结构设计重点笔记讲解

结构设计重点笔记讲解
结构设计重点笔记讲解

建筑结构设计快速入门之重点笔记

☆上部结构的落脚点是基础,基础的落脚点是地基,也就是持力层。☆看勘察报告时,直接看结束语和建议中的持力层土质,地基承载力特征值和地基类型以及基础砌筑标高。

☆10ka≈1t/㎡ 1kN≈100kg

☆一般认为持力层土提供的承载力特征值不小于180kPa(即18t)的为好土,低于180kPa的土可认为土质不好。

☆按照地基承载力从大到小排序为:稳定岩石,碎石土>密实或中密砂>稍密实粘土>粉质粘土>回填土和淤泥质土

☆回填土的承载力特征值一般为60~ 80kPa

☆在不危及安全的前提下,基础尽量要浅埋。因为地下部分所占的造价一般是工程总造价的30﹪~ 50﹪,这笔费用是很可观的。

☆除了浅埋外,还有埋深的上限,就是基础至少不得埋在冻土深度范围内,否则基础会受到冰反复胀缩的破坏性影响。

☆结合钻探点号看懂地质剖面图,并一次确定基础埋置标高。

☆重点看结束语或建议中对存在饱和沙土和饱和粉土的地基,是否有液化判别。饱和软土的液化判别对地基来说是至关重要的一项技术指标,必须要明确提供,责任重大,不得含糊。

☆重点看两个水位:历年来地下水的最高水位和抗浮水位。

☆特别注意结束语或建议中定性的预警语句,并且必要时将其转写进基础的一般说明中。这些条款如下:

1.本工程地下水位较高,基槽边界条件较为复杂,应妥善选择降

水及基坑边坡支护方案,并在施工过程中加强观测。降水开始

后须经设计人员同意后方可停止

2. 采用机械挖土时严禁扰动基地持力层土,施工时应控制机械挖

土深度,保留300mm 厚土层,用人工挖至槽底标高,如有超挖

现象,应保持原状,并通知勘察及设计单位进行处理,不得自

行夯填。

3. 基槽开挖到位后应普遍钎探,并及时通知勘察及设计单位共同

验槽,确认土质满足设计要求后方可进行下步施工。

4. 基槽开挖较深,施工时应注意,在降水时应采取有效措施,避

免影响相邻建筑物。

5. 建议对本楼沉降变形进行长期观测(此条款多用于加层,扩建

建筑物和基础设计等级为甲级或者复合地基或软弱地基上基础

设计等级为乙级的建筑物与受到临近深基坑开挖施工影响或受

到场地地下水等环境因素变化影响的建筑物,当然也包括那些

需要积累建筑经验或进行设计反分析的工程)

☆ 特别注意结束语或建议中场地类别,场地类型,覆盖层厚度和地

面下15m 范围内平均剪切波速。

☆ 一般看好土下是否存在不良工程地质中的局部软弱下卧层,若果

有,要根据自己所做的的基础形式验算一下软弱下卧层的承载力

是否满足要求。

☆ 梁的高度:主梁 101L 悬挑梁 5

1L ;(梁的荷载较大时,截面高度取较大值,必要时应计算挠度及裂缝宽度,梁的设计荷

载的大小,一般以均布设计荷载40kN/m 为界,可认为是属于荷载

较大)

☆ 板的厚度:双向板 401L 单向板 30

1L 悬挑板 101L (要注意,跨度L 的含义和取值还有长跨和短跨之分,以及何时取长跨,何时

取短跨?比如双向板跨度肯定取短跨,因为短跨受力大,厚度肯

定要和受力大的主要受力方向相关)

☆ 关于荷载的取值

1. 恒荷载:楼面符载统一取

2.0kN/㎡,这是建筑专业楼面做法的

自重,目的是为装修改造留有适当的余地,不包括楼板结构自

重和板底做法的重量。

2. 住宅中轻质隔墙的自重,无论是轻质隔墙还是位置有可能灵活

自由布置的隔墙,统一按恒荷载考虑,一律取值为2.0 kN/㎡。

3. 住宅的活荷载,也是取2.0 kN/㎡

(三个2.0 kN/㎡:楼面做法自重,轻质隔墙自重,活荷载取

值)

4. 屋面恒荷载 4.0 kN/㎡ 屋面活荷载 上人时 2.0 kN/㎡

不上人时0.5kN/㎡(而对于轻钢结构的屋面,一定要在结构

总说明中写明:本工程为不上人屋面,活荷载设计值为0.5

kN/㎡,严禁超载)

5. 需要记住三个数据:2.5 kN/㎡ 4.0 kN/㎡

7.0 kN/㎡

2.5 kN/㎡适用于人或物可能比较集中的楼面,如一般楼梯,

一般阳台,一般厕所,一般厨房,会议室,阅览室,医院门

诊,教室等。

4.0 kN/㎡适用于人或物有可能更集中更密集的楼面,比如健

身房,看台,舞厅,商店,旅客等候室,展览厅,消防疏散

楼梯等。

7.0kN/㎡用于两个机房和一个变电室,即通风设备机房,电

梯机房和高压变压室。因为这些地方不仅有设备荷载,还有

设备基础的荷载也是很大的。

6. 地下一层顶板,或者近似认为是±0.000板,它的活荷载取

值为8~10 kN/㎡。因为施工到±0.000时,施工单位往往工

程备料统统堆放在地下一层顶板上,这样便于施工随时随地

取用。同时要注意的是,当±0.000板活荷载取值8~10 kN/

㎡时,此时恒荷载中的隔墙自重可取为1.0 kN/㎡或者更小,

因为堆放大批施工备料时,隔墙的施工一般还未完成。

(设计±0.000板时,在截面尺寸相同的情况下,板和梁的配

筋往往要比其他楼层大)

概念第一位,计算第二位

㈠结构或构件尽可能拉结成整体,不宜各自为政

⑴单独柱基间宜设置拉梁

△拉梁的实际作用就是将各单独柱基拉结成一体,以避免个别

独立基础个体独自沉降,导致基础之间产生沉降差,对结构产

生次生应力,致使结构产生开裂等其他不良影响;拉梁的截面

尺寸要足够大,具备一定的刚度,拉梁的高度应为跨度的1/20~1/15

⑵加层屋顶各柱间同样要设置构造拉梁

△用拉梁把本来各自为政的独立悬臂柱拉结为一个整体,即

一柱受侧力,立即波及扩散到其他各柱,共同抵抗水平力。

⑶加固改造项目中后作构件与原结构构件均宜有构造拉结

△改造工程中的原则:尽量少或不破坏原结构,即多保留少

破坏

㈡有关钢筋锚固的构造原则——优先采用平直段锚固,并且构件优先自锚

⑴水平直段优先,弯折段为辅助

△在承受静力荷载为主的情况下,水平段的粘结能力起主导

作用,弯折后的锚固效果还不足水平段的70%

⑵构件内的钢筋锚固尽量在本构件内部完成

△原因是如果进入其他构建中锚固,一方面会造成其他构件内

部钢筋密集,混凝土难浇筑,难振捣,另一方面,和其他构件

的内部钢筋也会有位置打架的可能,所以要尽量避免

△当本构件锚固确实不能满足锚固长度的规范要求时,再被迫进入其他的构件内锚固,以补足长度要求

㈢次要让位于主要的原则——明确哪些钢筋的位置对结构设计来说更重要

原则:构件让支座

⑴柱与主梁

△一般情况下为了外墙与柱外皮平齐的美观效果,承托外墙的梁的外皮也必须与柱的外皮平齐。此时梁的外侧纵筋就会与柱的外侧纵筋打架。这时候,柱是梁的支座,是主要的受力构件,柱的纵筋就更重要一些,因此梁的纵筋就要避让柱的纵筋。具体做法是,梁的外侧纵筋提前向内做1:6的斜坡,待绕过柱纵筋后,再做1:6的斜坡归位。

⑵主梁与次梁

△主梁与次梁的上部纵筋也不可避免的会打架,此时当然是主梁更重要,次梁的纵筋要避让主梁的纵筋。具体做法是,次梁的上部纵筋提前向内做1:6的斜坡,待绕过主梁上部纵筋后,再做1:6的斜坡归位。

⑶梁和板

△梁和板的上部钢筋也会发生打架,同理,梁是重要构件,板的上部钢筋要避让梁的上部钢筋。具体做法是,板的上部纵筋提前向内做1:6的斜坡,待绕过梁上部纵筋后,再做1:6的斜坡归位。

⑷双向板

△双向板配筋时上下双层双向钢筋,哪个方向放在外侧,哪个方向放在内侧?

谁放在外侧,谁的有效高度就大,就有利,当然是重要的钢筋放在外侧;谁是重要钢筋呢,显然受力大的钢筋是重要钢筋;

于是得出结论,受力大的钢筋放在外侧,另一方向的钢筋放在

内侧。

△技术交底时,一般要说:图纸上钢筋直径大,间距密的钢

筋放在外侧,相反的就放在内侧

⑸剪力墙

△顾名思义,剪力墙的主要作用是抗剪,而抗剪主要是由箍

筋——也就是水平钢筋来发挥作用的,所以要把水平钢筋放在

竖向钢筋的外侧

⑹混凝土挡土墙

△混凝土挡土墙的主要作用是挡土压抗弯,而主要发挥抗弯

作用的是竖向钢筋,所以要把竖向钢筋放在外侧,水平钢筋放

在内侧

⑺地下室的外墙

△地下室的外墙,既是竖向贯穿全楼始终的剪力墙,同时又式

担负着挡土,抗弯的挡土墙,它的情况要具体分析,关键是看

地下室外墙的竖向位置:当位于地下一层时,抗震和挡土同样

重要,但为了方便施工的连续和统一,可以同地上剪力墙一样

处理,水平筋放外侧;但是地下室墙位于地下二层及以下位置

时,由于地下二层及以下的墙深埋于土中,可不用考虑抗震,

而竖向埋深越深,土压力越大,所以这种挡土墙的性质就越突

出,故此竖向筋宜放置在外侧,水平筋宜放置在内侧。

㈣混合结构未必都可采用——框架结构按抗震设计时,严禁采用局部

砌体承重之混合形式

△既然是框架结构,柱梁就是承重和抗侧力的主体构件,因

为砖墙同框架相比材料刚度小,只能是自承重或当作轻质隔

墙使用。如果局部出现砖墙参与承重或抗侧力,就意味着让

材料刚度小的承担材料刚度大的任务,砖墙肯定不能胜任,

最终要提前垮掉。

△抗震设计时应有意识的设置多道防线,使得地震作用先破

坏刚度较大的第一道防线,当一部分地震作用耗散在大刚度

的材料上之后,其余较小的地震力再被刚度小的材料来吸收,

这样的设计才是合理的,框架-砖墙承重的混合形式使得地震

作用一次集中破坏了两种承重材料,没有体现多道防线的设

计理念。、

㈤钢筋和混凝土强度等级何处用高,何处用低。

⑴钢筋

△钢筋在做吊钩时,应该用低强度的HPB235钢筋,电梯吊钩

一般为直径φ22或φ25的一级钢,因为一级钢延性好,破坏

前征兆明显,预警性能好。在施工图中还必须注明:不得使

用冷加工钢筋,原因是冷加工钢筋虽然强度提高,但是延性

变差,用于吊挂重物不合适。

△直径大于等于12mm受力控制时的钢筋,宜优先选用HRB335

和HRB400钢筋。

还有一个经济学的常识,当箍筋直径为12时宜选用二级或三级

钢,因为市面上直径为12的一级钢数量很少,难以买到。

△设计图纸中的大地梁,框支梁或剪力墙约束边缘构件箍筋以及柱子箍筋用HRB335和HRB400钢筋

△重要构件如梁柱,主筋宜优先采用HRB335和HRB400钢筋。

主筋首选较大直径的的HRB400的钢筋,如2832,有时

40.

△现浇板中的钢筋用HRB400级钢筋就会避免浪费的问题。

⑵混凝土

△基础中要慎用高强度混凝土。因为高强度混凝土,水泥含量

较多,水化热较大,很容易造成干缩裂缝,而基础全在地下,

一旦有裂缝产生,防水和钢筋水腐蚀的问题就会接踵而来

△基础设计中,一般通过扩大混凝土构件截面的方法,来满足

地梁或者筏板的强度要求,而不是一味提高混凝土强度等级。

△素混凝土垫层也不宜用强度太高的混凝土,一般设计成C10

或C15。而施工单位一般更愿意强度等级设计到C15,因为商

品混凝土一般泵送的最低强度等级就是C15,尤其当筏板垫层

面积较大时,泵送施工速度快。

㈥结构设计时,(特别是基础设计时)何时用荷载设计值,何时用标准值。

△荷载设计值是标准值为了安全起见或人为或科学的安全放大

△上部结构设计中:

采用标准值的:变形(挠度或刚度)计算,裂缝计算

采用设计值的:强度,内力,配筋等的计算

△基础结构设计中:

采用标准值的:地基承载力计算(确定基础底面积以及埋深),

地基变形计算(建筑物沉降),稳定性验算(土压力,滑坡推

力、地基以及斜坡的稳定性)

采用设计值的:基础结构承载力计算(基础或承台高度、结

构截面、结构内力、配筋以及材料强度验算)

△特别指出:基础一般底面积计算对应采用标准值,标准值

为荷载设计值除以一个系数,过去旧规范时一般取为1.25.;

而对于新规范,民用建筑的柱、基础等构件,转换系数宜取

1.26~1.31(以恒荷载占到总荷载的比例为标准)

㈦结构设计中哪些构件和哪些部位适合直接静力手算,哪些部位必须准确电算。

△适合手算的:现浇混凝土板配筋、以承受竖向荷载为主的

梁(一般放大系数取1.2~1.5)、柱的构造配筋率控制和截面

确定、地下结构的构件埋深较深而不考虑地震时(如地下室

的外墙,附壁柱,各类基础)

△适合电算的:钢结构工程、柱的内力组合、上部结构的地

震作用

各类基础的实用简化算法

☆单独柱基及柱基间拉梁

㈠单独柱基尺寸初估的实用经验算法

⑴单独柱基底板尺寸初估的简化经验算法

△单独柱基底板尺寸=

载力特征值或标准值

经深宽修正后的地基承

柱基底内力标准值

△柱基底的内力标准值:设计假定基础和拉梁的分工非常清楚,基础承担柱基底的轴力,拉

梁承担柱基底弯矩,所以柱基底的内力标准值就简化为轴力。

△此轴力可以通过电算得到精确值(特别要注意的是电算给出的是设计值,确定柱基底面积

时一定要用标准值,而非设计值;标准值=设计值/1.26);也可以通过经验手算得到大概值:

地上每层荷载近似按13~15kN/㎡地下每层荷载近似按22~25kN/㎡,此法比较保守,用

于初估。

△修正后的地基承载力特征值,用公式

f

a =f

ak

b

γ(b-3)+η

d

γ

m

(d-0.5)

△这个修正实质上是提高了原始的地基承载力

△特别需要注意的是:f

ak

规范称为地基承载力特征值,实质上是一

个标准值,经过修正后的f

a

依然是标准值

⑵单独柱基高度的经验确定

△柱基的高度要满足受冲切承载力的要求

△在单独柱基工程中,基础的混凝土强度一般为C30。

△工程中持力层土质较好时,修正后的地基承载力特征值一般在180 ~250kPa之间

△杂填土的地基承载力经验为80kPa

㈡单独柱基底板配筋的简化算法

第一步,基底内力不需要进行轴力N,弯矩M,剪力V的最不利组合,直接用竖向荷载产生的轴力N控制弯矩内力计算;

因为独基设计中要设置拉梁,弯矩M,剪力V产生的内力都让拉梁来承担

第二步,设计中采用简化公式来计算板底配筋,误差亦不会太大。

M

1

=N/10(0.775L-a)

M

2

=N/10(0.775B-b)

当柱间跨度过大时,柱间未设置拉梁或设置了拉梁,但不考虑拉梁平衡柱底弯矩时,此时柱基设计要考虑偏心受压。当有偏心受压的正方形柱基时,在两边缘压力不超过1:4仍然可以采用上式,但要用

N'=(0.8p

m ax +0.2p

m in

)A代替上式中的N采用,其中,A=L×B为正方形

柱基面积。

㈢单独柱基间拉梁的实用简化设计

⑴拉梁设置的部位

△拉梁的设置部位,推荐在柱基上部或柱子底部为好。

△除非刚好拉梁下皮在柱基上皮,否则拉梁下皮和柱基上皮之间必然形成一段短柱,这段短柱切记要箍筋加密或采取其他加强措施。

⑵拉梁的截面尺寸

△一般经验认为,当两个柱基间的夸大大于8m时,设置拉梁就没有必要了。

△拉梁的截面高度应大于L/15~L/20,截面宽度为高度的一半

⑶拉梁的配筋

△单独柱基的拉梁是要考虑抗震的,因此拉梁的构造要满足抗震要求,尤其是在梁端箍筋应该设加密区,箍筋间距至少为100.(因为拉梁的截面刚度比柱子小,塑性铰不会出现在柱底而是出现在拉梁端部,因此拉梁端部塑性铰区域要设加密区)

△基础地梁或柱间条基中基础梁,则不设箍筋加密区(因为它们的截面尺寸很大,刚度也就比柱子大,塑性铰不会出现在它们的端部,而是出现在柱底)

△拉梁主筋配筋率在不考虑承托竖向荷载时,一般在1%~1.6%左右;

8m跨度,300mm×550mm的拉梁,上下铁一般在4~6个HRB400的25或22。,配箍一般为φ8~φ10@100(200)

拉梁主筋的近似简化算法:

A

s =M/(γ

s

f

y

h o)

γ

s

一般对于梁近似取为0.875,对板近似取为0.9

M为拉梁需平衡的的柱底弯矩与承托在拉梁上的竖向荷载产生的弯矩的组合设计值

☆条形基础

△条形基础可以分为三类:墙下条形基础、柱间条形基础、混凝土墙

-柱下混合条形基础(一般用于框架剪力墙结构)

⑴墙下条形基础

△验算底板根部截面抗剪承载力、确定底板根部厚度是条形基础设计

的要点

△单独柱基时接近方形的双向受力构件,需要验算冲切力;条形基础

是单向受力的长条形构件,需要验算剪切力。

△条形基础底板宽度=力特征值

深宽修正后的地基承载内力标准值每延米的条形基础基底 △墙下条基的基础底板中不需要设置暗地梁

△基础底板根部厚度的手算确定:

①精确计算:底板根部厚度,由素混凝土截面抗剪控制 V ≤0.7×β

h

×f t ×b ×h o

②经验估计:取条基(净)半宽的1/6~1/4

△墙下条基配筋的简化算法:配筋主要考虑受弯的影响

弯矩最大的截面即条基底板的根部截面的弯矩起控制作用:

M=p j a 2/2(其a 为净挑跨度)

求出弯矩以后,可以由以下公式求得配筋 A s =M/(0.9f y h o )

地规中规定,每延米分布钢筋的面积不小于受力钢筋面积的1/10 △当条基基宽大于等于2500mm 时,为了节省,受力钢筋长度一般取

宽度的0.9倍,交错布置,单独基础也有此要求。

⑵柱间条形基础

△柱间条基底板根部厚度、底板配筋都与墙下条基计算方法相同△柱间条基内基础梁的尺寸确定:基础梁的宽度为柱宽+2×50;高度一般由基础梁抗剪公式控制,当基础梁有悬挑时,两个控制截面一个是外挑跨度根部截面,一个是柱间跨度内支座处的截面,哪个截面承受剪力大,取大剪力控制该截面高度。

V=max{q×L/2,q×a}

V=0.25f

c bh

o

△柱间条基内基础梁配筋的简化算法跨中正弯矩,即上铁弯矩:M=qL2/8

A

s =M/(0.875f

y

h o)

柱支座处负弯矩,及下铁弯矩:M=qa2/2

A

s =M/(0.875f

y

h o)

第一,基础梁端箍筋不需要按照抗震加密,仅按静立强度要求配置箍筋,箍筋可按90°弯钩设计,无需135°弯钩。

第二,基础梁纵筋伸入支座长度应按非抗震考虑

第三,纵筋锚固长度,接头要求等也一律按非抗震要求

⑶混凝土墙-柱下混合条形基础

△这种基础多用在框架-剪力墙结构中。剪力墙端部(有时也有中部)会和混凝土柱浇筑在一起,形成柱中有墙,墙中有柱的结构,这种做法多是为了解决梁中主筋锚固的问题。

△单独柱基与墙下条基分离式基础设计方法:在混凝土柱下根据柱轴力基础按照单独柱基设计,在混凝土墙下基础根据墙的轴力按照墙下

条基设计,两者截然分开。

各类板的实用简化算法

双向板和单向板的界定:矩形板在四边支撑的情况下,相邻边长之比小于2为双向板,大于

等于2为单向板

设计要点:

①板厚的确定方法与楼板设计荷载的计算方法

②板内配筋的计算方法

㈠单向板配筋的简化算法

△板厚一般取跨度的1/30

△弯矩:两端简支时 M

= qL2/8

两端固定时M

固=M

= qL2/16

一端固定,一端简支时M

固=M

= qL2/14

△配筋:A

s =M/(0.9f

y

h o)

△板内弯矩是按照钢筋集度分布的,钢筋集中使用在了支座,那么支座会相应的多承担些弯矩,跨中相应少一些;钢筋集中使用在了跨中,那么跨中会相应多承担些弯矩,支座少一些,支座和跨中的弯矩总和为qL2/8。

㈡双向板的计算方法

△板厚:一般取板块短跨尺寸的1/40

△板的尺寸:四边简支情况下可以做到11m×11m;四边固定的情况下可以做到12m×12m,在正常的民用荷载作用下,不会出现

问题

△板的配筋:采用塑性计算方法,查表计算,注意混凝土的泊松比ν=0.2

△异形双向板等效为规则双向板的算法:

①对于L形的双向板,可以补齐缺失的板块,然后按一个完整的

大双向板计算;构造上要在这个L形板的阴角处另外增加5根45°斜向支座的上铁。

②对于很不规则的其他异形双向板,条件允许时设一个明次梁,

将异形板分割成两个小的规则板块计算,梁高取跨度的1/15;条件不允许时,可设置暗梁,梁高同大板厚,同时必须大于160mm,梁宽一般大于等于1000mm。暗梁主筋直径不宜大于16mm。

㈢挑板配筋的算法

△板厚:取净跨的1/10

△板的尺寸:跨度一般不宜大于1.5m,但可适当突破到2.0m。

△悬挑构件的设计不应该过分追求经济,设计时不应该冒进,构件荷载估计大些,配筋配大些,是明智之举,悬挑构件应该安

全储备比常规构件大些。

△挑板的板厚一旦确定后,与其相邻的作为支座的板块的板厚应尽量取和它的厚度相同。

△对于大挑板板下部应该配置足够的受压钢筋,以减少因板徐变而产生的附加挠度,一般下部钢筋为上部钢筋的1/3~1/2,而

且间距为150mm左右。

各类梁的实用简化算法

△在板向梁导荷载时,单向板和双向板是不相同的;梁端的支座情况不同时,其弯矩的计算也是不同的。

㈠一般梁的简化算法

△截面尺寸:梁高一般取计算跨度的1/10,梁宽一般取梁高的1/2(住宅一般取200mm宽)

△支座嵌固度:梁的端跨处边柱与梁的连接一般视为铰接;梁的端跨处边支座如果是剪力墙也视为铰接(这样做,避免了梁向边柱或剪力墙传递过大的弯矩而导致他们成为大偏心受压构件)

多跨梁的中间支座无论是柱还是剪力墙,都可视为固结,因为此时主梁的支座负筋一般会伸过支座柱或者剪力墙在梁本构件内锚固,锚固长度和质量会比进入支座更有保证。

△弯矩,均布荷载作用下

两端简支: M=qL2/8

一端简支,一端固定: M=qL2/11

两端固定: M=qL2/16

△配筋: A

s =M/(0.875f

y

h o)

△各跨度不等的多跨梁的配筋简化算法

先算出大跨支座处负弯矩,因为此支座为大小跨共用,认为小跨支座的负弯矩与大跨座的负弯矩相同,然后用小跨的总弯矩M

=qL2/8减去这个支座的负弯矩,即得小跨跨中的正弯矩;

如果相减以后得到的弯矩为负或为0,则直接视具体情况将小跨梁视为两端固定或一端固定一端简支的单跨梁,用公式M=qL2/16 或M=qL2/11直接算出跨中弯矩

㈡挑梁配筋的算法

△截面尺寸:挑梁高取挑出跨度的1/5,梁宽取梁高的1/2

△弯矩:挑梁根部弯矩为控制弯矩 M=qL2/2

△构造要求:箍筋除抗剪计算确定外,间距都取100mm;上部钢筋锚固长度至少为40d;下部要配足够的受压钢筋,一般为上部钢筋面积的1/2,以减少因徐变而产生的挑梁附加弯矩

△配筋:A

s =M/(0.875f

y

h o)

㈢在梁高受限时,可以通过加宽梁截面的方法,以减少配筋率;除非有特殊情况,否则配筋率不要超过1.5%~1.6%,这样设计有助于梁端塑性铰的形成,有利于抗震

各类柱的实用简化算法

㈠柱轴压力的简化算法

△所承担的荷载的面积:取该柱在两个方向临跨跨度中线所围合成的矩形范围

△荷载标准值:地上每层13~15kN/㎡地下每层22kN/㎡

△设计值=1.26*标准值

㈡柱截面尺寸的简化算法

先从中柱开始,中柱以受轴力为主,弯矩可忽略。

以轴压比为标准计算,轴压比

=c

c f A N 计值混凝土轴心抗压强度设柱的全截面面积柱的轴压力设计值* 轴压比取值在0.65到0.9之间,根据相关规范确定。于是可以得出柱的全截面面积A c ,继而得到柱的截面尺寸

柱一般按配筋率1.5%~2.0%配置主筋,全部纵向钢筋的配筋率不宜超过5%。柱截面每侧纵筋间距不大于200mm ,每侧纵筋最小配筋率不小于0.2%

结构设计笔记

改建工程: 问:使用PKPM软件设计结构时,原有建筑是混凝土框架结构新加建的为钢结构,在设计时建模时采用建模方式, 是采用钢结构还是结构建模?如果新建采用哪种建模?对后期有何影响? 答:1)从原则上说,这种加建建筑的结构体系混乱,对抗震是及其不利的,也不符合抗震设计规范的,一般是不予通过图纸审查的。 但是因为简单实用,安装简便,在个别地区还是蛮流行的做法。 建议你首先分清楚加建部分(钢构)和已建部分(砼框架)的体量关系,哪个从属于哪个;通常做法是以局部从属于整体来定性你的结构类型。如加建的部分很小,则应以砼框架体系为准,反之则要以钢构体系来定性计算。 不知我有没说清楚,希望对你有用! 2)设计时采用钢结构建模,如果是新建还是采用钢结构建模,因为在pkpm中,可以用钢结构模型来计算混凝土构件,但不能用混凝土结构模型计算钢构件。不同的结构,刚度有突变,结构阻尼比不好确定。 施工图上实心柱和空心柱的区别: 实心柱子表示该柱子做到本层平面标高后还要继续向上做。 空心柱子表示该柱子做到本层平面标高为止,不再继续向上。

轴压比 目录 概述 轴压比指柱(墙)的轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压 强度设计值乘积之比值(进一步理解为:柱(墙)的轴心压力设计值与柱(墙)的轴心抗压力设计值之比值)。它反映了柱(墙)的受压情况,《建筑抗震设计规范》(50011-2010)中6.3.6和《混凝土结构设计规范》(50010-2010)中11.4.16都对柱轴压比规定了限制,限制柱轴压比主要是为了控制柱的延性,因为轴压比越大,柱的延性就越差,在地震作用下柱的破坏呈脆性。 u=N/A*fc, u—轴压比,对非抗震地区,u=0.9 N—轴力设计值 A—截面面积 fc—混凝土抗压强度设计值 《建筑抗震设计规范》表6.3.6 中的注释第一条:可不进行地震作用计算的结构,取无地震作用组合的轴力设计值。 限制轴压比主要是为了控制结构的延性,规范对墙肢和柱均有相应限值要求,见《抗规》6.3.7和6.4.6,在剪力墙的轴压比计算中,轴力取重力荷载代表设计值,与柱子的不一样,不需要考虑地震组合。

混凝土结构设计原理复习重点(非常好)

混凝土结构设计基本原理复习重点(总结很好) 第 1 章绪论 1.钢筋与混凝土为什么能共同工作: (1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。 (2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。 (3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材 2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难 建筑结构的功能包括安全性、适用性和耐久性三个方面 作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用 结构的极限状态:承载力极限状态和正常使用极限状态 结构的目标可靠度指标与结构的安全等级和破坏形式有关。 荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值 第2章钢筋与混凝土材料物理力学性能 一、混凝土 立方体抗压强度(f cu,k):用150mm×150mm×150mm的立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。(f cu,k为确定混凝土强度等级的依据) 1.强度轴心抗压强度(f c):由150mm×150mm×300mm的棱柱体标准试件经标准养护后用标准试验方法测得的。(f ck=0.67 f cu,k) 轴心抗拉强度(f t):相当于f cu,k的1/8~1/17, f cu,k越大,这个比值越低。 复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。 双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样; 一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低) 受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。反映材料抵2.变形抗弹性变形的能力) 体积变形(温度和干湿变化引起的):收缩和徐变等。 混凝土单轴向受压应力-应变曲线数学模型 1、美国E.Hognestad建议的模型 2、德国Rusch建议的模型 混凝土的弹性模量、变形模量和剪变模量 弹性模量 变形模量 切线模量 3、(1)徐变:混凝土的应力不变,应变随时间而增长的现象。 混凝土产生徐变的原因: 1、填充在结晶体间尚未水化的凝胶体具有粘性流动性质 2、混凝土内部的微裂缝在载荷长期作用下不断发展和增加的结果 线性徐变:当应力较小时,徐变变形与应力成正比;非线性徐变:当混凝土应力较大时,徐变变形与应力不成正比,徐变比应力增长更快。影响因素:应力越大,徐变越大;初始加载时混凝土的龄期愈小,徐变愈大;混凝土组成成分水灰比大、水泥用量大,徐变大;骨料愈坚硬、弹性模量高,徐变小;温度愈高、湿度愈低,徐变愈大;尺寸大小,尺寸大的构件,徐变减小。养护和使用条件 对结构的影响:受弯构件的长期挠度为短期挠度的两倍或更多;长细比较大的偏心受压构件,侧向挠度增大,承载力下降;由于徐变产生预应力损失。(不利)截面应力重分布或结构内力重分布,使构件截面应力分布或结构内力分布趋于均匀。(有利) (2)收缩:混凝土在空气中结硬时体积减小的现象,在水中体积膨胀。 影响因素:1、水泥的品种:水泥强度等级越高,则混凝土的收缩量越大; 2、水泥的用量:水泥越多,收缩越大;水灰比越大,收缩也越大; 3、骨料的性质:骨料的弹性模量大,则收缩小; 4、养护条件:在结硬过程中,周围的温、湿度越大,收缩越小; 5、混凝土制作方法:混凝土越密实,收缩越小; 6、使用环境:使用环境的温度、湿度大时,收缩小; 7、构件的体积与表面积比值:比值大时,收缩小。 对结构的影响:会使构件产生表面的或内部的收缩裂缝,会导致预应力混凝土的预应力损失等。 措施:加强养护,减少水灰比,减少水泥用量,采用弹性模量大的骨料,加强振捣等。 混凝土的疲劳是荷载重复作用下产生的。(200万次及其以上) 二、钢筋 光圆钢筋:HPB235 表面形状 带肋钢筋:HRB335、HRB400、RRB400 有明显屈服点的钢筋:四个阶段(弹性阶段、屈服阶段、强化阶段、破坏阶段),屈服强度力学性能是主要的强度指标。 (软钢)

建筑结构概念设计及案例

建筑结构概念设计及案例 书名:建筑结构概念设计及案例 出版社:清华大学出版社 作者:罗福午 出版日期:2003-12-01 简介: 本书提出建筑结构概念设计的概念、原则和思路,并介绍相关案例。“概念”部分说明结构概念设计的地位和作用、基本思路、基本做法以及设计中常用到的结构概念。“案例”部分则介绍了国内外的著名案例。 目录: 前言 第1章建筑结构概念设计概述 1.1 建筑结构的作用 1.2 结构概念设计的概念 1.3 概念设计在建设过程中的地位 1.4 建筑结构的基本构件类型 1.4.1 基本构件的类型 1.4.2 各种构件之间的区别与联系 1.5 建筑结构的几个基本概念 1.5.1 荷载和作用 1.5.2 结构失效和材料,结构受力和荷载

1.5.3 结构的可靠度和设计方法 1.5.4 结构的三个基本分体系 1.5.5 关于地基的基本概念 1.5.6 梁、板设计中的几个基本概念 1.5.7 梁、拱和索 1.5.8 梁柱框架 1.5.9 平面桁架(含空腹桁架)和空间架1.5.10 从对比中认识壳体结构 1.5.11 折板结构和幕结构 1.5.12 帐篷、索和充气结构 1.5.13 结构受力、变形的相对性 1.5.14 结构构件的弯曲变形示意图 1.5.15 预应力和预应力结构 1.5.16 结构抗震设计的基本概念 1.5.17 从总体概念上考虑结构设计 1.5.18 对标准、规范、规程应有的知识1.6 结构概念设计的原则 第2章托罗哈结构概念设计作品案例2.1 关于E.托罗哈的评价 2.2 运动场旁有轨电车站 2.3 圆形手术教室 2.4 阿尔捷希拉集贸市场

混凝土结构设计笔记

轴心受压螺旋式箍筋柱的正截面受压承截力计算 一、承截力计算公式 《混凝土规范》规定螺旋式或焊接环式间接钢筋柱的承截力计算公式为: (7- 1) )(9.0''s y sso y cor c A f A f A f N ++≤α式中 α---间接钢筋对承载力的影响系数,当混凝土强度等级小于C 50时,取 α=1.0;当混凝土强度等级为C 80时,取α=0.85;当混凝土强度等级在C 50与C 80之间时,按直 线内插法确定。 — 构件的核心截面面积。 cor A — 螺旋筋或焊接环筋(也可称为“间接钢筋”)间接钢筋的换算截面面积; sso A (7- 2) s A d A ss cor sso 1 π= — 构件的核心直径;cor d A ss1 — 单根间接钢筋的截面面积; s — 沿构件轴线方向间接钢筋的间距; — 混凝土轴心抗压设计强度; c f — 钢筋的抗拉、抗压设计强度; ',y y f f

为使间接钢筋外面的混凝土保护层对抵抗脱落有足够的安全,《混凝土规范》规定按式(7-9)算得的构件承载力不应比按式(7-4)算得的大50%。 (7- 3) )(9.0'''s y c A f A f N +≤?二、应用条件 凡属下列情况之一者,不考虑间接钢筋的影响而按式(7-4)计算构件的承载力: (1)当/d>12时,此时因长细比较大,有可能因纵向弯曲引起螺旋筋不起作用;o l (2)当按式(7-9)算得受压承载力小于按式(7-4)算得的受压承截力时; (3)当间接钢筋换算截面面积小于纵筋全部截面面积的25%时,可以认为间接钢 sso A 筋配置得太少,套箍作用的效果不明显。 三、构件设计 已知:轴心压力设计值N ;柱的高度为H ;混凝土强度等级;柱截面直径为;柱 c f d 中纵筋等级();箍筋强度等级()。 ' ,y y f f y f 求:柱中配筋。解: 1.先按配有普通纵筋和箍筋柱计算。 (1)求计算长度o l 构件计算长度与构件两端支承情况有关,当两端铰支时,取(是构件实 0l l l o =l 际长度);当两端固定时,取;当一端固定,一端铰支时,取;当一端l l o 5.0=l l o 7.0=固定,一端自由时取。 l l o 2= (2)计算稳定系数 ? 计算, 查表(7-1)得? b l /0 (3)求纵筋 's A 圆形混凝土截面积为:4/2 d A π=由式(7-4)得: )9.0(1' A f N f A c S -'= ?

结构设计原理复习重点.

第一章 1.钢筋混凝土梁比素混凝土梁,有哪些改善? (1)钢筋混凝土梁充分利用了钢筋和混凝土各自的材料特点,使二者结合,共同工作。(2)提高构件的承载能力 (3)改善构件的受力性能 2.钢筋和混凝土共同工作机理? (1)钢筋和混凝土之间有着良好的粘结力,在荷载作用下能很好的共同变形。 (2)钢筋和混凝土的线膨胀系数接近,当温度改变时,两者变形接近,不会产生较大的相对变形而破坏二者之间的粘结。 (3)混凝土作为保护层,保护钢筋不发生锈蚀。 3.钢筋混凝土结构的优点? (1)钢筋被混凝土包裹不致锈蚀,有较好的耐久性。 (2)充分发挥了混凝土和钢筋两种材料的特点,形成的构件有较大的承载力和刚度。(3)可模性好,可以根据需要浇筑成各种结构形状和尺寸的结构。 (4)所用原材料大部分为砂石,便于就地取材。 (5)现浇钢筋混凝土结构整体性较好,设计合理时有良好的抗震、抗爆和抗振动性能。(6)耐火性较好,钢筋混凝土结构与钢结构相比具有较好的耐火性。 4.钢筋混凝土结构的缺点? (1)自重大,使得结构很大一部分承载力消耗在承受自重上。 (2)抗裂性能较差,往往是带缝工作。 (3)施工受气候条件影响较大。 (4)检测、加固、拆除比较困难。 5.混凝土强度的3个指标(基本代表值)?

(1)混凝土立方体抗压强度fcu:边长为150mm的立方体标准试件,在20℃±2℃的温度和相对湿度在95%以上的潮湿空气中养护28d,依照标准制作方法和试验方式测得的抗压强度值。(立方体抗压强度标准值fcuk,具有95%的强度保证率,是混凝 土强度等级分级的根据。) (2)混凝土轴心抗压强度fc(棱柱体抗压强度):以150mm×150mm×300mm的 标准试件,按照与立方体试件相同条件和试验方法,所得棱柱体抗压强度值称为混凝土轴心抗压强度。 (3)混凝土轴心抗拉强度ft:通过劈裂试验测定混凝土劈裂抗拉强度fts,再乘换算系数 0.9,得到混凝土轴心抗拉强度。 6.徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象被称为徐变。 7.减小徐变的手段? 降低水灰比,减少水泥用量;增大集料的体积比;适当提高混凝土养生的温度和湿度,使得水泥水化更充分。 8.徐变的好处与坏处? 好处:(1)有利于结构构件产生应力重分布,减少应力集中现象(2)减小大体积混凝土的温度应力 坏处:(1)引起预应力损伤(2)在长期高应力作用下会导致破坏 9.混凝土的收缩:在混凝土凝结和硬化的物理化学过程中体积随时间推移而减小的现象。10:热轧钢筋的强度限值为什么取屈服强度? 热轧钢筋受拉达到屈服点后,有比较大的流幅,构件会出现很大的变形和过宽的裂缝而不能正常使用,因此以屈服强度作为钢筋强度的限值。 对于硬钢,没有明显的流幅,一般取残余应变为0.2%时对应的应力作为其强度限值,称为条件屈服强度。 11.光圆钢筋与混凝土粘结机理? (1)钢筋与混凝土中水泥胶体的胶结力 (2)钢筋与混凝土接触面上的摩擦力

结构设计初探笔记

1、建筑物安全等级划分 1.0.8 建筑结构设计时,应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。建筑结构安全等级的划分应符合表1.0.8 的要求 表1.0.8 建筑结构的安全等级 安全等级破坏后果建筑物类型 一级很严重重要的房屋 二级严重一般的房屋 三级不严重次要的房屋 注 1 对特殊的建筑物,其安全等级应根据具体情况另行确定; 2 地基基础设计安全等级及按抗震要求设计时建筑结构的安全等级,尚应符合国家现行有关规范的规定。 2、重要性系数的取值 《建筑结构可靠度设计统一标准》(GB 50068-2001)规定:对安全等级分别为一、二、三级或设计使用年限分别为100年及以上、50、5年时,重要性系数分别不应小于1.1、1.0、0.9。 《砌体结构设计规范》(GB50003-2001)规定:对安全等级分别为一、二、三级或设计使用年限分别为50年以上、50、1~5年时,重要性系数分别不应小于1.1、1.0、0.9 3、设计使用年限 计算结构可靠度所依据的年限称为结构的设计使用年限。 1、设计使用年限的定义:设计使用年限 design working life 设计规定的结构或结构构件不需进行大修即可按其预定目的使用的时期。 2、设计使用年限的取值:在设计使用年限内,结构和结构构件在正常维护条件下应能保持其使用功能,而不需进行大修加固。 设计使用年限应按现行国家标准《建筑结构可靠度设计统一标准》GB50068确定: (1)临时性结构,设计使用年限为5年, (2)易于替换的结构构件,设计使用年限为25年, (3)普通房屋和构筑物,设计使用年限为50年, (4)纪念性建筑和特别重要的建筑结构,设计使用年限为100年。若建设单位提出更高要求,也可按建设单位的要求确定。

结构设计原理知识点

第一章 钢筋混凝土结构基本概念及材料的物理力学性能 1.混凝土立方体抗压强度cu f :(基本强度指标)以边长150mm 立方体试件,按标准方法制作养护28d ,标准试验方法(不涂润滑剂,全截面受压,加载速度0.15~0.25MPa/s )测得的抗压强度作为混凝土立方体抗压强度 cu f 。 影响立方体强度主要因素为试件尺寸和试验方法。尺寸效应关系: cu f (150)=0.95cu f (100) cu f (150)=1.05cu f (200) 2.混凝土弹性模量和变形模量。 ①原点弹性模量:在混凝土受压应力—应变曲线图的原点作切线,该切线曲率即为原点弹性模量。表示为:E '=σ/ε=tan α0 ②变形模量:连接混凝土应力应变—曲线的原点及曲线上某一点K 作割线,K 点混凝土应力为σc (=0.5c f ),该割线(OK )的斜率即为变形模量,也称割线模量或弹塑性模量。 E c '''=tan α1=σc /εc 混凝土受拉弹性模量与受压弹性模量相等。 ③切线模量:混凝土应力应变—上某应力σc 处作一切线,该切线斜率即为相应于应力σc 时的切线模量''c E =d σ/d ε 3 . 徐变变形:在应力长期不变的作用下,混凝土的应变随时间增长的现象称为徐变。 影响徐变的因素:a. 内在因素,包括混凝土组成、龄期,龄期越早,徐变越大;b. 环境条件,指养护和使用时的温度、湿度,温度越高,湿度越低,徐变越大;c. 应力条件,压应力σ﹤0.5 c f ,徐变与应力呈线性关系;当压应力σ介于(0.5~0.8)c f 之间,徐变增长比应力快;当压应力σ﹥0.8 c f 时,混凝土的非线性徐变不收敛。 徐变对结构的影响:a.使结构变形增加;b.静定结构会使截面中产生应力重分布;c.超静定结构引起赘余力;d.在预应力混凝土结构中产生预 应力损失。 4.收缩变形:在混凝土中凝结和硬化的物理化学过程中体积随时间推移而减少的现象称为收缩。 混凝土收缩原因:a.硬化初期,化学性收缩,本身的体积收缩;b.后期,物理收缩,失水干燥。 影响混凝土收缩的主要因素:a.混凝土组成和配比;b.构件的养护条件、使用环境的温度和湿度,以及凡是影响混凝土中水分保持的因素;c.构件的体表比,比值越小收缩越大。 混凝土收缩对结构的影响:a.构件未受荷前可能产生裂缝;b.预应力构件中引起预应力损失;c.超静定结构产生次内力。 5.钢筋的基本概念 1.钢筋按化学成分分类,可分为碳素钢和普通低合金钢。 2钢筋按加工方法分类,可分为a.热轧钢筋;b.热处理钢筋;c.冷加工钢筋(冷拉钢筋、冷轧钢筋、冷轧带肋钢筋和冷轧扭钢筋。) 6.钢筋的力学性能 物理力学指标:(1)两个强度指标:屈服强度,结构设计计算中强度取值主要依据;极限抗拉强度,材料实际破坏强度,衡量钢筋屈服后的抗拉能力,不能作为计算依据。(2)两个塑性指标:伸长率和冷弯性能:钢材在冷加工过程和使用时不开裂、弯断或脆断的性能。 7.钢筋和混凝土共同工作的的原因:(1)混凝土和钢筋之间有着良好的黏结力;(2)二者具有相近的温度线膨胀系数;(3)在保护层足够的前提下,呈碱性的混凝土可以保护钢筋不易锈蚀,保证了钢筋与混凝土的共同作用。 第二章 结构按极限状态法设计计算的原则 1.结构概率设计的方法按发展进程划分为三个水准:a.水准Ⅰ,半概率设计法,只对影响结构可靠度的某些参数,用数理统计分析,并与经验结合,对结构的可靠度不能做出定量的估计;b.水准Ⅱ,近似概率设计法,用概率论和数理统计理论,对结构、构件、或截面设计的可靠概率做出近似估计,忽略了变量随时间的关系,非线性极限状态方程线性化;c.水准Ⅲ,全概略设计法,我国《公桥规》采用水准Ⅱ。 2.结构的可靠性:指结构在规定时间(设计基准期)、规定的条件下,完成预定功能的能力。 可靠性组成:安全性、适用性、耐久性。 可靠度:对结构的可靠性进行概率描述称为结构可靠度。 3.结构的极限状态:当整个结构或构件的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 极限状态分为承载能力极限状态、正常使用极限状态和破坏—安全状态。 承载能力极限状态对应于结构或构件达到最大承载力或不适于继续承载的变形,具体表现:a.整个构件或结构的一部分作为刚体失去平衡;b.结构构件或连接处因超过材料强度而破坏;c.结构转变成机动体系;d.结构或构件丧失稳定;e.变形过大,不能继续承载和使用。 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值,具体表现:a.由于外观变形影响正常使用;b.由于耐久性能的局部损坏影响正常使用;c.由于震动影响正常使用;d.由于其他特定状态影响正常使用。 破坏—安全状态是指偶然事件造成局部损坏后,其余部分不至于发生连续倒塌的状态。(破坏—安全极限状态归到承载能力极限状态中) 4.作用:使结构产生内力、变形、应力、应变的所有原因。 作用分为:永久作用、可变作用和偶然作用。 永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用 可变作用:在结构试用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用。

高层建筑结构抗震与设计考试重点复习题(含答案)

1.从结构的体系上来分,常用的高层建筑结构的抗侧力体系主要有:_框架结构,剪力墙结构,_框架-剪力墙_结构,_筒体_结构,悬挂结构和巨型框架结构。 2.一般高层建筑的基本风压取_50_年一遇的基本风压。对于特别重要或对风荷载比较敏感的高层建筑,采用_100_年一遇的风压值;在没有_100_年一遇的风压资料时,可近视用取_50_年一遇的基本风压乘以1.1的增大系数采用。 3.震级――地震的级别,说明某次地震本身产生的能量大小 地震烈度――指某一地区地面及建筑物受到一次地震影响的强烈程度 基本烈度――指某一地区今后一定时期内,在一般场地条件下可能遭受的最大烈度设防烈度――一般按基本烈度采用,对重要建筑物,报批后,提高一度采用 4.《建筑抗震设计规范》中规定,设防烈度为_6_度及_6_度以上的地区,建筑物必须进行抗震设计。 5.详细说明三水准抗震设计目标。 小震不坏:小震作用下应维持在弹性状态,一般不损坏或不需修理仍可继续使用 中震可修:中震作用下,局部进入塑性状态,可能有一定损坏,修复后可继续使用大震不倒:强震作用下,不应倒塌或发生危及生命的严重破坏 6.设防烈度相当于_B_ A、小震 B 、中震C、中震 7.用《高层建筑结构》中介绍的框架结构、剪力墙结构、框架-剪力墙结构的内力和位移的近似计算方法,一般计算的是这些结构在__下的内力和位移。 A 小震 B 中震C大震 8.在建筑结构抗震设计过程中,根据建筑物使用功能的重要性不同,采取不同的抗震设防 标准。请问建筑物分为哪几个抗震设防类别? 甲:高于本地区设防烈度,属于重大建筑工程和地震时可能发生严重次生灾害的建筑乙:按本地区设防烈度,属于地震时使用功能不能中断或需尽快恢复的建筑 丙:除甲乙丁外的一般建筑 丁:属抗震次要建筑,一般仍按本地区的设防烈度 9.下列高层建筑需要考虑竖向地震作用。(D) A 8°抗震设计时 B 跨度较大时 C 有长悬臂构件时 D 9°抗震设计

建筑结构设计概念与软件操作及实例-绪论

传力体系,也无非是梁板、梁柱、板柱等传力体系的简化与灵活应用,万变不离其宗,当做过多个项目后,回头再看这句话,或许会感触很深。 7 概念设计 结构布置应尽量连续,不连续的地方一般都要加强,比如,边缘构件要加强,板边需要加强,角柱需要加强,底柱和顶柱子需要加强。 结构布置应尽量均匀(平面和立面),结构平面布置的不均匀,往往会加大结构扭转变形,引起超筋,位移比、周期比不满足规范要求;结构立面的不均匀(上大下小),由于刚度的突变,易形成薄弱层。 结构设计本质是变形协调,变形协调需要代价,代价是增加混凝土与钢筋的用量。 8抓大放小 “抓大放小”即抓住主要矛盾,暂且搁下“次要矛盾”,如果一开始就力求完美,则必然会“物极必反”,做事没有效率。“抓大放小”是符合辩证思维的,在抓大放小的过程中,做设计时要循序渐进,事缓则圆。 比如梁的布置,抓住“大范围”板块梁的布置,再与局部的梁布置协调。如果协调不好,也应容许“缺陷”,做设计是寻求“最优解”,而不是“最佳解”。 9中庸之道 尽量不要踩着规范的“边界”去做设计,否则很难受,在没有对理论与实践有足够透彻的理解时,可以根据二八原则,留有20%的余量或折中。 当明白一个结构设计中的主次要构件及主次要矛盾时,对于次要构件或者次要矛盾,可以不必太过于精细,可多放一些,否则工作效率不高。 10分析问题的思维方式 (1)二八定律: 任何一组事物中,起主要作用的是少数。比如外围、拐角的剪力墙抵抗水平风荷载与水平地震作用的贡献最大。独立基础受到较大弯矩时,独立基础外围部分的贡献更大(力臂更大)。分清结构或构件中的主次要因素后,便可更有效的根据结构或构件计算指标调整结构或构件布置以满足规范要求。

打印版一级注册结构工程师基础考试笔记

一级注册结构师基础考试资料 物理 1、光:光程差nx 在相同的时间内,一束波长为 的单色光在空气中和在玻璃中传播的路程不相等,走过的光程相等。 最小分辨角:1.22*λ/D 迈克尔逊干涉仪:d=k×λ/2『每移动λ/2,望远镜的视场中就有一条明纹通过,若有N条明纹通过,则M2平移的距离即为d』 当自然光以布儒斯特角入射到两种不同介质的表面时,其反射光是光振动垂直于入射面的线偏振光。 布儒斯特定律tanα=n2/n1 e光在晶体中各个方向的折射率不相等,即它在晶体中的传播速度随方向不同而改变。而o光在晶体中各方向的折射率和传播速度都相同。 光轴:晶体中存在一些特殊方向,光沿这些方向入射时不发生双折射,即这些方向o 光和 e 光的折射率相等,传播速度相同。 2、热:dQ=dE+dA,(*绝热线比等温线陡) pV/T=m/M *R=N/N0 *R, E=m/M *i/2 *R*T, dA=p*dV 热机循环:标志着循环过程中吸收的热量有多少转换成有用功。 卡诺循环:热机效率=1-T2/T1=1-Q2/Q1『T1为高温热源的温度,T2为低温热源的温度。』 熵变:dS=dQ/T 分子质量:u=M/N0(N0=6.022*10^23) 热力学第二定律:(孤立系统中,自发进行的过程是不可逆的,总是沿着系统热力学概率(无序性)增加的方向进行,也就是由包含微观态数目小的宏观态向包含微观态多的宏观态的方向进行。) 开尔文表述:不可能从单一热源吸取热量使之完全变为有用功而不产生其他影响。(并不意味着热不能完全转变为功) 克劳修斯表述:热量不能自动地从低温物体传到高温物体。并不意味着热量不能从低温物体传到高温物体。(" 自动" 即热量从低温物体传到高温物体不能自发进行,不产生其它影响。) 可逆过程:(外界也恢复原状)一切与热现象有关的宏观实际过程都是不可逆的,其自发进行具有单向性。 熵增加原理:孤立系统中自然发生的热力学过程总是向着熵增加的方向进行。 卡诺循环中,净功与P-V图上的曲线包裹的面积有关,而效率只跟温度T有关。 3、动:速率分布函数:f(v)*dv=dN/N 『在麦克斯韦速率分布曲线下的任意一块面积等于相应速率区间内分子数 占总分子数的百分比。』方均根速率v^2=3RT/M 分子的平均速率=v*f(v)*dv的零~正无穷积分。 分子平均自由程、平均碰撞频率与P、V、T的关系。 P=nKT (n=N/V 表示单位体积分子数) 4、波:y=Acos[w(t-x/v)] 波沿x轴正方向传播,P点距O点距离x, 介质元的动能和势能之是同相变化的。当介质元处在平衡位置时,其动能和势能同时达到最大值;当介质元处在最大位移时,其动能和势能同时达到最小值。 波的强度与波的振幅平方成正比。 波的能量密度是随时间周期性的变化的。 驻波的波形特征:两个波节(或波幅)的间距为λ/2,同一段上的各点的振动同相,而隔开一个波节的两点的振动反相。两个相邻波节内各点的振动相位差为0。 化学

结构设计原理

结构设计原理 交卷时间:2016-11-05 15:53:42一、单选题 1. (2分)钢筋屈服状态指 得分: 2 知识点:结构设计原理作业题 答案B 解析 考查要点: 试题解答: 2. (2分)地震荷载属于()

得分: 2 知识点:结构设计原理作业题 答案D 解析 考查要点: 试题解答: 3. (2分)下列对结构的分类不属于按受力特征分类的是:() 得分: 2 知识点:结构设计原理作业题 答案A 解析 考查要点: 试题解答: 4. (2分) 直径300mm的轴心受压柱,由C25混凝土(f cd=11.5Mpa),HPB300(f sd=270Mpa)钢筋制作,要它能够承担1400kN的压力,最好选直径25mm的钢筋()根。

得分: 2 知识点:结构设计原理考试题 答案C 解析 考查要点: 试题解答: 5. (2分)梁内抵抗弯矩的钢筋主要是() 得分: 2 知识点:结构设计原理作业题 答案A 解析 考查要点: 试题解答: 6. (2分)事先人为引入内部应力的混凝土叫()。

得分: 2 知识点:结构设计原理作业题 答案C 解析 考查要点: 试题解答: 7. (2分)下列描述是适筋梁的是() 得分: 2 知识点:结构设计原理考试题 答案C 解析 考查要点: 试题解答: 8. (2分)拉伸长度保持不变,钢筋中的应力随时间而减小的现象叫()。

得分: 2 知识点:结构设计原理作业题 答案D 解析 考查要点: 试题解答: 9. (2分)针对地震荷载的计算属于() 得分: 2 知识点:结构设计原理考试题 答案D 解析 考查要点: 试题解答: 10.

结构工程师必知的100个设计要点

方案阶段 1.建设场地不能选在危险地段。 由于结构设计在建设场地的选择中一般是被动的接受方,因此,在结构方案及初步设计阶段, 应特别注重对建设场地的再判别。对不利地段,应根据不利程度采取相应的技术措施。 2.山地建筑尤其需要注意总平布置。 山区建筑场地应根据地质、地形条件和使用要求, 因地制宜设置符合抗震设防要求的边坡工程; 边坡附近的建筑基础应进行抗震稳定性设计。建筑基础与土质、强风化岩质边坡应留有足够的 距离, 其值应根据抗震设防烈度的高低确定, 并采取措施避免地震时地基基础破坏。当需要在 条状突出的山嘴、高耸孤立的山丘、非岩石的陡坡、河岸和边坡边缘等不利地段建造丙类及丙 类以上建筑时,除保证其在地震作用下的稳定性外, 尚应估计不利地段对设计地震动参数可能 产生的放大作用, 其地震影响系数最大值应乘以增大系数。其值可根据不利地段的具体情况确定, 在1.1~1.6 范围内采用。 此条为强条; 台地边缘建筑地震力放大系数也意味着单体建筑成本的增加。实际上, 有时边坡 支护的费用可能远远大于边坡上单体的费用。曾经有的方案设计单位布置总平时将 18~33层的高层布置在悬崖边缘或跨越十多米高的边坡, 这些都是对结构及地质不了解才会产生的错误。3.是否有地下室。 高层建筑宜设地下室;对无地下室的高层建筑,应满足规范对埋置深度的要求。 4.高度问题 室内外高差是多少,房屋高度是多少,房屋高度有没有超限。 5.结构高宽比问题 设计规定,6、7度抗震设防烈度时,框架- 剪力墙结构、剪力墙结构高宽比不宜超过 6。高 宽比控制的目的在于对高层建筑结构刚度、整体稳定、承载能力和经济合理性(主要影响结构 设计的经济性,对超高层建筑,当高宽比大于7时,结构设计难度大,费用高)的宏观控制。6.结构设计应与建筑师密切合作优化建筑设计和结构布置。 采取必要的结构和施工措施尽量避免设置各类结构缝(伸缩缝、沉降缝、防震缝)。当必须设 置时,应符合现行规范有关缝的要求,并根据建筑使用要求、结构平面和竖向布置的情况、地 基情况、基础类型、结构刚度以及荷载、作用的差异、抗震要求等条件、综合考虑后确定。 各缝宜合并布置,并应按规范的规定采取可靠的构造措施和保证必要的缝宽,防止地震时发生 碰撞导致破坏。结构长度大于规范时, 应设置伸缩缝, 高层建筑结构伸缩缝的最大间距: 框架 结构为 55m, 剪力墙结构为 45m。 7.结构平面布置不规则问题

装配式建筑结构设计要点分析 韩庭军

装配式建筑结构设计要点分析韩庭军 发表时间:2019-09-18T15:54:09.677Z 来源:《建筑学研究前沿》2019年11期作者:韩庭军[导读] 在安装装配式预制构件时要严格按照技术要求进行施工,避免损伤装配式件的力学性能,在整体上提升使用的性能。身份证号码:23108419831124**** 摘要:目前,新建筑技术的发展趋势是向轻建筑系统发展,并正在努力将这种技术应用于多层建筑。装配式建筑顺应了这一发展趋势,同时也满足了“绿色建筑”的要求,这也是实现我国建筑行业可持续发展的必然选择。建筑结构设计是建筑工程项目重要组成部分,在设计过程中需要综合考虑项目要求、项目地附近地质条件等因素,将设计人员对建筑物的表达反映在设计图纸上。 关键词:装配式;建筑结构设计;要点分析 引言装配式建筑的使用具有较高的经济效益,因此,在使用的过程中,需要关注建筑本身所具有的结构要求。过对建筑工程中实践应用装配式结构的分析,本文总结了这种新型建筑结构与传统现浇混凝土模式存在的主要区别,并分析了装配式结构的设计要点。同时在实际的施工中,要充分掌握各种施工要点,同时要保证施工的质量,在安装装配式预制构件时要严格按照技术要求进行施工,避免损伤装配式件的力学性能,在整体上提升使用的性能。1装配式建筑简介所谓装配式建筑,简单来说就是指的预先制造好建筑结构中的各个构件,再统一将构件运送到施工场地,在施工现场用它们装配成形的建筑。早上个世纪初,人们就已经提出了装配式建筑的概念,但是最初由于装配式建筑的外表形式比较单一,所以未能得到广泛的推广和应用。而到了现代,随着建筑行业的不断发展及科技与材料的不断进步,装配式建筑的结构形式有了不断的改进,时至今日,装配式建筑结构已经变得非常灵活和多样。我们可以将整个装配式建筑的施工过程,比喻成为一项设备生产活动,先成批量地加工好零件,再用零件拼装成最终的产品。所以,相较于传统形式的建筑而言,装配式建筑的最大优点体现在其的施工速度快、施工效率高、施工质量好以及环保性能佳。就建筑行业的发展形势来看,装配式建筑将成为未来的主要发展趋势。2装配式建筑的基本原理装配式建筑的基本原理和现浇建筑基本类似,在建筑施工过程中,使用安全可靠的连接方式将一些结构连接,并利用一些特殊构造方式实现装配建筑的完工。装配式建筑也使用了很多的节点设计,结构的刚度差异对工程质量也会产生影响,为了增强整体的抗震能力,就需要根据实际情况对建筑节点进行可靠合理的设计。装配式建筑结构能有效地提升施工效率,还可以使设计与施工形成一种统一协调性。在进行实际的项目施工过程中,可以先通过提前进行有关构件的设计以及预制作,从而保证在进行施工作业时有足够的时间和精力同时进行其他施工作业,有效提升建设施工的工作效率。然后,使用装配式结构进行施工作业,能够极大提高建筑工程的工作效率,还能加强施工作业各步骤之间的配合度。而且,装配式的建筑结构属于标准化的建设技术,能够推动整个建筑行业向着标准化方向前进。由于社会科技的不断进步,材料科技日新月异,这使得装配式结构制作的必要构件从生产工艺上开始变得更加先进,精度变得更高,装配式结构工艺的标准化使得建设工程变得节能环保,返工浪费情况大大减少。最后,装配式建筑结的优越性,可以在保障安全可靠情况下极大的加快建设效率减少工程所用时间。进行实际的工程作业时,整个施工企业首先要对装配式结构用计算进行全面化的数据化处理分析,利用计算机技术对整个工程进行分析与完善。总而言之,使用装配式建筑结构进行建筑设计,不仅全方面地提高了工程质量,提高施工工作效率,而且在保障质量安全下对工程建设周期全面的优化与缩短。3装配式建筑设计要点3.1总设计图设计装配式建筑总设计图需要对整个建筑结构以及整体建筑设计过程进行总的概述,目的在于将装配式建筑设计理念概念化。对于预制的构件与建筑设计空间之间,必须确保满足这一空间设计中,构件与预制构件装配设计空间足够,减少重复提升吊装的次数,尽量保证一次性完成装配任务。对于装配式任务,最主要的在于保障施工现场机械能够在安全运转的基础上高效进行工作,在机械运转过程中,同样需要保护施工人员生命安全以及工作中相关器械以及与预制构件完整。同时有序整齐摆放预制构件,以保障在施工过程中,施工现场地面平整,降低因地面不规则而出现的施工隐患。并组织相关施工人员,定期进行工地现场清理,保护施工人员的生命安全。并且从总设计图中设计人员、施工工人能够较为直观分析建筑各个空间结构以及相应的预制构件、构件节点位置,提升了建筑施工效率。 3.2整体性的结构设计在高层的建筑设计中,需要对于整体性的机构建筑进行特别的关注,这是由于在整体性的结构设计中对于建筑整体的稳固性具有影响,在此基础上,建筑的不同细节设计部分都需要与整体的结构性设计相适应。为了使得建筑的整体结构具有的形式更为合理的分布形式,需要从整体的结构入手,对于建筑的设计进行规划。在应用的叠合板材料中,需要采单向的板材进行应用。此外,在建筑的过程中,需要结合建筑的内部的不同预留结构装置,对于整体的结构工作作出相应的预留,在开洞的位置中,需要规范化的对于受力钢筋进行应用。洞口位置所用的钢筋,需要根据其应用的位置以及应用的长度对于钢筋进行截断。在外面的收进楼层中,需要结合剪力墙的应用状况对于其后的钢筋设计进行浇筑的工作,并且使得墙体能够整体的平均接受力的分布。在楼层的剪力墙中,需要就其顶部的建筑状况对于其后的设计应用要点进行分析,水平式的后浇带存在着超过两根的后相连接钢筋,就能够保证整体的结构应用需求。 3.3平面、立面设计在装配式建筑设计中,平面、立面设计属于基础部分。在这一部分基础设计中,首先进行平面设计,设计中要与实际装配建筑具体情况相联系,并综合建筑各个部分与相关尺寸要求,科学布置内部空间,选择合适承重墙与管井具体位置,合理划分建筑内部各个空间大小,以便于发挥其空间作用。在这基础上保持建筑外观具有较高观赏价值。立体设计需要采用标准化、系统化与模块化相结合的设计实施方式。同时在对建筑外墙进行设计的时候,需要充分考录建筑整体的美观性,选择不同的外墙材料来进行搭配装饰,从而使得建筑美观性得到有效提高。此外还应当充分结合各种不同的组件,来提高建筑立面效果。结束语

混凝土结构设计原理第四章_课堂笔记

《混凝土结构设计原理》第四章受弯构件正截面承载力计算课堂笔记 知识点掌握: 受弯构件是土木工程中用得最普遍的构件。 与构件计算轴线垂直的截面称为正截面,受弯构件正截面承载力计算就是满足要求:M≤Mu。这里M为受弯构件正截面的设计弯矩,Mu为受弯构件正截面受弯承载力,是由正截面上的材料所产生的抗力,其计算及应用是本章的中心问题。 主要内容 受弯构件的一般构造要求 受弯构件正截面承载力的试验研究 受弯构件正截面承载力的计算理论 单筋矩形戴面受弯承载力计算 双筋矩形截面受弯承载力计算 T形截面受弯承载力计算 学习要求 1.深入理解适筋梁的三个受力阶段,配筋率对梁正截面破坏形态的影响及正截面抗弯承载力的截面应力计算图形。 2.熟练掌握单筋矩形、双筋矩形和T形截面受弯构件正截面设计和复核的握法,包括适用条件的验算。 重点难点 本章的重点: 1.适筋梁的受力阶段,配筋率对正截面破坏形态的影响及正截面抗弯承载力的截面应力计算图形。 2.单筋矩形、双筋矩形和T形截面受弯构件正截面抗弯承载力的计算。 本章的难点: 重点1也是本章的难点。 一、受弯构件的一般构造 (一)受弯构件常见截面形式 结构中常用的梁、板是典型的受弯构件: 受弯构件的常见截面形式的有矩形、T形、工字形、箱形、预制板常见的有空心板、槽型板等;为施工方便和结构整体性,也可采用预制和现浇结合,形成叠合梁和叠合板。 (二)受弯构件的截面尺寸 为统一模板尺寸,方便施工,宜按下述采用: 截面宽度b=120, 150 , 180、200、220、250、300以上级差为50mm。 截面高度h=250, 300,…、750、800mm,每次级差为50mm,800mm以上级差为100mm。 板的厚度与使用要求有关,板厚以10mm为模数。但板的厚度不应过小。 (三)受弯构件材料选择与一般构造 1.受弯构件的混凝土等级 提高砼等级对增大正截面承载力的作用不显著。 受弯构件常用的混凝土等级是C20~C40。 2.受弯构件的混凝土保护层厚度 纵向受力钢筋的外表面到截面边缘的最小垂直距离,称为混凝土保护层厚度,用c表示。 3.受弯构件的钢筋强度等级和直径 梁纵向受力钢筋宜采用HRB400 ,HRB335;常用直径为12mm~25mm。 板纵向受力钢筋宜采用HRB:400、 HRB335、HRB235;常用直径为6mm~12mm。 设计中若采用两种不同直径的钢筋,钢筋直径相差至少2mm,以便在施工中能用肉眼识别。 (四)梁的一般构造要求 矩形截面梁h/b一般取~;

结构设计原理复习重点

立方体抗压强度fcu>轴心抗压强度fc>轴心抗拉强度ft ;fcu 和试验方法、实验尺寸有关。试验尺寸越小,强度值越大。(1)双向受压时,一向混凝土强度随另一向压应力增加而增加;(2)双向受拉时,双向抗拉强度接近单向抗拉强度(3)一侧受拉一侧受压,强度均低于单向受力强度。 影响砌体抗压强度主要因素:块材的强度、尺寸和形状,砂浆的物理力学性能,砌筑质量 分为荷载作用下的变形和体积变形(收缩)。徐变:在荷载长期作用下,混凝土变形随时间增加而增加,应力不变的情况下,应变随时间增加。 (1)混凝土强度越高,应力应变曲线下降越剧烈,延性越差。(2)应变速率小,峰值应力fc 降低,峰值应变增大,下降段曲线显著减缓(3)测试技术和实验条件 后者与前者相比,后者没有明显的流服或屈服点。同时其强度很高,但延伸率大为减少, 塑性性能降低。 软钢:有物理屈服点。以屈服点处的强度值作为计算承载力时的强度极限。 硬钢:无物理屈服点。设计上取相应残余应变为0.2%的应力作为假定屈服强度 结构功能:(1)结构应能承受在正常施工和正常使用期间出现的各种荷载、外加变形、约束变形的作用(2)结构在正常使用条件下具有良好的工作性能(3)结构在正常使用和正常维护条件下,具有足够的耐久性(4)在偶然荷载作用下或偶然事件发生时、发生后,结构仍能保持整体稳定性,不发生倒塌。 功能函数:Z=R-S ≥0结构处于可靠、极限状态。 (1)适筋梁破坏;钢筋先屈服后混凝土被压碎,属延性破坏。 (2)超筋梁破坏;混凝土先被压碎,钢筋不屈服,属脆性破坏。 (3)少筋梁破坏;混凝土一开裂,钢筋马上屈服而破坏,属脆性破坏 (1)平截面假设:混凝土平均应变沿截面高度按直线分布。(2)不考虑混凝土的抗拉强度。拉力全部由钢筋承担。(3)纵向钢筋应力应变方程:s s =s y E f σε≤(纵向钢筋的极限拉应变取0.01) (4)混凝土受压应力应变曲线方程按规定取用 优点:提高了截面承受弯矩的能力;提高截面的延性。 缺点:钢筋用量增多,不经济 若超过400,则混凝土破坏时钢筋未达到屈服强度,适用高强度钢筋不经济。 梁:纵向受拉钢筋(主钢筋)、弯起钢筋或斜拉钢筋、箍筋、架立钢筋和水平纵向钢筋。梁内

建筑结构设计中的抗震设计要点分析 郭冲

建筑结构设计中的抗震设计要点分析郭冲 发表时间:2019-09-11T15:54:04.173Z 来源:《建筑学研究前沿》2019年11期作者:郭冲 [导读] 地震带来的震荡可能会使建筑物变形,甚至是出现倒塌的现象,即便是经过地震没有很大的影响,其基本的抗震能力也会进一步降低。 河南中核五院研究设计有限公司 摘要:由于地震灾害的破坏力较大,特别是在一些地震频发的地区,提高建筑结构设计中的抗震设计至关重要。基于此,本文对建筑结构设计中的抗震设计面临的问题进行了总结,对建筑结构抗震设计原则和措施进行了分析,提出了常见结构的抗震设计要点,从而更好的提高建筑结构的抗震质量。 关键词:建筑结构;抗震设计;质量 一、抗震设计面临的问题 1、建筑高度的问题 随着人口的大量增加,我国的建筑物大多以高层建筑为主,对于高层建筑的钢筋混凝土有着一定的标准要求。但是有些开发商为了追求利益全然不顾设计标准,超过设计标准加建楼层,一旦发生地震,这些建筑物的抵抗力就会大大的降低,地震带来的震荡可能会使建筑物变形,甚至是出现倒塌的现象,即便是经过地震没有很大的影响,其基本的抗震能力也会进一步降低。 2、建筑位置问题 我国是人口大国,而且人口的数量仍旧在不断的增加,但是我国可实际应用的土地面积是有限的,相关开发商可能不会考虑建筑的地点是否适合建造房屋,对地理位置不能够进行合理的选择。建筑的地点需要具备开阔的基本性能,地理位置要平坦,土体要坚实,河流附近和山坡边缘都不是合适的建筑地带,在选择地址的时候应该考察泥石流发生的可能性和其他自然灾害发生的可能性,尽量避免在类似的地带建造房屋,对于地震活跃的地带和大陆板块的衔接地带都应该尽可能避免建造房屋,这样可以减少地震灾害带来的影响。 3、建筑材料问题 建筑的选材关系到建筑的质量,对于地震频发的地区,其建筑材料的选择更加有严格的要求,在我国的建筑过程中,其建筑结构主要由钢筋和混凝土组成,一旦发生侧移就会带动更大程度的位移,建筑结构中的钢框架一旦发生位移就会造成建筑结构的负载增加,相应的抗震性能就会减弱,应该选择适合的建筑材料。 二、建筑结构抗震设计原则 1、结构抗震设计的目标 抗震设计时,要保证发生小地震时安全,不会给住宅造成毁坏;当发生中级地震时,住宅所受的损坏不大,不会为居民带来安全威胁,并且住宅所损坏的结构可以修复并继续使用;当出现大地震时,不会倒塌,可以给人们空间、时间及时逃离。结构抗震设计目标总得来讲就是:小震安全可靠、中震损坏可修、大震高楼不倒。 2、结构抗震设计的原则 结构设计时要考虑几个方面的因素,以达到优化结构抗震设计的目的。首先,住宅结构设计要具备一定的刚性和弹塑性,在地震力影响住宅时不会因为刚性过硬或者弹塑性过大,使得其的结构发生无法修复的形变。其次,由于强震都伴随着不同程度的余震,这时就不允许住宅结构过度追求抗震能力,这会导致住宅刚性过大,而无法承受余震带来的压力,这就要求在抗震设计时既要抗住强震的破坏力,又要承受得了余震的多次侵扰。最后,为了避免刚性太小,导致住宅结构在余震攻击下变形过大而无法修复,所以要求建筑具备延性良好的分体系,防止住宅在强震中集体崩塌。 三、建筑结构设计中抗震设计的措施 建筑结构抗震性能的强弱与周边环境有着直接的关系,抗震能力弱的建筑会直接威胁到建筑结构内及周边行人的生命财产安全,同时对周边建筑和设施也会有一定的影响,因此,切实有效的提高建筑结构的抗震能力是一件刻不容缓的事情。经过多年的实践,提高建筑结构抗震能力主要通过以下方式:在建筑设计过程中谨慎选择建筑抗震结构、合理的布局减少地震带来的能量、建筑中设置多重抗震防线,确保建筑结构的抗震性能满足要求。 1、谨慎选择建筑抗震结构 谨慎的选择建筑抗震结构能够有效的提高建筑结构抗震性能,选择强度较优、刚度较高的建筑结构主体,能够有效的降低建筑结构的变形,同时能够确保建筑物的安全性。针对建筑中容易出现安全隐患的部位进行必须的措施,防止安全性问题的出现。 2、合理的布局减少地震带来的能量 在对建筑结构进行抗震设计中对建筑采取以位移为基点的结构设计和定量分析能有效的减少地震灾害的能量输入,增加建筑结构的抗震效果。在建筑进行施工中其地基要尽量的选择在比较坚硬的场地,同时要尽量的避开地震活跃范围,减少地震余震对建筑物造成的共振,减少地震对建筑物造成的破坏。 3、在建筑中设置多重抗震防线 在对建筑物进行抗震设计时要设置多重抗震防线,这样可以在最大限度上降低地震对建筑物造成的伤害。在对建筑进行设计时,可以将延展性好的构件加入到建筑物的抗震体系中,可以将其视为第一道防线,同时可以将一些其他的建筑构件作为第二、第三道防线,这样在地震发生时,第一道防线遭到破坏后,可以利用其他的防线进行抵抗地震的后续冲击力,以保证人们的生命财产安全。 4、常见结构的抗震设计要点 4.1防震缝的设计 在预防地震的基础原则上展开抗震结构的设计,对于一些没有符合标准要求的建筑,应该在一定的地点设置相关的防震缝,利用防震缝可以有效的分解建筑的内部结构,使得建筑内部结构呈现出独立的单元,缝隙的两侧应该预留出合适的宽度,这样可以使得防震缝同上层建筑物分开,当地震发生时,防震缝可以很好的减缓地震带来的波动程度,建筑的某一单元受到损害不会影响到其他部分。

相关文档
最新文档