(完整版)沉箱浮游稳定计算(例子)
海上沉箱浮游稳定性验算书

海上沉箱浮游稳定性验算书进行浮游稳定性计算,以保证沉箱拖航、安装时的安全。
①CXI型沉箱要加水调平不平衡力矩(对沉箱中心) ZMx=82.92kN∙m需要后三仓加水,加水深度t{(3.6×3.65-0.22×2)×t-0.22X(3.45+3.4)}×3×1.025X3.9=JMx×2.5B加水后1.4m的浮游稳定性加水的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.4-0.22X(3.45+3.4)}×3×1.025=55.38ZIMy=g×1.2=66.46kN∙m沉箱总重量G=ΣV×2.5+g=1089.06kN重心高度YC=(My+/My)/G=4.914m排水体积V=G/1.025=1062.495m3前后趾排水体积v=13.806m3浮心高度Yw=E(V-v)×T∕2+vYv)]∕V=3.579m重心到浮心距离a=Yc-Yw=1.336m定倾半径P=(I-∑i)∕V=1.628m定倾高度m=P-a=0.292>0.2满足浮游稳定要求②CX2型沉箱以沉箱仓格中心为计算圆点A要加水调平不平衡力矩(对沉箱中心)/Mx=134.735kN∙m需要后三仓加水,加水深度t{(3.65×4.5-0.22×2)×1θ.22×(3.45+4.3)}×3×1.025×4.75=ZM×2.516.35Xt-O.31=23.0612t=1.43mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(4.5×3.65-0.22×2)×1.5+0.22×(3.45+4.3}×3×1.025=74.438ZIMy=gX1.25=93.048kN∙m沉箱总重量G=ΣV×2.5÷g=1214.412kN重心高度YC=(My+/My)/G=4.84m排水体积V=G/1.025=1184.79m3前后趾排水v=10.038m3沉箱吃水T=(V-v)∕A=6.665m浮心高度Yw=[(V-v)×T∕2+vYv)]∕V=3.307m重心到浮心距离a=Yc-Yw=I.532m定倾半径P=(I-∑i)∕V=2.622m 定倾高度m=P-a=1.09>0.2满足浮游稳定要求③CX3型沉箱A要加水调平不平衡力矩(对沉箱中心)Z1Mx=I16.97kN∙m需要后四仓加水加水深度t{(3.6×3.65-0.22×2)×t+0.22×(3.45÷3.4)}X4X1.025义3.9二,M X2.513.06×t-0.274=18.288t=1.42mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.6×3.65-0.22×2)×1.5-0.22×(3.45+3.4)}×4×1.025=79.196kNZMy=99.00kN•沉箱总重量重心高度排水体积前后趾排水体积沉箱吃水浮心高度重心到浮心距离定倾半径定倾高度mG=ΣV×2.5+g=1575.196kNYc=(My+JMy)∕G=4.843mV=G/1.025=1536.777m3v=21.528m3T=(V-v)∕A=6.777mYw=[(V-v)×T∕2÷vYv)]∕V=3.345m a=Yc-Yw=I.498mP=(I-∑i)∕V=1.732mm=P-a=0.234>0.2满足浮游稳定要求④CX4型沉箱以沉箱仓格中心为计算圆点A由于沉箱前后趾、壁厚大小不同及马腿影响,重心不在中心上,需要加水调平不平衡力矩(对沉箱中心)∠JMx=195.03kN∙m需要后四仓加水,加水深度t{(3.65×4.5-0.22×2)×t-0.22×(3.45+4.3)}×4×1.025×4.75=Z1MX2.516.35×t-0.31=25.03583 t=1.51mB加水后1.5m的浮游稳定性加水后的重力及对沉箱底的重量距g={(3.65X4.5-0.22×2)×15-0.22X(3.45÷4.3)}×4×1.025=99.25075kNZIMy=24.063kN∙m沉箱总重量G=ΣV×2.5+g=1731013kN重心高度YC=(My+/My)/G=4.766m排水体积V=G/1.025=1688.793m3前后趾排水体积v=15.456m3沉箱吃水T=(V-v)∕A=6.198m浮心高度Yw=[(V-v)×T∕2+vYv)]∕V=3.073m重心到浮心距离a=Yc-Yw=I.693m定倾半径P=(I-Σi)∕V=2.801m定倾高度m=p-a=1.108>0.2满足浮游稳定要求⑤D4型沉箱(不考虑钢套筒重量情况)以沉箱仓格中心为计算圆点水调平不平衡力矩(对沉箱中心)Z1MX=465.68kN∙mJMz=-117.23kN∙m需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22X(2.7+2.6)}×8×1.025×8.8=Z1MxX2.5 8.04×t-0.212=16.13 t=2.03m右仓加水,加水深度3、t2{(2.9×2.8-0.22×2)×(t1+t2)-O.22X(2.7+2.6)}×5×1.025×10.85=-Z1MzX2.58.04×(t1+t2)-0.212=5.2711.3×4×t1=6.2×t2tι=0.31mt2=0.37mB后八仓加水2.0m,左五仓加水0.4m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9×2.8-0.22×2)×2.0-0.22X(2.7+2.6)}×8×1.025=130.18kNg={(2.9×2.8-0.22×2)×0.4-0.22×(2.7+2.6)}×5×1.025=15.40kN ∠IMyι=195.18kN∙mZ1My2=IO.785kN∙m沉箱总重量重心高度排水体积前后趾排水沉箱吃水浮心高度重心到浮心距离G=ΣV×2.5÷g=4419.456kNYc=(My+JMy)∕G=6.975mV=G/1.025=4311.664m3v=15.36m,T=(V-v)∕A=8.077mYw=1(V-v)XT∕2+vYv)]∕V=4.025m a-Yc-Yw=2.95m定倾半径P=(I-Σi)∕V=4.34定倾高度m=p-a=1.39>0.2满足浮游稳定要求AZMz=-117.23kN∙m 钢护筒重量G'=π×(1.5+0.752)×0.01×49×1×7.8×IoJ24752=24.752T需要后八仓加水,加水深度t{(2.9×2.8-0.22×2)×t-0.22×(2.7+2.6)}×8×1.025×8.8=∠IMx×2.5+G'×0.28.04×t-0.212=16.2 t=2.04m左五仓加水,加水深度分别为匕、t2{(2.9×2.8-0.22×2)×(t1+t2)-0.22X(2.7+2.6)}×5×1.025×10.85=-G'XI.55+Z1MzX2.58.04×(t1+t2)-0.212=4.581.3×4×tι=6.2×t2-0.30mtι=0.25m t2B后八仓加水2.1m,左五仓加水0.3m的浮游稳定性加水后的重力及对沉箱底的重量距g={(2.9×2.8-0.22×2)X2.1-0.22×(2.7+2.6)}×8×1.025=136.71kNg={(2.9×2.8-0.22×2)×0.3-0.22×(2.7+2.6)}×5×1.025=11.28kN ZMy1=211.90kN∙mJMy1=7.33kN∙m沉箱总重量G=ΣV×2.5+g+G'=4446.68kN重心高度YC=(My+/My)∕G=6.98m排水体积V=G/1.025=4338.23 m3前后趾排水v=15.36m3沉箱吃水T=(V-v)∕A=8.13mYw=[(V-v)×T∕2+vYv)]∕V=4.05m 浮心高度重心到浮心距离a=Yc-Yw=2.93m定倾半径P=(I-∑i)∕V=4.31m定倾高度m=p-a=1.38>0.2 满足浮游稳定要求。
LNG码头沉箱浮游稳定计算

LNG码头沉箱浮游稳定计算共有三种沉箱计算后的干旋高度如下:(1)甲型沉箱干舷高度F=18.40-13.45=4.95米(压水1.80米)(2)乙型沉箱干舷高度F=18.00 -13.24=4.76米(压水1.80米)(3)丙型沉箱干舷高度F=21.00-15.66=5.34米(压水3.50米)(4)丙型沉箱干舷高度F=21.00-15.26=5.81米(压块石2.00米)计算甲型沉箱:高h=18.4m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表 2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 4564.36÷635.91=7.18m2,有压舱水和封舱盖板时:沉箱总体重G=2.45×635.91+5+175.13=1738.11t计算沉箱排水体积和趾的排水体积,钢混凝土重度取2.5 t/m3沉箱和压舱水、封舱盖板排水体积V=(2.5×635.91+5+175.13)÷1.025=1726.74m3趾的排水体积v=73.64+3.13=76.77 m3沉箱吃水T=(1726.74-76.77)÷6.252×3.14=13.45m沉箱总体重心高度:Y c1= (2.45×635.91×7.18+5×18.37+175.13×1.6)÷1738.11=6.65m 浮心:Yw1=[(1726.74-76.77)×13.45×0.5+18.76+18.71+51.37]÷1726.74=6.47mρ=[(π/64×12.54=1198.42)-4.85×5.853/36]÷1769.91=0.55a= Y c1- Y w1=6.65-6.47=0.18m=ρ-a=0.55-0.18=0.38m>0.20稳定m大于0.20计算乙型沉箱:高h=18. m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 4371.22÷625.13=6.99m2,有压舱水和封舱盖板时:沉箱总体重G1=2.45×625.13+5+175.03=1711.59t有压舱水和封舱盖板时:沉箱总体重心Y1c=11075.56÷1711.62=6.47(m)1,计算沉箱总体排水体积:钢混凝土重度取2.5 t/m3V 1c =(2.5×625.13+5+175.05)÷1.025=1742.88÷1.025 m3=1700.37t2,沉箱趾的排水体积:v=73.64+3.13=76.77 m3沉箱吃水T=(1700.37-76.77)÷6.252×3.14=13.24m沉箱总体重心高度:= 11075.56÷1711.62=6.47mY1c浮心:Y1w=[(1700.37-76.77)×13.24×0.5+18.76+18.71+51.37] ÷1700.37=6.38mI=π/64×12.54=1198.42;∑Ir=(4.85×5.853÷36)×8=215.61ρ=(1198.42-215.61)÷1700.37=0.55a= Y c1- Y w1=6.47-6.38=0.09m=ρ-a=0.55-0.09=0.49m>0.20 稳定m大于0.20计算丙型沉箱:高h=21. m1,沉箱自重时的重心位置沉箱材料体积和体积矩的计算表2006年 5 月24 日沉箱自重时的重心位置X c=7.75mY c= 5951.91÷663.18=8.97m2,有压舱水和封舱盖板时:沉箱总体重G1=2.45×663.18+5+340.92=1970.63有压舱水和封舱盖板时:沉箱总体重心Yc= 15512.43÷1970.63=7.87m11,计算沉箱总体排水体积:钢混凝土重度取2.5 t/m3V 0 =(2.5×663.18+5)÷1.025+332.61=1955.002,沉箱趾的排水体积:v=19.83+8.71+5.49=34.03 m3沉箱吃水T=(V0-v)÷AT=(1955-34.03)÷6.252×3.14=15.66m沉箱总体浮心高度:Yw=[(V0-v)×T/2+∑v.y]÷V0Yw1=[(1955-34.03)×15.66×0.5+7.38+6.94+96.12] ÷1955=7.75m ρ=(I-∑Ir)÷V 0I=π/64×12.54=1198.42;∑Ir=(4.85×5.853÷36)×8=215.61 ρ=(1198.42-215.61)÷1955=0.50a= Y c1- Y w1=7.87-7.75=0.12m=ρ-a=0.50-0.12=0.38m>0.20 稳定(m大于0.20)计算丙型沉箱:高h=21. m 用290t块石压舱本沉箱压水3.5m时吃水15.66m,为减少其吃水,改用290t块石,块石的重度为1.55t/m3。
沉箱稳定计算

第1页SheΒιβλιοθήκη t12。 设计高水位自重作用:
设计高水位自重作用计算表:
目 胸墙1 胸墙2 胸墙3 卸荷板 混凝土路面 沉箱上填石1 沉箱上填石2 沉箱上填石3 沉箱内填石 沉箱前后面板,纵隔墙 沉箱侧板,横隔墙 沉箱底板 S 每延米自重作用 项 计算式 (1,77x24+0,23x14)x3,8x7,7 3,8x3x7,7x14 1/2x1,2x3x7,7x14 11,15x1,5x7,7x15 0,5x24x7,35x7,7 (1,27x18+0,23x11)x7,35x7,7 1/2x1,2x3x7,7x11 6,15x3x7,7x11 4abx12,6x11 (c+d+e)x12,6x7,7x15 (2f+d)xax12,6x2x15 l1xl2x0,5x15 11473/7,7 Gi(KN) 1337.18 1228.92 194.04 1931.74 679.14 1436.95 152.46 1562.72 7082.46 1237.01 965.79 470.663 18279.1 2373.9 Xi(m) 2.6 2.6 4.9 6.275 8.175 8.175 5.3 8.775 4.975 4.975 4.975 4.975 GiXi(KN.m) 3476.673 3195.192 950.796 12121.653 5551.970 11747.042 808.038 13712.824 35235.239 6154.100 4804.805 2341.546 100099.877 12999.984
l1 = l2=
8.15 m 7.7 m
(一) 结构自重力(永久作用) 1。 极端高水位自重作用:
极端高水位自重作用计算表:
井字内壁圆形沉箱浮游稳定计算

沉箱浮游稳定计算本工程中采用的沉箱为井字内壁圆形沉箱,结构形式如下图:沉箱主要技术参数如下:底部为边长=8.698m正八边形,底板厚度为0.7m;筒体为外径9m,内径8.55m钢筋混凝土结构;肋板为与筒体等高,厚0.25m井字形内壁结构。
沉箱结构总高为27.8m/19.3m/8.8m。
井字形内壁圆沉箱浮游稳定定倾半径计算(以27.8m沉箱为例)为便于过程计算及事后复核,对计算过程中所需要的一系列参数进行编号如下:圆沉箱外径为r外=9m圆沉箱内径为r内=8.55m 圆形沉箱内壁厚为b1=0.25m外壁厚为b2=0.45m井字形内壁的中间箱格(1#箱格)净距为l1=5.45m井字内壁中间两端箱格(2#箱格)边宽为l3=5.129m 井字内壁四角箱格(4#箱格)的边宽为l4=5.041m 借助计算机简化计算过程,以上数据均为通过AUTOCAD直接查询得到,未进行繁杂演算。
依此,下面的计算过程也是借助于计算机EXCEL表格直接形成。
通过AUTOCAD直接查询得到:参数b3为内径r内圆上△a对应的弦长CD b3=0.265m井字形内壁圆沉箱重心计算井字形内壁圆沉箱浮心计算井字形内壁圆沉箱定倾高度计算结论:井字形内壁圆沉箱无压载水时,沉箱浮游不稳定。
注水压舱时:井字形内壁圆沉箱重心计算井字形内壁圆沉箱浮心计算井字形内壁圆沉箱定倾高度计算m=0.24m>0.2m结论:井字形内壁圆沉箱每个箱格内均注入4m深海水时,沉箱浮游稳定。
综述:通过以上计算,同发计算系缆墩及引桥墩沉箱得知:(1)靠船墩、工作平台、系缆墩1沉箱(3700t)(2)系缆墩2沉箱(2793t)(3)引桥墩沉箱(1678t)。
沉箱码头稳定验算和内力计算

沉箱码头稳定验算和内力计算码头稳定性验算(一)作用效应组合持久组合一:设计高水位(永久作用)+堆货门机(主导可变作用)+波谷压力(非主导可变作用)持久组合二:设计高水位(永久作用)+波谷压力(主导可变作用)+堆货门机(非主导可变作用)短暂组合:设计高水位(永久作用)+波峰压力(主导可变作用)不考虑地震作用去1(二)码头延基床顶面的抗滑稳定性验算根据《重力式码头设计与施工规范》(JTJ290-98)第3.6.1规定应考虑波浪作用,堆货土压力为主导可变时:按(JTJ290-98)中公式(3.6.1-4)计算。
01()()E H E qH P B G E V E qV u BU dE E P G E E P fγγγψγγγγψγγ++≤+++应考虑波浪作用,波浪力为主导可变时:()()f E P E G E P E qV E Bu u V E GdqH E B P H E ψγλγγγψγγγγ+++≤++1o短暂组合情况,按《防波堤设计与施工规范》(JTJ298-98)公式5.2.7计算f P G P Bu u G B p )(0λλλλ-≤式中:o γ——结构重要系数,一般港口取1.0;E γ——土压力分项系数;取1.35 PW γ——剩余水压力分项系数;取1.05 PR γ——系缆力分项系数;1.40ψ——作用效应组合系数,持久组合取0.7;V H E E 、——码头建筑物在计算面以上的填料、固定设备自重等永久作用所产生的总主动土压力的水平分力和竖向分力的标准值;W P ——作用在计算面以上的总剩余水压力标准值; RH P ——系缆力水平分力的标准值;qV qH E E 、——码头面上的可变作用在计算面上产生的总主动土压力的水平分力和竖向分力的标准值;RV P ——系缆力垂直分力的标准值;G γ——结构自重力的分项系数,取1.0;G ——计算面以上的结构自重力标准值;f ——沿计算面的摩擦系数设计值,查表可得0.6,胸墙0.55d γ——结构系数,不考虑波浪作用,取1.0(三)码头延基床顶面抗倾稳定性验算根据JTJ290-98第3.6.3规定应考虑波浪作用,堆货土压力为主导可变时,按JTJ290-98公式3.6.3-4计算:()()PBu u Eqv E EV E G GdPB P EqH E EH E o M M M M M M M ψλγγγγγγγγ+++≤ψ++1应考虑波浪作用,且波浪力为主导可变作用时,按JTJ290-98公式3.6.3-3计算:()()E q VE PBU U EV E G GdEqH E PB P EH E o M M M M M M M ψλγγγγγγγγ+++≤ψ++1短暂组合情况,按《防波堤设计与施工规范》(JTJ298-98)公式5.2.5计算 G G dPBu u PB P M M M λλλλλ1)(0≤+抗倾稳定性见表抗滑稳定性计算表组合项目土压力为主导可变作用时0()E H E qH P B E E P γγγψγ++1()G E V E qV u BU dG E E P fγγγψγγ+++结论qHEψP γB P 结果d γG γGfV EqVEu γBU P结果组合11 1.35432.8820.92 0.7 1.2179 730 1.11 3273.23 0.6 110.7 97.21 1.3 0 1938.4稳定组合项目波压力为主导可变作用()qH E B P H E E P E ψγγγγ++o 短暂组合Bp P λλ0()fE P E G qV E Bu u V E Gdψγλγγγ+++1f P G Bu u G )(λλ-结论qHEψP γB P结果d γG γGfV EqVEu γBU P结果组合2 1 1.35 432.88 20.92 0.7 1.2 179818 1.1 1 3273.23 0.6 110.7 97.21 1.3 0 1917 稳定短暂组合11.3520.92/1.2172 206.4/123110.61.229.821365稳定γEγHE 0γEγHE抗倾稳定性验算计算表组合项目土压力为主导可变作用时()PB P EqH E EH E oM M M γγγγψ++()PBu u Eqv E EV E G G dM M M M ψλγγγγ+++1结论EH MEqHMψP γPB M结果d γG γG MEV MEqvMu λPBu M结果组合11 1.353834 1027.9 0.7 1.32361.6 8713 1.35 1 21118.4 1439.1 271.96 1.3 0 17354.3稳定组合波浪力为主导可变作用时 ()EqH E PB P EH E o M M M γγγγψ++短暂组合)(0PBu u PB P M M λλλ+ ()EqV E PBU U EV E G GdM M M M ψλγγγγ+++1GG dM λλ1结论EH M P γψPB MEqHMPBu M 结果d γ G γG MEV MU γPBu MEqVM结果组合2 11.3538340.72361.6 1027.9 /9217 1.35 121118.4 1439.1 1.30 271.96 17272.7稳定短暂组合 1 1.35 0 1.2 / 2052.30 217 2723 1.25 1 15136.71.2 / 0 12109.4稳定γEγ0γEγ(四)基床承载力验算1.基床顶面应力计算组合持久组合情况一:设计低水位(永久作用)+波谷压力(主导可变作用)+(堆货+前沿堆货+门机情况)(非主导可变作用)短暂组合情况:设计高水位(永久作用)+波峰期波峰压力(主导可变作用) 2.持久组合一基床顶面应力计算:)/(28.43917.2745.1177.24139021.9722.3547m kN V K =+++++=)/(02.30077934429096.2715.10285.152671.22951m m kN M R ?=+++++=)/(1.805112019.10273.175185.40700m m kN M ?=+++=3)(02.528.43911.805102.3077Bm >=-=ξ)(53.102.521.13m e =-=kPa 600)1.1353.161(1.1328.43915.5749.171maxmin =<=?±=λσσ3.短暂组合情况基床顶面情况计算: )/(228182.292311m kN V k =-=)/(7.15136m m kN M R ?=)/(3.22692173.20520m m kN M ?=+=3)(64.5228122697.15136Bm >=-=ξ)(91.064.521.13m e =-=kPa 600)1.1391.061(1.1322817.2469.143maxmin =<=?±=λσσ满足承载能力要求(五)码头整体稳定性验算按照《港口工程地基规范》第5.1.3 条规定,取设计低水位进行验算。
沉箱码头计算书

任务要求:码头设计高水位12米,低水位7.4米,设计船型20000吨,波高小于1米,地面堆货20kpa ,Mh —16—30门座式起重机,地基承载力不足,须抛石基床。
一.拟定码头结构型式和尺寸1. 拟定沉箱尺寸:船舶吨级为20000吨,查规得相应的船型参数:设计船型总长 (m ) 型宽 (m ) 满载吃水 (m ) 18327.610.5即吃水为10.5米。
其自然资料不足,故此码头的前沿水深近似估算为:1.1510.512.1D kT m ==⨯=,设计低水位7.4米,则底高程:7.412.1 4.7m -=-,因此定底高程-5.1m 处。
由于沉箱定高程即为胸墙的底高程,此处胸墙为现浇钢筋混凝土结构,要求满足施工水位高于设计低水位,因此沉箱高度要高于码头前沿水深12.1m 。
综上,选择沉箱尺寸为: 1310.214l b h m m m ⨯⨯=⨯⨯。
下图为沉箱的尺寸图:2.拟定胸墙尺寸:如图,胸墙的顶宽由构造确定,一般不小于0.8m,对于停靠小型河船舶的码头不小于0.5m。
此处设计胸墙的顶宽为 1.0m。
设其底宽为5.5m,检验其滑动和倾覆稳定性要否满足要求:(由于此处现浇胸墙部分钢筋直接由沉箱顶部插入,可认为其抗滑稳定性满足要求,只需验算其抗倾稳定性)设计高水位时胸墙有效重力小于设计低水位时,对于胸墙的整体抗倾不利,故考虑设计高水位时的抗倾稳定。
沉箱为现浇钢筋混凝土,其重度在水上为323.5/kN m ,水下为313.5/kN m ,则在设计高水位时沉箱的自重为:()][()5.511 1.511 1.5 1.5 5.5123.5 3.11 1.5 5.51 3.113.52 4.6 4.[{]62}G -=⨯+⨯⨯⨯-⨯+⨯+⨯+-⨯⨯⨯()则 227.83G kN =。
自重G 对O 点求矩:G 77.10.533.4967 5.510.47922/3 5.51/3=733.56M kN m =⨯+⨯-⨯⨯+()() 。
沉箱、箱涵安装

沉箱- 箱涵整体浮运安装摘要:介绍沉箱-箱涵整体浮运安装工艺,并对比沉箱-箱涵进行单体浮运安装及沉箱-箱涵整体浮运安装工艺,进行成本进度分析。
关键词:沉箱-箱涵浮运安装浮游稳定1 工程概况171506010箱涵中有30cm的水时,7~12舱内加水4.62m时沉箱箱涵平衡,加水4.62m沉箱-箱涵安装时1~6舱和7~12舱的加水速度比为1:6.2 沉箱-箱涵浮运安装准备2.1沉箱-箱涵浮游稳定计算本预制构件为沉箱与箱涵的结合体,长23.51m ,宽9.80m ,高9.5m,其中沉箱长17.5米,箱涵长6.01米,构件重心偏离中心位置较大,为了保持浮运时平衡,需在沉箱内加水。
因为沉箱-箱涵偏心较大, 沉箱-箱涵的平衡对加水方式相当敏感,加水的部位、速度必须准确,计算出沉箱-箱涵在不同加水量的情况下的平衡状态,并在施工过程中派专人看管水泵和阀门,按照潮水涨落速度控制阀门进水速度及水泵抽水时长,做到每道工序都以既定步骤进行施工。
通过浮游稳定的计算,计算出箱涵部分分别存水10cm、20cm、30cm、40cm、50cm、60cm、60cm及沉箱-箱涵重新浮起时,沉箱-箱涵保持浮游平衡、沉箱仓格的加水方式或抽水方式和相应沉箱的吃水深度等。
对各加水步骤都制定了应急措施,做到有备无患。
附件1沉箱—箱涵浮游稳定性计算(干舷高度1.64 m) 附件2沉箱-箱涵干舷高度和舱内水深对照表2.2箱涵串水孔封堵箱涵两侧各有两个串水孔,为了起浮安装,安装了两个钢封门,钢封门与箱涵混凝土面采用橡胶垫衬,依靠水压力对钢封门的作用形成自密效果。
钢封门的密闭性如何是决定沉箱-箱涵能否安全浮运到目的地的重要因素,万一钢封门渗水速度过快而无法控制,很容易造成沉箱-箱涵的倾覆。
为了保证沉箱-箱涵顺利拖运至目的地,除了加强钢封门制作安装质量外,并在钢封门安装后使用玻璃胶从外部进行封堵。
渗水路径2.3制作沉箱封舱板、阀门杆沉箱封舱板用10#槽钢做骨架,3毫米钢板做面板。
福讯沉箱浮游稳定计算

11
底加 强 角 1.01
12
前 趾(矩形) 3.55
13
前 趾(三角形) 0.65
14
后趾(矩形)
0.00
15
后 趾(三角形) 0.00
总和
184.89
注:以前趾O点
为计算原点
4.78
4.78 0.91 0.00 4.78 4.78 0.40 0.53
0.00 0.00
无压载时沉箱的重 心位置:
xc= 4.49
yc= 4.82 不平衡力矩(对沉箱 宽度中心):
M= -644.27
压载深度
(后两舱)
t0=
0.85 压载材料的重力
g= 211.94
方程式: (10.25*t*3.8*3. 3*21.01/2*10.25(0.2)^2*t*10.25 *8/2)*(1.9+0.12 5)
压载材料对底板的 力矩
m≥0.2,满足要求
重心位置 5.13 6.90 6.90 1.13 1.33
重量矩 25916.76 12.42 -10350.00 456.29 672.76 16708.23 6325.83
直径:2m 长:8m。 单个气囊体积
πr²L=8π米³,水密 度为10.25³ KN/m³ 单个气囊浮力
8个气囊起重量 3104000
388000
4个 1552
1241.6
1.5625 12.5
单个气囊重力
350×10= 一个气囊能起重量 (N)
#REF!
8个气囊起重量(N) #REF! #REF! #REF!
0.35 0.3 0.5
沉箱仓格尺 0.25 寸 0.3 0.55 0.75
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算项目
体积V(m3)
重力G(kN)
重心高度y(m)
重力矩Gy(kNm)
沉箱
255.78
6394.5
4.7
30054.15
前排舱加水
81.192
832.218
0.9
748.9962
后排舱加水
81.192
832.218
0.9
748.9962
总计
418.164
8058.936
31552.1424
沉箱排水体积及浮心高度
总排水体积
前、后趾排水体积
沉箱吃水:
浮心高度:
定倾半径:
重心到浮心的距离为:
。
定倾高度为:
。
满足要求。
干舷高度:
式中F——沉箱的干舷高度(m)
H——沉箱高度(m)
T——沉箱吃水(m)
干舷高度满足要求。
砼容重(kn/m3)
25.00
前趾前高(m)
0.40
沉箱高度(m)
9.50
沉箱仓格尺寸(m)
横
3.60
前趾后高(m)
0.70
墙内加强角尺寸(m)
0.20
纵
3.80
前趾宽(m)
1.00
底加强角(m)
0.20
水容重(kn/m3)
10.25
2、沉箱材料体积和体积矩计算表(对前趾前端求矩)
编号
名称
体积
重量
形心位置(m)
体积矩(m4)
Vi(m3)
Gi(kN)
xi
yi
Vixi
Viyi
1
前壁
41.29
1032.30
1.15
5.95
49
1032.30
8.85
5.95
365.43
245.69
3
侧壁
49.28
1232.10
5.00
5.95
246.42
293.24
4
底板
39.68
992.00
5.00
9
底加强角
1.78
44.40
5.00
0.63
8.88
1.12
10
前趾
6.82
170.50
0.56
0.30
3.82
2.05
11
后趾
6.82
170.50
9.44
0.30
64.38
2.05
∑
总和
255.78
6394.60
1278.92
1202.45
3、无压载时沉箱重心位置(钢筋混凝土重度为25kN/m3)
0.20
198.40
7.94
5
纵隔墙
26.20
654.90
5.00
5.95
130.98
155.87
6
横隔墙
31.97
799.20
5.00
5.80
159.84
185.41
7
端内加强角
5.33
133.20
5.00
5.95
26.64
31.70
8
内加强角
5.33
133.20
5.00
5.95
26.64
31.70
不加压仓水时,沉箱的浮有稳定性验算
由于不加压仓水,沉箱重力G和中心高度 不变。
因此
沉箱的总排水体积:
前、后趾的排水体积:
沉箱吃水:
浮心高度:
定倾半径:
重心到浮心的距离为:
。
定倾高度为:
。
所以沉箱浮游时不稳定,需采用下述的加水压载措施予以改善。
4、所有舱加水2m时的富有稳定计算
加水后,沉箱重力计算表如下
1、沉箱参数设计
前壁板厚(m)
0.30
后趾前高(m)
0.40
墙外加强角尺寸(m)
0.00
后壁板厚(m)
0.30
后趾后高(m)
0.70
横向仓格数
2
底板厚(m)
0.40
后趾宽(m)
1.00
纵向仓格数
3
隔墙厚(m)
0.20
沉箱宽度(m)
8.00
内外墙高差(m)
0.30
侧壁板厚(m)
0.30
沉箱长度(m)
16.00