10.近自由电子模型与紧束缚模型各有何特点?它们有相同之处?解:所谓近自由电子模型就是认为电子接近于自由电子状态的情况,而紧束缚模型则认为电子在一个原子附近时,将主要受到该原子场的作用,把其它原子场的作用看成微扰作用。
这两种模型的相同之处是:选取一个适当的具有正交性和完备性的布洛赫波形式的函数集,然后将电子的波函数在所选取的函数集中展开,其展开式中有一组特定的展开系数,将展开后的电子的波函数代入薛定谔方程,利用函数集中各基函数间的正交性,可以得到一组各展开系数满足的久期方程。