阻尼器力学性能指标
U型软钢阻尼器的设计及力学性能分析

数 有 屈 服 承 载 力 、 大 承 载 力 和 屈 服 位 移 、 限 位 移【 最 极 l 1 。
( u型阻尼器元 件构造图 I 】 U型阻尼器 元件尺寸 1 . 腹扳段 ; 2翼缘段 : . 3螺栓孔 ;厶梭 板 长度; H . ■缭高度 ; - 板厚; b 腹板宽度 .
6一 2 上翼缬宽度 - 翼缘宽度; - F |栓孔直径・
本 文 设 计 出一 种 U 型 软 钢 阻 尼 器 。 耗 能 元 件 结 构 如 其 图 1所 示 , 由腹 板 和 两 翼 缘 组 成 。 其 中 腹 板 为 等 截 面 板 , 两 翼 缘 为 变 截 面 板 , 个 阻 尼 器 元 件 板 厚 相 同 。 尼 器 元 件 两 整 阻 翼 缘 端 处 留有 螺 栓 孔 , 以便 与 其 它 结 构 相 连 接 。 型 软 钢 阻 U
1 U型 软 钢 阻 尼 器 设 计 11 结 构 组 成 .
但 由于 该 阻 尼 器 产 生 较 大 的 扭 转 变 形 时 需 要 的 尺 寸 较 大 ,
经 济 性 较 差 , 以该 产 品在 实 际 中应 用 较 少 。在 此 之 后 , 所 国 内外 学 者 设 计 出 了 各 种 形 式 的金 属 阻 尼 器 。 如李 钢 啵 计 的
吉 告 s 6
: s2y面" ̄ bo. lr r - 一 a
图 2 U型 软钢 钢 阻 尼 器
12 工作
式 中 , 为 屈 服 弯 矩 , 为 塑 性 弯 矩 ,r为 材 料 的 屈 服 强 a v
度 , 为 阻 尼 器 元 件 的屈 服 承 载 力 , 大 承 载力 , 和 为 阻 尼 器 元 件 的 最 可 按 式 ( )式 ( ) 算 : 3 , 4计
地 震 、强 风 所 引 起 的 振 动 严 重 影 响 着 工 程 结 构 服 役 的
非线性电涡流惯质阻尼器力学性能仿真与试验

baser on the semi-theoreticef ang semi-6gmencoJ analysie ang three-6imensionaJ electromaaget-e finite-element
simulation analysie wae estaniiseen. Resulte stow that the donUJe amplificatioo of the igeeiaf mast ang the
非线性电涡流惯质阻尼器力学性能仿真与试验17312工作原理图1所示nemd上下连接端分别与结构内部对点阻尼器两端点之间对轴向运转导磁钢板和飞轮高速旋转运动同时和导体铜板随结构同步运动导磁钢板和飞高速旋转运生的转矩及导体铜板切割永组磁力生的电涡流阻尼力矩传动系统步放大轴向力和电涡流阻尼九忽略nemd内部相对较摩擦力nemd总轴向力可表示fyfpfc1式中fp与fc分别表示nemd的惯性力与电涡流阻尼力
enuivvlent endy-cerrent damping ceefficient of the NEMD wae realizen , which sianificontty improven the eneroy
dissindtion efficiegce of the ECD. As the axiat vlocity of the NEMD increesen , c(gnspongmg endy-cerrent
汪志昊9,田文文1王 浩2,( 辉9,梁瑞军2,陈政清6
(0河南省生态建材工程国际联合实验室(华北水利水电大学),郑州455045; 2.混凝土及预应力混凝土结构教育部 重点实验室(东南大学),南京210096; 3.风工程与桥梁工程湖南省重点实验室(湖南大学),长沙510002)
阻尼器参数示意

这里我们设置的阻尼器为横桥向减震支座:1、 首先求得结构的基频Hz f 24.01=和地震荷载下支撑位置横梁整体横向变形Dy=205mm;2、 根据求得的结构基频和横向位移Dy,查表得阻尼器活塞相对阻尼器外壳的相对速度V=276mm/s3、 假定阻尼指数,阻尼指数取值范围在0.2~1.0,阻尼指数越小,耗能效果越好,减震效果越好。
这里我们取阻尼指数2.0=s ,给定义资料中阻尼指数以α表示;4、 如选择阻尼器型号为“KZ-2000SX500X”,代表活塞最大行程500mm,最大阻尼力2000kN,查得对应的阻尼常数C=650kN.s/mm5、 有效刚度输入该阻尼器的线性弹性刚度。
综合以上数据在程序中的一般连接特性值数据如下图所示——将此阻尼器安装在附件模型的塔梁连接处,计算得到的阻尼器的横向变形-横向内力时程图形如下图——1、 阻尼器形式2、 参数表1-查得阻尼器活塞滑动相对速度3、 参数表2-根据阻尼指数和阻尼器行程、阻尼力、活塞速度,得到阻尼常数。
1) 阻尼力与阻尼器变形的往复曲线称为滞回环曲线。
阻尼指数越小,曲线越饱满,说明耗能效率越高。
2) 阻尼输出力与活塞速度关系:()αv v sign C F d ⋅⋅=或αv C F ⋅=,这两个式子都称为阻尼方程,C 为阻尼常数,单位是kN/(m/s )v 为活塞的运动速度,α为阻尼指数,midas 中的取值范围在0.2~1之间。
阻尼器的种类较多,有铅压阻尼器、钢阻尼器、摩擦阻尼器以及粘滞阻尼器等。
其中,较为成熟且适用于大跨度桥梁的主要是油阻尼器,也称粘滞阻尼器。
图4.3 液压阻尼器的工作机理粘滞阻尼器的基本构造由活塞、油缸及节流孔组成,如图4.2所示。
所谓节流孔是指具有比油缸截面面积小的流通通路。
这类装置是利用活塞前后压力差使油流通过节流孔时产生压力差从而产生阻尼力。
当阻尼力与相对变形的速度成比例时是线性的,不成比例时则是非线性的,其关系可表达为:F CV ξ=其中F 为阻尼力,C 是阻尼常数,ξ是阻尼指数(其值范围在0.1-2.0,从抗震角度看,常用值一般在0.2-1.0范围内)。
粘滞流体阻尼器的力学性能试验研究

0引言钢筋混凝土框架结构在实际工程中应用广泛,中国的多次震害调查显示,强震作用下钢筋混凝土框架结构往往易于发生较严重的损伤破坏甚至倒塌,因此,提高建筑物抗震能力,尽量降低地震所造成的破坏,显得尤为重要。
在具体方法上,除沿袭传统的抗震思路提高结构自身的抗震性能外,也可以采用消能减震技术,通过在建筑物的抗侧力体系中设置消能部件,由消能部件的相对变形和相对速度提供附加阻尼,来消耗输入结构的地震能量,减小结构的地震响应,提高建筑物抗震水平。
工程减震设计中常采用粘滞阻尼器作为消能减震部件,粘滞阻尼器(Viscous Fluid Damper ,简称VFD )是一种速度相关型阻尼器,阻尼器中的液体在运动过程中产生的阻尼力总是与结构速度方向相反,从而使结构在运动过程中消耗能量,达到耗能减震的目的,然而,一些阻尼器生厂商生产的产品中含有摩擦力,阻尼器在地震作用下并不能按照其所给结构参数工作,据此,本文进行了试验研究,并提出了考虑摩擦力影响的黏滞阻尼器的阻尼力计算公式。
1粘滞流体阻尼器的传统力学模型根据粘滞阻尼器产生阻尼力的原理的不同,可将阻尼器分为:利用封闭填充材料流动阻抗的“流动阻抗式”和利用粘滞体剪切阻抗的“剪切阻抗式”两类。
文中采用的是流动阻抗式粘滞阻尼器。
流动阻抗式粘滞阻尼器是一种典型的速度相关型阻尼器,根据阻尼指数α的取值可将粘滞阻尼器分为两类:当α=1时,为线性粘滞阻尼器;当α≠1时,为非线性粘滞阻尼器。
其表达式为F=CV α(1)式中C 为阻尼系数,V 为结构的速度,α为阻尼指数,其中阻尼指数α是粘滞阻尼器消能减振性能的重要指标之一。
α越小,表现出的非线性越强,阻尼器对速度的敏感性越高,即在很小的相对速度下就能输出较大的阻尼力,且阻尼力-位移曲线也越饱满,更能有效地减少结构振动。
因此,为了保证减震效果,需要对粘滞阻尼器进行性能试验研究,通过试验判断阻尼器实际的结构参数是否与厂家提供的一致,如果有误差,则应针对该类阻尼器提出新的力学计算模型,以供减震结构的分析和参考。
阻尼器简介演示

THANKS
谢谢您的观看
阻尼器的工作原理
总结词
阻尼器通过材料的内摩擦或能量转换机制来吸收或转换能量,从而减小振动或噪 音。
详细描述
阻尼器的工作原理主要是利用材料的内摩擦或能量转换机制来吸收或转换能量。 当阻尼器受到外界激励时,内部材料会发生形变或振动,通过内摩擦力将机械能 转换为热能,从而达到减小振动或噪音的目的。
阻尼器的应用领域
利用摩擦力进行能量耗散的阻尼器。
详细描述
摩擦阻尼器主要利用接触面之间的摩擦力进行能量耗散,常见于各种机械系统、车辆和建筑结构中。 它们通过在阻尼器内部设置摩擦元件,使结构振动产生的能量通过摩擦力转化为热能,从而达到减振 降噪的目的。
隔振阻尼器
总结词
利用振动隔离原理进行能量耗散的阻尼 器。
VS
详细描述
保护结构
通过吸收能量,阻尼器可以保 护结构免受损坏,延长其使用
寿命。
控制振动
阻尼器可以有效地控制结构的 振动,提高其稳定性和舒适度
。
易于安装
阻尼器通常结构简单,易于安 装和维护。
缺点
成本较高
相比其他减震装置,阻尼器的 制造成本较高。
适用范围有限
阻尼器的性能受限于其特定的 应用范围,对于不同的结构和 环境可能需要不同类型的阻尼 器。
阻尼器在各领域的应用拓展
航空航天领域
随着航空航天技术的不断发展, 阻尼器在航空航天领域的应用将 进一步深化,以提高飞行器和航
天器的稳定性和安全性。
汽车工业
汽车工业对阻尼器的需求量巨大 ,未来阻尼器在汽车工业中的应 用将更加广泛,以提高汽车的舒
适性和安全性。
建筑领域
阻尼器在建筑领域的应用将进一 步拓展,以提高建筑的隔振、减 震和隔音性能,提升居住和工作
SMA耗能阻尼器性能测试与回归分析

42 2
三 峡 大 学 学 报( 自 然 科 学 版)
外侧合金丝作张拉运动; 反之, 当牵引杆向内压缩时, 内侧合金丝作张拉运动, 外侧合金丝作回缩运动. 阻 尼器的力学计算模型简图见图 2.
2007 年 10 月
图 2 阻尼器力学计算模型
试验中 阻尼器 SMA 丝的有 效工作长 度为 450
mm , 预拉应变率为 3% , 其预应变拉伸长度为 13. 5 mm,
Fi -
F X
mX
m
i
=
a(
X
2 i
-
X
2 m
)
(
i
=
1, 2,
, n) ( 1)
建立关于二次曲线系数 a 的矩阵方程 B= Aa, 则
a = ( AT A- 1 ) ( AT B)
( 2)
由最小二乘法求出 a 的解后, 再求出 b 和 c.
当最大行程大于或等于 5. 5 mm 时, 设直线与二
次曲线在交点 L ( x 0 , y ) 处连续光滑, 且 x 2 < x 0 < x 1 ,
11~ 12
X12F 001 X12F005
X12F 01
X1 2F0 2
X12F03 X11. 6F 05 X11. 6F06 X11. 6F07
2 阻尼器滞回特性经验公式的建立
2. 1 滞回曲线的非线性方程拟合 分析阻尼力与行程的滞回曲线图, 发现最大行程
小于 5. 5 mm 和最大行程大于或等于 5. 5 mm 的图形 有较大的区别, 由此设想用两种方案拟合图形: 最大 行程小于 5. 5 mm 的图形曲线比较光滑, 与抛物线比 较接近, 利用抛物线对图形进行拟合; 当最大行程大 于等于 5. 5 mm 时, 图形出现明显的拐点, 斜率发生 突变, 将滞回曲线进行分段处理, 分别用抛物线和直 线进行拟合.
多层框架结构的消能减震初步分析

多层框架结构的消能减震初步分析摘要:本文以某栋8度半区三层框架结构为例,对三种阻尼器布置方案的减震效果进行了比较,通过对结构各项指标的计算分析,选择了经济性和可靠性最优的一种消能减震方案。
关键词:阻尼器;设防地震;减震;对于高烈度地区,增加构件截面尺寸和材料强度的传统设计方法虽然能够满足结构安全性,但经济性不佳。
对于例如学校类的重点设防建筑,根据相关规范和规程、标准的要求,设计时需要采用消能隔震技术以提高结构的抗震性能和可靠性。
地震作用下结构振动的基本方程可表示为:[M]{ }+[C]{ }+[K]{}={} (1)上式之中:[M]为质量矩阵,[C]为阻尼矩阵,[K]为刚度矩阵,{}为节点位移向量,{}为节点速度向量,{}为节点加速度向量,而{}为地震力向量。
阻尼器也称消能器,可以设置在建筑物的抗震体系中,消能部件产生相对变形和速度,从而提供了附加阻尼和附加刚度,由前面的式(1)可知,随着[C]{ }项增大和附加刚度矩阵△[K]的形成,在地震作用下结构节点位移向量{}会相应减小。
图1 阻尼器力学性能简图1.阻尼器在计算模型中的布置本文算例采用的阻尼器力学性能如图1所示,阻尼器的滞回关系简化为双线性模型时,其拐点为屈服点,即图1中的点2,其相应屈服位移和屈服力即图中点2处的阻尼器变形和阻尼器出力,其初始刚度定义为阻尼器屈服力与屈服位移之比值,也就是图1中的点1和点2之间的直线斜率。
阻尼器在建筑平面中应按照“均匀、对称、分散”的原则进行布置。
本文选用的算例为某栋三层幼儿园建筑,阻尼器在平面中的具体布置位置详见图2(仅以第二层平面为例),每层设置的阻尼器数量为4个。
为方便分析比较,各楼层的阻尼器均布置在相同的位置。
图2阻尼器平面布置简图本文的算例为一栋三层框架结构,其抗震设防类别为乙类,抗震设防烈度为8度(0.30g),设计地震分组为第二组,建筑场地类别为III类场地,场地特征周期为0.55s,框架抗震等级为一级,周期折减系数0.85。
U型金属阻尼器的力学公式推导及阻尼性能研究

U型金属阻尼器的力学公式推导及阻尼性能研究赵珍珍;张爱军;何斌【摘要】U形金属阻尼器是第一代金属阻尼器的典型代表,具有取材容易、结构简单、费用低廉等优点.本文提出了一种新的U形金属阻尼器的简化力学模型,基于钢材简化本构模型推导了相关力学参数的理论公式,并以通用有限元程序ABAQUS为计算平台,基于混合模型模拟了阻尼器在静力循环加载下的受力过程.文中将数值模拟结果与理论公式计算结果进行比较,并且通过数值模拟结果计算分析了U形金属阻尼器的阻尼性能相关参数.结果表明该理论计算公式合理可行,可以为U形金属阻尼器的设计制作提供一定依据.%As a typical representative of the first generation of metallic dampers,U-shaped metal damper has drawn some advantages,such as easy material availability,simplified preparation,low cost.This paper proposes a new simplified mechanical model about U-shaped metal damper and deduces theory formula of the relevant mechanical parameters based on simplified constitutive model of steel.And U-shaped metal damper is simulated under static cyclic loading based on the hybrid model by general finite element program ABAQUS.In this paper,the numerical simulation results and the theoretical formula calculation results are compared,and the relevant parameters of damping performance are calculated and analyzed.The results show that the theoretical calculation formula is reasonable and practical and can provide certain basis for the design of the U-shaped metal damper.【期刊名称】《结构工程师》【年(卷),期】2017(033)002【总页数】8页(P143-150)【关键词】U形金属阻尼器;公式推导;数值模拟;阻尼性能【作者】赵珍珍;张爱军;何斌【作者单位】西北农林科技大学水利与建筑工程学院,杨凌712100;西北农林科技大学水利与建筑工程学院,杨凌712100;西北农林科技大学水利与建筑工程学院,杨凌712100【正文语种】中文地震发生时,地面震动引起结构物的振动反应,结构物接受了大量的地震能量,必然要进行能量转换或消耗才能终止振动反应。