弹性力学总结
弹性力学知识点总结

弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
弹性力学 总结

弹性力学总结弹性力学是研究物体在外力作用下的变形和应力的科学。
它是力学的一个分支,广泛应用于工程领域中的结构设计和材料力学等方面。
在本文中,我将对弹性力学进行总结,从基本概念到应用和发展趋势等方面进行阐述。
弹性力学的基本概念可以追溯到17世纪,当时有很多科学家开始研究物体的变形和力的关系。
罗伯特·胡克被公认为弹性力学的奠基人,他提出了著名的胡克定律,即物体的变形与受力成正比。
根据胡克定律,当外力作用在一个物体上时,它将引起物体的变形,而变形与外力之间存在线性关系。
在弹性力学中,常用的变形参数有拉伸、压缩、剪切和弯曲等。
通过测量这些变形参数,可以得到物体的应力分布。
应力是物体内部的力和单位面积之比,它反映了物体受力的程度。
根据应力的不同分布规律,可以确定物体的受力状态,从而进行结构设计和材料力学分析。
弹性力学的应用广泛,特别是在工程领域中。
在建筑设计中,弹性力学可以用于确定结构的强度和稳定性,从而确保结构的安全性。
在机械工程中,弹性力学可以用于设计和分析弹性元件,如弹簧和悬挂系统等。
此外,弹性力学还可以应用于材料研究、地质学和天体物理学等领域。
近年来,随着科学技术的发展,弹性力学也取得了一系列的进展。
例如,弹性力学在纳米材料研究中的应用日益广泛。
由于纳米材料具有特殊的力学性能,如尺寸效应和表面效应等,弹性力学理论需要进行适应性调整,以准确描述纳米材料的力学行为。
此外,基于弹性力学的模拟方法也在逐渐发展。
通过数值模拟和计算机仿真,可以更全面地研究物体的变形和应力分布。
这为结构设计和材料力学提供了更多的参考依据。
总之,弹性力学是研究物体变形和应力分布的重要科学,它在工程领域中有着广泛的应用。
通过研究物体的变形和应力分布,可以确保结构和材料的安全性和性能。
随着科学技术的进步,弹性力学也在不断发展,适应越来越复杂的材料和结构需求。
弹性力学的研究将有助于推动科技进步和实现更安全和可靠的工程设计。
弹性力学总结

弹性力学总结第一章绪论一、弹性力学的内容:弹性力学的研究对象、内容和范围。
二、弹性力学的基本量1、外力(1)体力(2)面力2、内力——应力3、应变4、位移以上基本量要求掌握其定义、表达式、分量的符号、正负号规定、量纲。
三、弹性力学中的基本假定1、连续性2、完全弹性3、均匀性4、各向同性以上是对材料性质的假定,凡符合以上四个假定的物体,称为理想弹性体。
5、小变形假定(对物体的变形状态所作的假定)要求掌握各假定的内容和意义(在建立弹性力学基本方程时的作用)。
习题举例:1、弹性力学,是固体力学的一个分支,它的任务是研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的(),从而解决各类工程中所提出的强度、刚度和稳定问题。
A.应力、应变和位移;B.弯矩、扭矩和剪力;C.内力、挠度和变形;D.弯矩、应力和挠度。
2、在弹性力学中,作用于物体的外力分为()。
A.体力和应力;B.应力和面力;C.体力和面力;D.应力和应变。
3、重力和惯性力为(C )。
A .应力;B .面力;C .体力;D .应变。
4、分布在物体体积内的力称为( C )。
A .应力;B .面力;C .体力;D .应变。
5、物体在体内某一点所受体力的集度的表达式及体力分量的量纲为( A )。
A .0lim V F f V∆→∆=∆,-2-2L MT ; B .0lim S F f S ∆→∆=∆,-1-2L MT ; C .0lim A F p A ∆→∆=∆,-1-2L MT ; D .0lim V F f V ∆→∆=∆,-1-2L MT 。
6、弹性力学研究中,在作数学推导时可方便地运用连续和极限的概念,是利用了( )假定。
A .完全弹性;B .连续性;C .均匀性;D .各向同性。
7、( A )四个假设是对物体的材料性质采用的基本假设,凡是符合这四个假设的物体,就称为理想弹性体。
A .完全弹性,连续性,均匀性和各向同性;B .完全弹性,连续性,均匀性和小变形;C .连续性,均匀性,各向同性和小变形;D .完全弹性,连续性,小变形和各向同性。
弹性力学知识点总结

一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。
弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。
1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。
林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。
而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。
二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。
应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。
在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。
2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。
应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。
在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。
2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。
弹性模量是指在正应变下的应力大小,通常用E表示。
弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。
3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。
弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。
3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。
剪切模量描述了材料在受力作用下的形变情况。
3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。
弹性力学作业总结

弹性⼒学作业总结⼀、综述这学期我们有幸跟着邱⽼师学习了弹性⼒学这门课程,虽然我本科是学习机械专业的,但经过这学期的系统学习,使我对弹性⼒学的认识也越发的清晰,我对平⾯问题、空间问题等基本知识有了较为清晰的了解与掌握,会⽤逆解法、半逆解法、差分法、变分法和有限元法解决⼀些基础的弹性⼒学问题。
弹性⼒学是固体⼒学的⼀个分⽀,研究弹性体由于外⼒作⽤或温度改变等原因⽽发⽣的应⼒、形变和位移。
它是学习塑性⼒学、断裂⼒学、有限元⽅法的基础,⼴泛应⽤于建筑、机械、化⼯、航天等⼯程领域。
本课程较为完整的表现了⼒学问题的数学建模过程,建⽴了弹性⼒学的基本⽅程和边值条件,并对⼀些问题进⾏了求解。
弹性⼒学基本⽅程的建⽴为进⼀步的数值⽅法奠定了基础。
⼆、绪论弹性⼒学所依据的基本规律有三个:变形连续规律、应⼒-应变关系和运动(或平衡)规律,它们有时被称为弹性⼒学三⼤基本规律。
弹性⼒学中许多定理、公式和结论等,都可以从三⼤基本规律推导出来。
通过对弹性⼒学的学习,我感觉整本书就讲了⼗五个控制⽅程解⼗五个未知数。
⽽剩下的问题就是如何求解这些⽅程的问题,这也是数学和⼒学结合最紧密的地⽅。
⽽求解的⽅法⽆外乎有:基于位移的求解(位移法)和基于应⼒的求解(应⼒函数法),差分法、变分法。
⽽前⼈的研究⼤部分都是如何使这些⽅程求解起来更⽅便。
弹性⼒学思路清晰,但是⽅程和公式复杂。
1.⼯程⼒学问题建⽴⼒学模型的过程,⼀般要对三⽅⾯进⾏简化:结构简化、材料简化及受⼒简化。
建模过程如右图:结构简化:如空间问题向平⾯问题的简化,向轴对称问题的简化,实体结构向板、壳结构的简化。
受⼒简化:根据圣维南原理,复杂⼒系简化为等效⼒系。
材料简化:根据各向同性、连续、均匀等假设进⾏简化。
在建⽴数学模型的过程中,通常要注意分清问题的性质进⾏简化:线性化和实验验证。
2.弹性⼒学的基本内容就是研究研究弹性体由于外⼒作⽤或温度改变等原因⽽发⽣的应⼒、形变和位移。
应⽤在⼯程中的实例有⽐赛斜塔,⽔轮机以及各种齿轮等等。
弹性力学 总结

弹性力学总结弹性力学概述弹性力学是研究物体在受力作用下的变形和恢复行为的物理学分支。
它主要研究物体在力的作用下如何发生形变,并在去除外力后如何回复到原来的状态。
弹性力学在工程、材料科学和地震学等领域都有广泛的应用。
弹性力学的基本原理弹性力学的基本原理主要包括胡克定律和变形的描述。
胡克定律胡克定律是弹性力学研究的基石之一,它描述了弹性物质的应力和应变之间的关系。
根据胡克定律,弹性物体在小应变范围内,应力与应变成正比。
公式表示为:σ = Eε其中,σ代表应力,E代表弹性模量,ε代表应变。
胡克定律适用于各向同性的线性弹性材料。
变形的描述弹性变形通常分为线弹性和非线性弹性两种情况。
线弹性是指应力与应变之间成线性关系的弹性变形,而非线性弹性则是指应力与应变之间存在非线性关系的弹性变形。
在弹性力学中,常用的变形描述方法有拉伸、压缩、剪切和扭转等。
这些变形可以通过位移场、应变场和应力场来描述。
弹性体的应力分析弹性体在受力作用下会发生应力分布。
根据应力的分布规律,可以得出一些重要结论。
平面应力和轴对称应力问题在平面应力问题中,物体受力平面上只有两个应力分量,另一个应力分量为零。
这种情况下,可以根据累积概率法或复数变量法求解。
轴对称应力问题是较为常见的一类问题,这类问题的特点是应力场只与径向位置有关。
通过解析方法或数值方法,可以得到轴对称弹性体的应力分布。
弹性体的本构关系弹性体的本构关系以描述应力和应变之间的关系。
弹性体的本构关系可以是线性的或非线性的。
常见的线性弹性体本构关系有:胡克弹性体、准胡克弹性体和线弹性体。
这些本构关系常用于弹性力学计算中,可以通过试验数据或材料参数得到。
非线性弹性体的本构关系较为复杂,常用的描述方法有牛顿-拉普森方程和本构方程等。
弹性力学应用弹性力学在各个领域都有广泛的应用。
以下是几个常见领域:工程领域在工程领域中,弹性力学主要用于材料的强度计算、结构的稳定性分析和振动问题的研究。
通过弹性力学的理论,工程师可以预测材料在受力下的变形和破坏情况,并设计出更加安全和可靠的结构。
弹性力学课程总结

弹塑性力学课程学习总结弹塑性力学主要是对物体在发生变形时进行的弹性力学和塑性力学分析,由于塑性力学比较复杂,发展还不够完善,所以以弹性力学为主要内容。
下面是对本课程的学习总结。
弹性力学是固体力学的重要分支,它研究物体在外力和其它外界因素作用下产生的弹性变形和内力。
它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。
塑性力学研究的是物体发生塑性变形时的应力和应变。
物体变形包括弹性变形与塑性变形。
在外力作用下产生形变车去外力可以恢复原状是塑性变形;当外力达到一定值后,撤去外力,不再恢复原状是塑性变形。
当外力由小到大,物体变形由弹性变为弹塑性最后变为塑性直至破坏。
弹性变形是应力与应变一一对应。
主要任务是研究物体弹塑性的本构关系和荷载作用下物体内任一点应力变形。
为了便于研究我们常需要做一些假设,弹塑性力学的假设为:1、均匀连续性假设2、材料的弹性性质对塑性变形无影响3、时间对材料性质无影响4、稳定材料,荷载缓慢增加5、小变形假设。
弹性力学在研究对象上与材料力学和结构力学之间有一定的分工。
材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。
在材料力学和结构力学中主要是采用简化的可用初等理论描述的数学模型;在弹性力学中,则将采用较准确的数学模型。
有些工程问题(例如非圆形断面柱体的扭转,孔边应力集中,深梁应力分析等问题)用材料力学和结构力学的理论无法求解,而在弹性力学中是可以解决的。
有些问题虽然用材料力学和结构力学的方法可以求解,但无法给出精确可靠的结论,而弹性力学则可以给出用初等理论所得结果可靠性与精确度的评价。
弹性力学包括平面问题,空间问题,柱体扭转,能量原理,虚功原理和有限元法等。
在研究过程中,需要列出基本方程,空间问题有15个基本方程,包括平衡方程,物理方程,变形协调方程和边界条件。
弹性力学简答部分(纯粹个人总结)

1.什么是弹性力学弹性力学,也称弹性理论,固体力学学科的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。
2.弹性力学的基本假定(1)连续性——假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何空隙。
(2)完全弹性——对应一定的温度,如果应力和应变之间存在一一对应关系,而且这个关系和时间无关,也和变形历史无关,称为完全弹性材料。
完全弹性分为线性弹性和非线性弹性材料弹性常数不随应力或应变的变化而改变(3)均匀性——假设弹性物体是由同一类型的均匀材料组成的。
(4)各向同性——假定物体在各个不同的方向上具有相同的物理性质。
(5)小变形——假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。
3.概念:体力:分布在物体体积内的力,如重力和惯性力。
面力:分布在物体表面上的力,如流体压力和接触力。
内力:外界因素作用下,物体内部各个部分之间的相互作用力应力:分布在物体内部任意点上的力,实质上是面力的一种应变:是描述物体受力后发生变形的相对概念的力学量位移:物体内任一点位置的移动平面应力问题:只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
(1) 几何特征:一个方向的尺寸比另两个方向的尺寸小得多。
(2)应力特征:平面应力问题只有三个应力分量:应变分量、位移分量也仅为x、y 的函数,与z 无关。
平面应变问题:(1) 几何特征:一个方向的尺寸比另两个方向的尺寸大得多,且沿长度方向几何形状和尺寸不变化。
(2)应力特征:以任一横截面为xy 面,任一纵线为z 轴。
设z方向为无限长,则沿z 方向其他变量都不变化,仅为x,y 的函数。
4.圣维南原理(用积分的方式表示)见例题圣维南原理: 若把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,则近处的应力分布将有显著改变,而远处所受的影响可忽略不计。
5.逆解法、半逆解法逆解法:(1)根据问题的条件(几何形状、受力特点、边界条件等),假设各种满足相容方程的φ(x,y)的形式;(2)然后利用应力分量计算式,求出(具有待定系数);(3)再利用应力边界条件式,来考察这些应力函数φ(x,y)对应什么样的边界面力问题,从而得知所设应力函数φ(x,y)可以求解什么问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学总结弹性力学关于应力变分法问题一、起源及发展1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。
古典变分法的基本内容是确定泛函的极值和极值点,它为许多数学、物理、科技、工程问题提供了强有力地数学工具。
现代理论证明,微分方程(组)中的变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以证明其解的存在性及解的个数。
讨论对应泛函临界点的存在性及其个数的基本方法是Morse 理论与极小极大理论(Minimax Theory )。
变分法有着深刻的物理背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示,一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原理”。
由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分”的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建立与理解。
以下,就应力变分法进行讨论。
二、定义及应用(1)、应力变分方程设有任一弹性体,在外力的作用下处于平衡。
命ij σ为实际存在的应变分量,它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满足位移边界条件。
现在,假想体力和应变边界条件上给定的面力不变而应力分量发生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。
既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边界条件,应力分量的变化必然满足无体力时的平衡微分方程。
即0,0,0x xy zx y yz xy z zx yz x y z y z x z x y δσδτδτδσδτδτδσδτδτ⎫∂∂∂++=⎪∂∂∂⎪⎪∂∂∂++=⎬∂∂∂⎪⎪∂∂∂++=⎪∂∂∂⎭。
(a ) 在位移给定的边界上,应力分量的变分必然伴随着面力分量的变分x y z f f f δδδ、、。
根据应力边界条件的要求,应力分量的变分在边界上必须满足,,x xy zx x y yz xy y z zx yz z l m n f m n l f n l m f δσδτδτδδσδτδτδδσδτδτδ⎫++=⎪⎪++=⎬⎪++=⎪⎭。
(b )则应变余能的变分应为()c c C c x x yzv vV v dxdydz dxdydz δδδσστ∂∂=⎰⎰⎰=⎰⎰⎰+++∂∂L L 。
x x c v εσ=∂∂,y y c vεσ=∂∂,z z c v εσ=∂∂ yz yz c v γτ=∂∂,zx zx c v γτ=∂∂,xy xyc vγτ=∂∂将上式代入,得()C x x yz yz V dxdydz δεδσγδτ=⎰⎰⎰+++L L 。
再将几何方程代入,得[()]C x yz u w vV dxdydz x y z δδσδτ∂∂∂=⎰⎰⎰++++∂∂∂L L 。
根据分部积分和奥—高公式,对上式右边进行处理:(),x x x u dxdydz lu dS u dxdydz x xδσδσδσ∂∂⎰⎰⎰=⎰⎰-⎰⎰⎰∂∂ 最后可得[()][()]c x xy zx x xy zx V u l m n dS u dxdydz x y zδδδτδτδσδτδτ=⎰⎰+++-∂∂∂⎰⎰⎰+++∂∂∂L L 。
再将(a )、(b )代入,即得=()c x y z V u f v f w f dS δδδδ⎰⎰++。
这就是所谓应力变分方程,有的文献把它叫做卡斯蒂利亚诺变分方程。
最小余能原理:c ()0x y z V u f v f w f dS δδδδ-⎰⎰++=。
上式也可以改写为:[()]0c x y z V u f v f w f dS δ-⎰⎰++=。
(2)、应力变分法由推到出的应力变分方程,使其满足平衡方程和应力边界条件,但其中包含若干待定系数,然后根据应力变分方程解决这些系数,应力分量一般可设为:()()mmij m ij ij A ∑+=σσσ0 (c )其中m A 是互不依赖的m 个系数,()0ij σ 是满足平衡微分方程和应力边界条件的设定函数,()m ij σ是满足“没有体力和面力作用时的平衡微分方程和应力边界条件”的设定函数。
这样,不论系数A m 如何取值,()0ij σ总能满足平衡微分方程和应力边界条件。
注意:应力的变分只是由系数Am 的变分来实现 。
如果在弹性体的每一部分边界上,不是面力被给定,便是位移等于零,则应力变分方程 得0=c v δ, 即:0=∂∂mcA V (d )应变余能c V 是m A 的二次函数 ,因而方程(d )将是Am 的一次方程 。
这样的方程共有m 个,恰好可以用来求解系数,Am 从而由表达式(c )求得应力分量。
如果在某一部分边界上,位移是给定的,但并不等于零,则在这一部分边界上须直接应用变分方程(11-18),即()c x y z V u f v f w f dS δδδδ=⎰⎰++。
在这里,u 、v 、w 是已知的,积分只包括该部分边界,面力的变分与应力的变分两者之间的关系即:,,x xy zx x y yz xy y z xz yz z f l m n f m n l f n l m δδσδτδτδδσδτδτδδσδτδτ⎫=++⎪⎪=++⎬⎪=++⎪⎭。
带入方程的右边积分后,将得出如下的结果:()m m x y z m u f v f w f dS B A δδδδ⎰⎰++=∑。
其中Bm 是常数,另一方面,我们有:*c =m m mU V A A δδ∂∂∑。
因而得:(1,2,)cm mV B m A ∂==∂L 。
这将仍然是m A 的一次方程而且总共有m 个 ,仍然可以用来求解系数m A ,从而由表达式(c )求得应力。
(3)、应力函数方法由于应力分量的数量有点多,确定起来较为困难,通常用应力函数方法。
在平面应力问题中,如果体力分量为常数,则存在应力函数。
将应力函数设为:0,m mmA Φ=Φ+Φ∑其中m A 为互不依赖的m 个系数。
这样就只需使0Φ给出的应力分量满足实际的应力边界条件,并使m Φ给出的应力分量满足无面力时的应力边界条件。
在平面应力问题中, 有0z yz zx σττ===, 而且x y xy σστ、、不随坐标z 而变。
在z 方向取一个单位厚度,则用应力分量表示的应变余能表达式为2221[22(1)]2c x y x y xy V dxdy Eσσμσσμτ=⎰⎰+-++。
对于平面应变问题,2221+[(1)()22]2c x y x y xy V dxdy Eμμσσμσστ=⎰⎰-+-+。
如果所考虑的弹性体是单连体,体力为常量 ,应力分量x y xy σστ、、应当与μ无关 ,可以取μ=0, 于是平面应力情况下的表达式和平面应力情况下的表达式都简化为2221(2)2c x y xy V dxdy Eσστ=⎰⎰++。
即得用应力函数表示应变余能的表达式222222221[()()2()]2c x y V f x f y dxdy E y x x y∂Φ∂Φ∂Φ=⎰⎰-+-+∂∂∂∂。
在应力边界问题中,因为面力不能有变分,0c V δ=。
应为应力分量以及应变余能的变分是通过系数Am 的变分来实现的,所以上式归结为0cmV A ∂=∂ 将将应力函数表达式代入,即得2222222222[()()()()2()]0,(1,2,)x y m m m f x f y y A y x A x dxdy x y A x y m ∂Φ∂∂Φ∂Φ∂∂Φ⎰⎰-+-+∂∂∂∂∂∂∂Φ∂∂Φ=∂∂∂∂∂=L可以用来决定系数Am ,从而确定应力函数ϕ,再由应力函数ϕ求得应力分量。
由于是近似解,应力分量不能精确满足相容条件,由应力分量求得的应变分量也不能精确满足变形协调条件,不能根据几何方程求得位移分量。
应力函数法的要点是要找到满足全部边界条件的应力函数,二这种函数一般任然难以找到,尤其在边界不规整的情况下。
所以应力方法的应用在这一点上受到极大的限制。
(4)、典型例题:例1:设有宽度为2a ,高度为b 的矩形薄板,左右两边和下边被固定约束,上边的位移被给定为)1(022ax v u --==η,不计体力。
试求薄版的位移分量和应力分量。
解:取坐标系底部为x 轴,对称轴为y 轴,则该问题是一个轴对称问题——及约束情况,几何形状以及所受的外来因素都对称于某个坐标轴。
本题中,对称轴显然是y 轴。
这样,位移u,v 关于y 轴对称。
首先考察位移u :薄板左右两边:0)(=±=a x u (说明u 中含有)(22a x -项或)(22x a -项) 薄板下边:0)(0==y u (说明u 中含有(y-0)项)薄板上边:0)(==b y u (说明u 中含有(y-b)项或(b-y)项)所以u 所以表达成:)()(221y b y x a A u --=(这里m=1,即取一个系数1A ) 由此可得u,v 的表达式为:⎪⎪⎭⎪⎪⎬⎫--+--=--=)1()1()1()1()1(22122221b yb y a x B b y a x v a ya y a x a x A u η 可以满足位移边界条件:)1()(0)(0)(0)(0)(0)(2200ax v u v u v u by b y y y a x z x --==========±=±=η由于u 是x 的奇函数,v 是x 的偶函数,对称条件满足。
此外,由(i )得:))(1())((2222122331by b y a x v b y b y a x a x u --=--=即)2()1(211112B vA B A v EabU ++-=由ds v f B Uds u f A U y x 1111,⎰⎰=∂∂=∂∂ab q B U ab q A U 2111,-=∂∂-=∂∂ ab q vA B v Eabab q vB A v Eab21121112)22()1(2)22()1(2-=+--=+-yE vq q v x E vq q u E vq q B E vq q A 1221121211,,--=--=--=--= 例2:已知悬臂梁,抗弯刚度为EI ,求最大挠度值。
解:设)(3322x a x a w += 满足固定端的边界条件。
0,00'0====x x w w在不考虑剪切效应时,直杆弯曲的应变能为,dx dx w d EI dx EI x M u l 2220221)(21⎪⎪⎭⎫⎝⎛==⎰ 下面用最小势能原理来确定参数,)()62(2)()62(2)(2133222323322200322L a L a F dx a a EI V U E L a L a F Fw v dxa a EIdx EI x M u l t L x ll+-+=+=+-=-=+==⎰⎰⎰=由最小势能原理0)62(12210)62(42103032220322t =-+=∂∂=-+=∂∂=⎰⎰FL dx a a EI a E FL dx a a EIa E E l t l t δ三、总结与思考所谓弹性力学的变分解法就是基于力学能量原理求解弹性力学的变分方法,这种方法从其本质而言,是要把原来在给定的边界条件下求解的微分方程组的问题变为泛函求极值的问题,而在求问题的近似解时,泛函的极值问题又可变成函数的极值问题,因而最终把问题归结为求解线性代数方程组。