福讯沉箱浮游稳定计算
大型沉箱浮筒帮浮出运浮游稳定性计算

9 3 7 1
0 4 2 9
l 2 1 4 6 6
1 2 1 4 6 6
5 . 5 e 8
l 5 1 3 4 8 0 5
2 0 0 吨起 重船, 吊力不足的部分考虑
l 0
舒 童
l 2 t
0
2 2 5
、
如强
0 2×0 3 2 ×( 4 1 - 4 7 5 ) ×2×1 2x
2
8 4 9 6
O
l 3 7 5 0
0
j 1 6 8 2 0
9
前靶
:
f 0 7 - 1 0 ) ×l 2 ×I 5 2 5
l 2 8 6 3
..—
—
沉箱 平 面及 过 水孔 布 置 图
用有足够吊高和吊力的起 重船 , 才 能配
汪糟奸面 过水孔希置 圈
图一 : 沉 箱 结构 图
埔 掏件
体较计篁式 体积 Vi ( m )
合浮船坞将沉箱直接吊扶 出坞 。 满足
体_ 疑 矩( m‘ )
t湟
移I 埔 ( r r 1 )
根 据 浮 游稳 定 性计 算 , 取 定 倾高
=t
^t
度 为0 . 3 米时, 该 沉 箱 自由漂 浮 稳定 吃 水1 7 . 2 米, 远 远 超 出了浮 船坞 能达 到 的
坞 内最 大 有效 水深 ( 1 3 . 2 米) , 必须 选
L— —— — — 卫 王 签 —— — ——_ 一
有效 水深 1 3 . 2 米 时 浮 游 稳 定 出坞 的所 需最小 吊力计算 结果见 表三 。 经计算 , 吊 力不 能 小 于 3 0 0 吨, 起 重 船 起 重 能 力则 需 在 4 0 0 吨以上。 因现 场 和 周边 无 4 0 0 吨以上起重船,
海上沉箱浮游稳定性验算书

海上沉箱浮游稳定性验算书进行浮游稳定性计算,以保证沉箱拖航、安装时的安全。
①CXI型沉箱要加水调平不平衡力矩(对沉箱中心) ZMx=82.92kN∙m需要后三仓加水,加水深度t{(3.6×3.65-0.22×2)×t-0.22X(3.45+3.4)}×3×1.025X3.9=JMx×2.5B加水后1.4m的浮游稳定性加水的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.4-0.22X(3.45+3.4)}×3×1.025=55.38ZIMy=g×1.2=66.46kN∙m沉箱总重量G=ΣV×2.5+g=1089.06kN重心高度YC=(My+/My)/G=4.914m排水体积V=G/1.025=1062.495m3前后趾排水体积v=13.806m3浮心高度Yw=E(V-v)×T∕2+vYv)]∕V=3.579m重心到浮心距离a=Yc-Yw=1.336m定倾半径P=(I-∑i)∕V=1.628m定倾高度m=P-a=0.292>0.2满足浮游稳定要求②CX2型沉箱以沉箱仓格中心为计算圆点A要加水调平不平衡力矩(对沉箱中心)/Mx=134.735kN∙m需要后三仓加水,加水深度t{(3.65×4.5-0.22×2)×1θ.22×(3.45+4.3)}×3×1.025×4.75=ZM×2.516.35Xt-O.31=23.0612t=1.43mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(4.5×3.65-0.22×2)×1.5+0.22×(3.45+4.3}×3×1.025=74.438ZIMy=gX1.25=93.048kN∙m沉箱总重量G=ΣV×2.5÷g=1214.412kN重心高度YC=(My+/My)/G=4.84m排水体积V=G/1.025=1184.79m3前后趾排水v=10.038m3沉箱吃水T=(V-v)∕A=6.665m浮心高度Yw=[(V-v)×T∕2+vYv)]∕V=3.307m重心到浮心距离a=Yc-Yw=I.532m定倾半径P=(I-∑i)∕V=2.622m 定倾高度m=P-a=1.09>0.2满足浮游稳定要求③CX3型沉箱A要加水调平不平衡力矩(对沉箱中心)Z1Mx=I16.97kN∙m需要后四仓加水加水深度t{(3.6×3.65-0.22×2)×t+0.22×(3.45÷3.4)}X4X1.025义3.9二,M X2.513.06×t-0.274=18.288t=1.42mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.5-0.22×(3.45+3.4)}×4×1.025=79.196kNZMy=99.00kN•沉箱总重量重心高度排水体积前后趾排水体积沉箱吃水浮心高度重心到浮心距离定倾半径定倾高度mG=ΣV×2.5+g=1575.196kNYc=(My+JMy)∕G=4.843mV=G/1.025=1536.777m3v=21.528m3T=(V-v)∕A=6.777mYw=[(V-v)×T∕2÷vYv)]∕V=3.345m a=Yc-Yw=I.498mP=(I-∑i)∕V=1.732mm=P-a=0.234>0.2满足浮游稳定要求④CX4型沉箱以沉箱仓格中心为计算圆点A由于沉箱前后趾、壁厚大小不同及马腿影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)∠JMx=195.03kN∙m需要后四仓加水,加水深度t{(3.65×4.5-0.22×2)×t-0.22×(3.45+4.3)}×4×1.025×4.75=Z1MX2.516.35×t-0.31=25.03583 t=1.51mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.65X4.5-0.22×2)×15-0.22X(3.45÷4.3)}×4×1.025=99.25075kNZIMy=24.063kN∙m沉箱总重量G=ΣV×2.5+g=1731013kN重心高度YC=(My+/My)/G=4.766m排水体积V=G/1.025=1688.793m3前后趾排水体积v=15.456m3沉箱吃水T=(V-v)∕A=6.198m浮心高度Yw=[(V-v)×T∕2+vYv)]∕V=3.073m重心到浮心距离a=Yc-Yw=I.693m定倾半径P=(I-Σi)∕V=2.801m定倾高度m=p-a=1.108>0.2满足浮游稳定要求⑤D4型沉箱(不考虑钢套筒重量情况)以沉箱仓格中心为计算圆点水调平不平衡力矩(对沉箱中心)Z1MX=465.68kN∙mJMz=-117.23kN∙m需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22X(2.7+2.6)}×8×1.025×8.8=Z1MxX2.5 8.04×t-0.212=16.13 t=2.03m右仓加水,加水深度3、t2{(2.9×2.8-0.22×2)×(t1+t2)-O.22X(2.7+2.6)}×5×1.025×10.85=-Z1MzX2.58.04×(t1+t2)-0.212=5.2711.3×4×t1=6.2×t2tι=0.31mt2=0.37mB后八仓加水2.0m,左五仓加水0.4m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9×2.8-0.22×2)×2.0-0.22X(2.7+2.6)}×8×1.025=130.18kNg={(2.9×2.8-0.22×2)×0.4-0.22×(2.7+2.6)}×5×1.025=15.40kN ∠IMyι=195.18kN∙mZ1My2=IO.785kN∙m沉箱总重量重心高度排水体积前后趾排水沉箱吃水浮心高度重心到浮心距离G=ΣV×2.5÷g=4419.456kNYc=(My+JMy)∕G=6.975mV=G/1.025=4311.664m3v=15.36m,T=(V-v)∕A=8.077mYw=1(V-v)XT∕2+vYv)]∕V=4.025m a-Yc-Yw=2.95m定倾半径P=(I-Σi)∕V=4.34定倾高度m=p-a=1.39>0.2满足浮游稳定要求AZMz=-117.23kN∙m 钢护筒重量G'=π×(1.5+0.752)×0.01×49×1×7.8×IoJ24752=24.752T需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22×(2.7+2.6)}×8×1.025×8.8=∠IMx×2.5+G'×0.28.04×t-0.212=16.2 t=2.04m左五仓加水,加水深度分别为匕、t2{(2.9×2.8-0.22×2)×(t1+t2)-0.22X(2.7+2.6)}×5×1.025×10.85=-G'XI.55+Z1MzX2.58.04×(t1+t2)-0.212=4.581.3×4×tι=6.2×t2-0.30mtι=0.25m t2B后八仓加水2.1m,左五仓加水0.3m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9×2.8-0.22×2)X2.1-0.22×(2.7+2.6)}×8×1.025=136.71kNg={(2.9×2.8-0.22×2)×0.3-0.22×(2.7+2.6)}×5×1.025=11.28kN ZMy1=211.90kN∙mJMy1=7.33kN∙m沉箱总重量G=ΣV×2.5+g+G'=4446.68kN重心高度YC=(My+/My)∕G=6.98m排水体积V=G/1.025=4338.23 m3前后趾排水v=15.36m3沉箱吃水T=(V-v)∕A=8.13mYw=[(V-v)×T∕2+vYv)]∕V=4.05m 浮心高度重心到浮心距离a=Yc-Yw=2.93m定倾半径P=(I-∑i)∕V=4.31m定倾高度m=p-a=1.38>0.2 满足浮游稳定要求。
沉箱漂浮稳定计算和精安装施工工艺

-
类 型 xc Yc 吃 舔深夔
A
定慑 荔 葭 瑰 定 槛 : 后 托 蜘 水深 夔 一 定侮 蔑 葭 穗 定性
0 . 1 6 0 . 1 5 O . 2 6
1 . 1 4
—
B( D)
C
5 . 9 5
tJ ^ j
5 . 7 9 8 7 7 6 8 7 9 O 2 9
^ J 6 8
一
0 . 2 2 x 2 . 9 5 x 4 / 2 ) x 1 0 . 2 5 x 1 . 8 2 5
t o = 2. 2 2 I T I
E 0 1
—20
一 O ∞ 4 似 表 2中表 明 : A、 B ( D) 类沉箱 在后舱 分别加2 . 2 n l 、
2 . 0 5 I n深 水 时 , 浮游 是 稳定 的 ; C、 E、 0 1 类 沉 箱虽 然 在后 舱加 入配 重水 , 但 浮游仍 不稳 定 , 需要 调整 。 以
1 91 x1 5 . 6  ̄2 01
.
.
| 鼍 | 们4 j
| | 2 5 5 9
-
疆
2
3 沉箱漂浮稳定 计算
沉 箱在 浮 吊牵 引漂 浮 、拖运 和沉 放 的过程 中应
筠 硪 嵌
01
02 " 03 #
1 8
1
。
.
x l 6 x t 黾 囊≯|
A型沉 箱浮游 稳定 计算 见表 3 。
表3 A型沉箱浮游稳定计 算 蟛 。 。 _ 一 一
3 . 3 沉箱 后 两舱加 水 ( t o = 2 . 2 2 I T I ) 时
LNG码头沉箱浮游稳定计算

LNG码头沉箱浮游稳定计算共有三种沉箱计算后的干旋高度如下:(1)甲型沉箱干舷高度F=18.40-13.45=4.95米(压水1.80米)(2)乙型沉箱干舷高度F=18.00 -13.24=4.76米(压水1.80米)(3)丙型沉箱干舷高度F=21.00-15.66=5.34米(压水3.50米)(4)丙型沉箱干舷高度F=21.00-15.26=5.81米(压块石2.00米)计算甲型沉箱:高h=18.4m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表 2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 4564.36÷635.91=7.18m2,有压舱水和封舱盖板时:沉箱总体重G=2.45×635.91+5+175.13=1738.11t计算沉箱排水体积和趾的排水体积,钢混凝土重度取2.5 t/m3沉箱和压舱水、封舱盖板排水体积V=(2.5×635.91+5+175.13)÷1.025=1726.74m3趾的排水体积v=73.64+3.13=76.77 m3沉箱吃水T=(1726.74-76.77)÷6.252×3.14=13.45m沉箱总体重心高度:Y c1= (2.45×635.91×7.18+5×18.37+175.13×1.6)÷1738.11=6.65m 浮心:Yw1=[(1726.74-76.77)×13.45×0.5+18.76+18.71+51.37]÷1726.74=6.47mρ=[(π/64×12.54=1198.42)-4.85×5.853/36]÷1769.91=0.55a= Y c1- Y w1=6.65-6.47=0.18m=ρ-a=0.55-0.18=0.38m>0.20稳定m大于0.20计算乙型沉箱:高h=18. m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 4371.22÷625.13=6.99m2,有压舱水和封舱盖板时:沉箱总体重G1=2.45×625.13+5+175.03=1711.59t有压舱水和封舱盖板时:沉箱总体重心Y1c=11075.56÷1711.62=6.47(m)1,计算沉箱总体排水体积:钢混凝土重度取2.5 t/m3V 1c =(2.5×625.13+5+175.05)÷1.025=1742.88÷1.025 m3=1700.37t2,沉箱趾的排水体积:v=73.64+3.13=76.77 m3沉箱吃水T=(1700.37-76.77)÷6.252×3.14=13.24m沉箱总体重心高度:= 11075.56÷1711.62=6.47mY1c浮心:Y1w=[(1700.37-76.77)×13.24×0.5+18.76+18.71+51.37] ÷1700.37=6.38mI=π/64×12.54=1198.42;∑Ir=(4.85×5.853÷36)×8=215.61ρ=(1198.42-215.61)÷1700.37=0.55a= Y c1- Y w1=6.47-6.38=0.09m=ρ-a=0.55-0.09=0.49m>0.20 稳定m大于0.20计算丙型沉箱:高h=21. m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 5951.91÷663.18=8.97m2,有压舱水和封舱盖板时:沉箱总体重G1=2.45×663.18+5+340.92=1970.63有压舱水和封舱盖板时:沉箱总体重心Yc= 15512.43÷1970.63=7.87m11,计算沉箱总体排水体积:钢混凝土重度取2.5 t/m3V 0 =(2.5×663.18+5)÷1.025+332.61=1955.002,沉箱趾的排水体积:v=19.83+8.71+5.49=34.03 m3沉箱吃水T=(V0-v)÷AT=(1955-34.03)÷6.252×3.14=15.66m沉箱总体浮心高度:Yw=[(V0-v)×T/2+∑v.y]÷V0Yw1=[(1955-34.03)×15.66×0.5+7.38+6.94+96.12] ÷1955=7.75m ρ=(I-∑Ir)÷V 0I=π/64×12.54=1198.42;∑Ir=(4.85×5.853÷36)×8=215.61 ρ=(1198.42-215.61)÷1955=0.50a= Y c1- Y w1=7.87-7.75=0.12m=ρ-a=0.50-0.12=0.38m>0.20 稳定(m大于0.20)计算丙型沉箱:高h=21. m 用290t块石压舱本沉箱压水3.5m时吃水15.66m,为减少其吃水,改用290t块石,块石的重度为1.55t/m3。
吊浮出运沉箱的浮游稳定性计算

吊浮出运沉箱的浮游稳定性计算郭炳川;李增军【摘要】针对吊浮出运沉箱的浮游稳定性计算还没有统一规范的问题,通过力矩平衡分析及浮心移动计算,详细分析了吊浮状态沉箱受力情况,对吊浮状态的沉箱浮游稳定性计算进行理论推导.得出在小倾角情况下的等效定倾高度的计算公式,设计了沉箱吊浮计算表,绘制了吊力与吃水深度和定倾高度的关系图.应用图表并结合浮运距离和航道水深限制,给出经济合理的压载和吊力分配方式,可为吊浮沉箱浮运施工工程提供参考.【期刊名称】《水运工程》【年(卷),期】2019(000)0z1【总页数】5页(P30-34)【关键词】沉箱;吊浮;浮游稳定性;理论计算【作者】郭炳川;李增军【作者单位】中交第一航务工程局有限公司, 天津300461;中交第一航务工程局有限公司, 天津300461【正文语种】中文【中图分类】U656随着港口建设的发展加快,沉箱作为重力码头设计的主要形式,其设计尺寸越来越大。
沉箱在出运时考虑到浮游稳定性需对沉箱进行压载,而对于大体积、大质量的沉箱仅通过压载不能满足其浮游稳定,或加载后吃水过大水深条件不满足时,通常采用起重船吊浮的方式出运沉箱[1]。
这种出运方式危险性增大,容易发生沉箱进水或沉没事故,因此需要对吊浮状态下的沉箱浮游稳定性进行重新计算,对起重船吊力、沉箱压载、吃水深度、定倾高度等参数进行仔细核算,而目前还没有一个统一的规范[2-4],本文推导了沉箱浮游稳定性的理论计算公式。
1 无吊浮下沉箱稳定计算浮游稳定性是指沉箱在浮游状态下,不发生倾覆的稳定性。
JTS 167-2—2009《重力式码头设计与施工规范》[5](简称《规范》)中5.2.4条规定,沉箱靠自身浮游稳定时,必须验算其以定倾高度表示的浮游稳定性。
当沉箱在外力矩的作用下发生切斜,沉箱的浮心随之变化,根据小倾角理论(< 15°),浮心的运动轨迹近似于圆弧,圆弧的中心称为定倾中心M,圆弧的半径为定倾半径ρ,定倾中心M距沉箱重心Gc的距离为定倾高度m,则:m=ρ-a(1)(2)式中:m为定倾高度(m);ρ为定倾半径(m);a为沉箱重心到浮心的距离(m);I 为沉箱在水面处的断面对纵向中心轴的惯性矩(m4);i为各箱格内压载水的水面对该水面纵向中心轴的惯性矩(m4);V为沉箱的排水量(m3)。
沉箱码头稳定验算和内力计算

沉箱码头稳定验算和内力计算码头稳定性验算(一)作用效应组合持久组合一:设计高水位(永久作用)+堆货门机(主导可变作用)+波谷压力(非主导可变作用)持久组合二:设计高水位(永久作用)+波谷压力(主导可变作用)+堆货门机(非主导可变作用)短暂组合:设计高水位(永久作用)+波峰压力(主导可变作用)不考虑地震作用去1(二)码头延基床顶面的抗滑稳定性验算根据《重力式码头设计与施工规范》(JTJ290-98)第3.6.1规定应考虑波浪作用,堆货土压力为主导可变时:按(JTJ290-98)中公式(3.6.1-4)计算。
01()()E H E qH P B G E V E qV u BU dE E P G E E P fγγγψγγγγψγγ++≤+++应考虑波浪作用,波浪力为主导可变时:()()f E P E G E P E qV E Bu u V E GdqH E B P H E ψγλγγγψγγγγ+++≤++1o短暂组合情况,按《防波堤设计与施工规范》(JTJ298-98)公式5.2.7计算f P G P Bu u G B p )(0λλλλ-≤式中:o γ——结构重要系数,一般港口取1.0;E γ——土压力分项系数;取1.35 PW γ——剩余水压力分项系数;取1.05 PR γ——系缆力分项系数;1.40ψ——作用效应组合系数,持久组合取0.7;V H E E 、——码头建筑物在计算面以上的填料、固定设备自重等永久作用所产生的总主动土压力的水平分力和竖向分力的标准值;W P ——作用在计算面以上的总剩余水压力标准值; RH P ——系缆力水平分力的标准值;qV qH E E 、——码头面上的可变作用在计算面上产生的总主动土压力的水平分力和竖向分力的标准值;RV P ——系缆力垂直分力的标准值;G γ——结构自重力的分项系数,取1.0;G ——计算面以上的结构自重力标准值;f ——沿计算面的摩擦系数设计值,查表可得0.6,胸墙0.55d γ——结构系数,不考虑波浪作用,取1.0(三)码头延基床顶面抗倾稳定性验算根据JTJ290-98第3.6.3规定应考虑波浪作用,堆货土压力为主导可变时,按JTJ290-98公式3.6.3-4计算:()()PBu u Eqv E EV E G GdPB P EqH E EH E o M M M M M M M ψλγγγγγγγγ+++≤ψ++1应考虑波浪作用,且波浪力为主导可变作用时,按JTJ290-98公式3.6.3-3计算:()()E q VE PBU U EV E G GdEqH E PB P EH E o M M M M M M M ψλγγγγγγγγ+++≤ψ++1短暂组合情况,按《防波堤设计与施工规范》(JTJ298-98)公式5.2.5计算 G G dPBu u PB P M M M λλλλλ1)(0≤+抗倾稳定性见表抗滑稳定性计算表组合项目土压力为主导可变作用时0()E H E qH P B E E P γγγψγ++1()G E V E qV u BU dG E E P fγγγψγγ+++结论qHEψP γB P 结果d γG γGfV EqVEu γBU P结果组合11 1.35432.8820.92 0.7 1.2179 730 1.11 3273.23 0.6 110.7 97.21 1.3 0 1938.4稳定组合项目波压力为主导可变作用()qH E B P H E E P E ψγγγγ++o 短暂组合Bp P λλ0()fE P E G qV E Bu u V E Gdψγλγγγ+++1f P G Bu u G )(λλ-结论qHEψP γB P结果d γG γGfV EqVEu γBU P结果组合2 1 1.35 432.88 20.92 0.7 1.2 179818 1.1 1 3273.23 0.6 110.7 97.21 1.3 0 1917 稳定短暂组合11.3520.92/1.2172 206.4/123110.61.229.821365稳定γEγHE 0γEγHE抗倾稳定性验算计算表组合项目土压力为主导可变作用时()PB P EqH E EH E oM M M γγγγψ++()PBu u Eqv E EV E G G dM M M M ψλγγγγ+++1结论EH MEqHMψP γPB M结果d γG γG MEV MEqvMu λPBu M结果组合11 1.353834 1027.9 0.7 1.32361.6 8713 1.35 1 21118.4 1439.1 271.96 1.3 0 17354.3稳定组合波浪力为主导可变作用时 ()EqH E PB P EH E o M M M γγγγψ++短暂组合)(0PBu u PB P M M λλλ+ ()EqV E PBU U EV E G GdM M M M ψλγγγγ+++1GG dM λλ1结论EH M P γψPB MEqHMPBu M 结果d γ G γG MEV MU γPBu MEqVM结果组合2 11.3538340.72361.6 1027.9 /9217 1.35 121118.4 1439.1 1.30 271.96 17272.7稳定短暂组合 1 1.35 0 1.2 / 2052.30 217 2723 1.25 1 15136.71.2 / 0 12109.4稳定γEγ0γEγ(四)基床承载力验算1.基床顶面应力计算组合持久组合情况一:设计低水位(永久作用)+波谷压力(主导可变作用)+(堆货+前沿堆货+门机情况)(非主导可变作用)短暂组合情况:设计高水位(永久作用)+波峰期波峰压力(主导可变作用) 2.持久组合一基床顶面应力计算:)/(28.43917.2745.1177.24139021.9722.3547m kN V K =+++++=)/(02.30077934429096.2715.10285.152671.22951m m kN M R ?=+++++=)/(1.805112019.10273.175185.40700m m kN M ?=+++=3)(02.528.43911.805102.3077Bm >=-=ξ)(53.102.521.13m e =-=kPa 600)1.1353.161(1.1328.43915.5749.171maxmin =<=?±=λσσ3.短暂组合情况基床顶面情况计算: )/(228182.292311m kN V k =-=)/(7.15136m m kN M R ?=)/(3.22692173.20520m m kN M ?=+=3)(64.5228122697.15136Bm >=-=ξ)(91.064.521.13m e =-=kPa 600)1.1391.061(1.1322817.2469.143maxmin =<=?±=λσσ满足承载能力要求(五)码头整体稳定性验算按照《港口工程地基规范》第5.1.3 条规定,取设计低水位进行验算。
沉箱浮运安装的离驳浮游稳定计算

第11卷第5期中国水运V ol.11N o.52011年5月Chi na W at er Trans port M ay 2011收稿日期:35作者简介:黄伟智(),男,中交第四航务工程勘察设计院有限公司工程师,从事港口工程工作。
沉箱浮运安装的离驳浮游稳定计算黄伟智(中交第四航务工程勘察设计院有限公司,广东广州510230)摘要:结合中石油广西钦州1,000万吨/年炼油项目配套10万吨码头工程实例,介绍沉箱离驳浮游稳定计算,为类似工程提供借鉴。
关键词:沉箱;离驳;浮游稳定中图分类号:U 655.4文献标识码:A 文章编号:1006-7973(2011)05-0230-03一、概述重力式码头采用半潜驳出运码头大型沉箱工艺,沉箱的离驳是依靠自身浮力和外力牵引来完成的。
在离驳过程中,保持沉箱处于浮游稳定状态是沉箱安全离驳以及整个安装过程安全的基础。
中石油广西钦州1,000万吨/年炼油项目配套10万吨码头工程,码头主体为重力式沉箱结构,共40个沉箱,单个沉箱重量1,750t 。
沉箱均在陆上预制,采用半潜驳干运法,经拖轮拖运到现场安装。
本文介绍的是计算沉箱离驳浮游稳定,确定沉箱浮运安装施工工艺的方法。
二、沉箱浮运安装的主要技术参数计算3583,580,250,3812121414吊孔图1沉箱平面示意图14,70.318.21.61220.81.3图2沉箱立面示意图沉箱为等边正方形设计,底座尺为14m ×14m ,墙身尺寸为12m ×12m ;高度为20.8m ,脚趾长度为1m ,格仓宽度为3.58m ,格仓隔墙厚度为0.25m ,底板厚度为0.7m ,墙身厚度为0.38m ,详见(图1、2)。
1.沉箱重心位置计算重心位置计算将沉箱划分五个部分(各部分如图3所示),各部分体积分别设为V 1~V 5,沉箱水平断面为中心对称图形,重心在中心线上。
各部分重心坐标设为z i (i=1…4)。
顶部隔墙内倒角墙身底板倒角底版图3沉箱计算分块图经计算沉箱各部分体积及重心高度见下表:表1沉箱部分底板底板倒角墙身箱内倒角顶部墙身体积V 1V 2V 3V 4V 5m 3137.2m 37.6543.39 1.216810.608重心z 1z 2z 3z 4z 5m0.350.89.950.06719.7沉箱的总体积:V 箱=∑V i =V 1+V 2+V 3+V 4+V 5=700m 3沉箱的重心坐标设为Z 空=(∑V i Z i )/V 箱=(V 1Z 1+V 2Z 2+V 3Z 3+V 4Z 4+V 5Z 5)/V 箱=8.0998m2.半潜驳相关技术参数及吃水计算(1)本工程沉箱使用的半潜驳有关技术性能:表2全长52m 宽32m 型深 3.6m 内幅26m 允许载重量3200t 空载重量2621t 最大下潜深度15.5m空载吃水1.4m(2)沉箱上驳后,半潜驳吃水计算:半潜驳空载时,吃水1.4m ,沉箱重量为1750t ,那么沉箱上驳后,半潜驳吃水深度为:h =1.4+1750/32/52=2.46m 。
(完整版)沉箱浮游稳定计算(例子)

计算项目
体积V(m3)
重力G(kN)
重心高度y(m)
重力矩Gy(kNm)
沉箱
255.78
6394.5
4.7
30054.15
前排舱加水
81.192
832.218
0.9
748.9962
后排舱加水
81.192
832.218
0.9
748.9962
总计
418.164
8058.936
31552.1424
沉箱排水体积及浮心高度
总排水体积
前、后趾排水体积
沉箱吃水:
浮心高度:
定倾半径:
重心到浮心的距离为:
。
定倾高度为:
。
满足要求。
干舷高度:
式中F——沉箱的干舷高度(m)
H——沉箱高度(m)
T——沉箱吃水(m)
干舷高度满足要求。
砼容重(kn/m3)
25.00
前趾前高(m)
0.40
沉箱高度(m)
9.50
沉箱仓格尺寸(m)
横
3.60
前趾后高(m)
0.70
墙内加强角尺寸(m)
0.20
纵
3.80
前趾宽(m)
1.00
底加强角(m)
0.20
水容重(kn/m3)
10.25
2、沉箱材料体积和体积矩计算表(对前趾前端求矩)
编号
名称
体积
重量
形心位置(m)
体积矩(m4)
Vi(m3)
Gi(kN)
xi
yi
Vixi
Viyi
1
前壁
41.29
1032.30
1.15
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
底加 强 角 1.01
12
前 趾(矩形) 3.55
13
前 趾(三角形) 0.65
14
后趾(矩形)
0.00
15
后 趾(三角形) 0.00
总和
184.89
注:以前趾O点
为计算原点
4.78
4.78 0.91 0.00 4.78 4.78 0.40 0.53
0.00 0.00
无压载时沉箱的重 心位置:
xc= 4.49
yc= 4.82 不平衡力矩(对沉箱 宽度中心):
M= -644.27
压载深度
(后两舱)
t0=
0.85 压载材料的重力
g= 211.94
方程式: (10.25*t*3.8*3. 3*21.01/2*10.25(0.2)^2*t*10.25 *8/2)*(1.9+0.12 5)
压载材料对底板的 力矩
m≥0.2,满足要求
重心位置 5.13 6.90 6.90 1.13 1.33
重量矩 25916.76 12.42 -10350.00 456.29 672.76 16708.23 6325.83
直径:2m 长:8m。 单个气囊体积
πr²L=8π米³,水密 度为10.25³ KN/m³ 单个气囊浮力
8个气囊起重量 3104000
388000
4个 1552
1241.6
1.5625 12.5
单个气囊重力
350×10= 一个气囊能起重量 (N)
#REF!
8个气囊起重量(N) #REF! #REF! #REF!
0.35 0.3 0.5
沉箱仓格尺 0.25 寸 0.3 0.55 0.75
0.8 0 0 0
8.7 8.07
11.1 0.2
0.2 0 2
2 0
1:压水 ,其 他:主要为 1 盖板
301.67 301.34
5655.01
yc= 4.0.49 重心到浮心的高度
a= 0.16 定倾高度
m= 0.34
m≥0.2,满足要求
采用气囊助浮
序号 计算项目
计算式
重力
1 沉箱本身 2 气囊
202.08*25
5052.00
规格:选用φ2.0,长8m
△Mv= 181.91 压载后沉箱总重
G= 4834.20
重心高度
排水体积
yc= 4.64
V=
沉箱吃水
T= 7.33
浮心高度
yw= 3.64 定倾半径
ρ= 0.64 重心到浮心的高度
a= 1.01
定倾高度
m= -0.37
浮游时不稳定
471.63
序号 计算项目 1 沉箱自身
3 前两仓加水
4 后两仓加水
浮力距(8个)
重心高度 排水体积 沉箱吃水 浮心高度 定倾半径
yc= 3.75 V= 435.24 T= 6.76 yw= 3.35
4461.22 10382.40
ρ= 0.62
重心到浮心的高度
a= 0.39
定倾高度
m= 0.23
矩 (m) yi 5.55 5.55 5.55 0.25 5.80 5.80 11.23 0.00 5.80 0.57 0.28 0.62 0.00 0.00
沉箱设计参 数:
前墙厚(m) 后墙厚(m) 底板厚(m)
隔墙厚(m) 侧墙厚(m) 前趾前高(m) 前趾后高(m)
前趾宽(m) 后趾前高(m) 后趾后高(m) 后趾宽(m)
沉箱宽度(m) 沉箱长度(m)
沉箱高度(m) 墙内加强角尺寸(m)
底加强角(m) 侧墙墙外加强角 横向仓格数
纵向仓格数 内外墙高差(m)
沉箱材料体积
和体积矩的计算表
编 号
名称
体 积 Vi(m3)
形心 xi
1
前
墙 31.35
0.98
2
后 墙 26.87
8.55
3
侧 墙 48.29
4.78
4
底 板 27.08
4.78
5
纵 隔 墙 19.80
6
横 隔 墙 18.55
7
牛腿(梯形) 4.36
9
牛腿(三角形) 0.00
10
内加强角
3.39
重心高度 排水体积 沉箱吃水 浮心高度 定倾半径
前舱加水1m,后舱吃水1.2m
计算式
重力
202.08*25
5052.00
10.25*3.8*3.3*2*11.01/2*10.250.04*1*10.25*8/2
10.25*3.8*3.3*2*1.21.01/2*10.250.04*1.2*10.25*8/2
压载材料类别
压载材料容重(kn/m3) 压载高度1(m) 压载个数1
压载高度2(m) 压载个数2 压载高度3(m) 压载个数3 砼容重(kn/m3)
牛腿(上宽) 牛腿(下宽) 牛腿(厚度)
水1.2m
重心位置 4.82
1.03 1.13
重量矩 24341.60
311.62
341.42 24994.64
的气囊每侧各1条。单根
重350KG。
1.80
3 上浮力 4 前两仓加水 5 后两仓加水
10.23*3.8*3.3*2*1.61.01/2*10.230.04*1.6*10.23*8/2
10.23*3.8*3.3*2*21.01/2*10.230.04*2*10.23*8/2
-1500.00 402.72 504.70
462.23
体 Vixi
30.57 229.77 230.56
积
矩 (m4)
Viyi
174.00 149.15 267.98
129.30
6.77
94.52 88.58 3.97 0.00 16.20 4.82 1.42 0.34 0.00 0.00 830.04
114.81 107.59 48.92 0.00 19.67 0.57 0.98 0.40 0.00 0.00 890.84
3.5 3.61
10.25
1 2
0 0 0 0 25
2.15 2.35 0.2
3500 #REF!
直径:2.5m 单个气囊体积 πr²L=12.5π 米³,水密度为 10³千克/m³, g=10N/千克 单个气囊浮力
单个气囊重力
450×10=4500N 一个气囊能起 重量 3925004500=247200