多重共线性
多重共线性

多重共线性多重共线性(multicollinearity )的特征● 多重共线性是指一个回归模型中的一些或全部解释变量之间存在有一种“完全”或准确的线性关系:0...2211=+++k k X X X λλλ其中k λλλ,...,,21为常数,但不同时为零。
● 0...2211≈+++k k X X X λλλ, 近似的多重共线性● 通过巴伦坦图做简单的描述。
共线性部分可用两圆圈的重叠部分来衡量。
重叠部分越大,共线性程度越高。
● 我们定义的多重共线性仅对X 变量之间的线性关系而言,它们之间的非线性关系并不违反无多重共线性的假设i i i i u X X Y +++=2210βββ多重共线性的后果●如果多重共线性是完全的,诸X变量的回归系数将是不正确的,并且它们的标准误差为无穷大●如果多重共线性是不完全的,那末,虽然回归系数可以确定,却有较大的标准误差,意思是,系数不能以很高的精确或准精确加以估计,这会导致:-参数估计不精确,也不稳定-参数估计量的标准差较大,影响系数的显著性检验●多重共线性产生的后果具有一定的不确定性●在近似的多重共线性的情况下,只要模型满足CLRM 假定,回归系数就为BLUE,但特定的样本估计量并不一定等于真值。
多重共线性的来源(1)许多经济变量在时间上由共同变动的趋势,如:收入,投资,消费(2)把一些经济变量的滞后值也作为解释变量在模型中使用,而解释变量和滞后变量通常相关,如:消费和过去的收入多重共线性一般与时间序列有关,但在横截面数据中也经常出现多重共线性的检验● 多重共线性是普遍存在的,造成的后果也比较复杂,对多重共线性的检验缺少统一的准则- 对有两个解释变量的模型,作散点图,或相 关系数,或拟和优度R平方。
- 对有多个解释变量的模型,分别用一个解释 变量对其它解释变量进行线性回归,计算拟 和优度22221,...,,k R R R- 考察参数估计值的符号,符不符合理论 - 增加或减少解释变量,考察参数估计值的变 化- 对比拟和优度和t检验值多重共线性的修正方法● 增加样本观测值,如果多重共线性是由样本引起的,可以通过收集更多的观测值增加样本容量。
第四章 多重共线性

2
( x2 i x3 i ) 2 x [1 2 x3 i
2 2i
2
2 2 x2 i (1 r23 )
ˆ Var( 3 ) 同样可得
2
2 2 x3 i (1 r23 )
ˆ ˆ Cov( 2 , 3 )
r23 2
2 2 2 (1 r23 ) x2 i x3 i
1 X X 21 X 31
1 X 22 X 32
1 X 2n X 3n
nX 3 X 2 i X 3 i 2 X 3 i
X 2 i
2 X 2 i X 2 i X 3 i
X 3 i n nX 2 2 X 2 i X 3 i nX 2 X 2 i 2 X 3 i nX 3 X 2 i X 3 i
其中vi为随机变量,则称解释变量X2、X3、 …、 Xk 之间存在着不完全的多重共线性。 注意:解释变量之间不存在线性关系,并非不存在 非线性关系,当解释变量之间存在非线性关 系时,并不违反古典假定。
5
二、产生多重共线性的背景
多重共线性产生的经济背景主要有几种情形:
1.经济变量之间具有相同的变化趋势。
10
n X X nX 2 nX 3 n 0
nX 2 X
2 2i
nX 3 X 2 i X 3 i
2 X 3 i
X 2 i X 3 i nX 2
2 2 X 2 i nX 2
X 2 i x2 i X 2 X 3 i x3 i X 3
nX 3
X 2 i X 3 i nX 2 X 3
这里r23是X2,X3的相关系数。
16
计量经济学第四章多重共线性

R-squared
0.989654
Adjusted R-squared 0.986955 S.E. of regression 1437.448 Sum squared resid 47523916 Log likelihood -256.7013 Durbin-Watson stat 1.654140
4
(二)不完全的多重共线性
实际中,常见的情形是解释变量之间存在不 完全的多重共线性。
对于解释变量 X 2 , X 3, X k,存在不全为0的数
1
,
2
,
,使得
k
1 2X2 3X3 ...k Xk u 0
5
(三)解释变量的关系小节
可能表现为三种情形: r为相关系数 (1) rxixj 0 ,解释变量间毫无线性关系。这时多元
Var(ˆ2 )
9
二、不完全多重共线性产生的后果
1、参数估计值的方差增大
Var( βˆ 2 ) = σ 2
1 x22i (1-
r223 )
=
σ2
1
x22i (1 - r223 )
当 r23增大时,
^
Var( 2)
也增大
10
方差膨胀因子 (Variance Inflation Factor)
17 17
2、交叉相关系数(Cross correlation)
相关系数计算的是两组样本的同期相关程 度,交叉相关则可以表示不同期之间的相关 程度。
Eviews操作: Group窗口的view/cross correlation/输入 滞后期设定/ 输出结果阅读:看是否超出2倍标准差线
18
2倍 标准 差线
1、参数估计值有很大的偶然性。 2、参数显著性检验未通过。 3、经济意义检验未通过。 4、相关系数大。
多重共线性

第二章知多元线性回归模型参数向量的最小二乘估计量为: 1 X X X Y 这一表达式成立的前提条件是解释变量X 1 , X 2 , X k 之间没有多重共线性. 如果矩阵X 不是满秩的,则X X 也不是满秩的.必有: X X 0, 从而 X X 不存在, OLS失效, 此时称该模型存在完全的多重共线性.
解释变量的精确线性组合表示,它们的相关系数的绝对值为1.
X s ,h =
Var X is Var X ih ch cs
n
Cov( X is , X ih )
n
n i 1
( X is X is )( X ih X ih )
2
i1 ( X is X is )
则:
x y x
i1 i 2 i1
, 而1与 2却无法估计.
2 在近似共线性下OLS参数估计量的方差变大
我们前面已论述, 在近似共线性下,虽然可以得到OLS估计量: ) X X 1 2 Var (
由于此时 X X 0, 引起 X X 主对角线元素较大, 即 i的方差较大.
1
对此, 如果我们合并两个(或多个)高度线性相关的变量, 可以使用OLS , 但两个(或多个)变量前的参数将无法估计. 例如,对于回归模型:Yi 0 1 X i1 2 X i 2 i i 1, 2 , n 如果有:X i 2 X i1 , 合并两变量 : Yi 0 1 2 X i1 i , 令 1 2 ,
n
( X ih X ih ) i1
n 2
2
1 X s , h 1 在近似的多重共线性下则得不到这样的精确线性组合, 它们的相关系数的绝对值近似为1.
第四章多重共线性

2
x2j VIFj
注意:R2j 是多个解释变量辅助回归的多重可决系数,
而相关系数 r223只是说明两个变量的线性关系 。
(一元回归中可决系数的数值等于相关系数的平方)
17
方差扩大因子的作用
由
R2j 越大
VIFJ 1 (1 R2j ) 多重共线性越严重
VIFj越大
VIFj的大小可以反映解释变量之间存在多重共线性的严重
1 x22i (1
r223 )
2
x22i
1 (1 r223)
2
x22i
VIF2
当 r23 增大时,VIF2 增大, Var(ˆ2 ) 也会增大 ,
思考: 当 r23 0 时 Var(ˆ2) 2
x22i
(与一元回归比较)
当 r23 1 时 Var(ˆ2 )
(见前页结论) 8
三、当多重共线性严重时,甚至可能使估计
在总体中部分或全部解释变量可能没有线性关系,但是 在具体获得的样本中仍可能有共线性关系,因此多重共线 性问题本质上是一种样本现象。
正因为如此,我们无法对多重共线性问题进行统计假设 检验,只能设法评价解释变量之间多重共线性的严重程度。
5
第二节 多重共线性产生的后果
从参数估计看,在完全无多重共线性时,各解释变量都独
Kt
Kt
ln Qt ln A ln Lt ln Kt ln u
(ln Lt 与 ln Kt 有多重共线性) ln Qt ln A ln Lt ln u
Kt
Kt 22
三、截面数据与时间序列数据的结合
有时在时间序列数据中多重共线性严重的变量,在截 面数据中不一定有严重的共线性
假定前提:截面数据估计出的参数在时间序列中变化不大
多重共线性

可见,主成分回归分析解决多重共线性问题 是通过降维的处理而克服多元共线性的影响, 正确表征变量间的关系。 然而,由于PCR提取X的主成分是独立于因变 量Y而进行的,没有考虑到X对Y的解释作用, 这就增加了所建模型的不可靠性。
3、偏最小二乘回归
针对多元共线性干扰问题,S.Wold和C.Alban 在1983年提出了偏最小二乘回归(Partia Least Squares Regression,简称PLSR)方法。 PLSR方法吸取了主成分回归分析从自变量中 提取信息的思想,同时还考虑了自变量对因 变量的解释问题。
情况二: 出现强影响观测值
进入20世纪80年代后期,人们开始关注 单个或几个样本点对多重共线性的影响。 研究表明,存在两类这样的数据点或点 群:(1)导致或加剧多重共线性 (2)掩盖 存在着的多重共线性。
(a)中因异常观测值的 出现而掩盖了共线 性,(b)中因异常观测值 的出现而产生了共线性。 这样的异常观测值称为 多元共线性强影响观测 值。显然这种观测值会 对设计矩阵的性态产生 很大影响,从而影响参 数估计。
(2)特征根系统(system of eigenvalues) 主要包括条件指数和方差比。条件指数是最 大特征根与每个特征根之比的平方根。当 h j0.5 10 且对应的方差比大于 时,可认为多元共 线性严重存在。
此外,还有几种方法可以进行共线性诊断: 1、自变量的相关系数诊断法 2、多元决定系数值诊断法 3、行列式判别法 4、回归系数方差分解法(RCVD法)
Walker在1989年发展了一种多元共线影响点 的奇异值分解(SVD)的诊断技术。该法在实 践中很有效,但它依据奇异值分解计算较为 繁琐,更为严重的是对多重共线性影响点诊 断的遗漏。另外,我国学者赵进文曾提出多 重共线性影响点的主成分诊断法。
多重共线性

第四章 多重共线性第一节 什么是多重共线性一、多重共线性的含义所谓多重共线性,不仅包括解释变量之间完全(精确)的线性关系,还包括解释变量之间近似的线性关系。
对于解释变量23,,,k X X X ,如果存在不全为零的数123,,,,k λλλλ ,能使得12233i i k ki X X X λλλλ++++ =0 ,(i =1,2,,n )——即解释变量的数据矩阵的列向量组线性相关。
则称解释变量23,,,k X X X 之间存在着完全的线性关系。
用数据表示,解释变量的数据矩阵为X =213112232223111k k nnkn X X X XX X X X X ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦当()r X <k 时,也说明解释变量23,,,k X X X 之间存在着完全的线性关系。
当存在完全共线性时,至少有一个变量(列向量)可以用其余的变量(列向量)线性表出。
在实际问题中,完全的共线性并不多见。
常见的情形是解释变量23,,,k X X X 之间存在不完全的共线性,这是指存在不全为零是数123,,,,k λλλλ ,使得12233λλλλ+++++ i i k ki i X X X v =0(i =1,2,,n )其中i v 是随机变量。
这表明此时解释变量之间只是一种近似的线性关系。
二、产生多重共线性的背景1.经济变量之间具有共同的变化趋势2.模型中包含滞后变量3.利用截面数据建立模型也可能出现共线性4. 样本数据自身的原因第二节 多重共线性产生的后果完全共线性时,矩阵X X '不可逆,参数估计式ˆβ=1()X X X Y -''不存在,OLS 无法应用。
不完全的共线性时,1()X X -'也存在,可以得到参数的估计值,但是对计量经济分析可能会产生一系列影响。
一、参数估计量的无偏性依然成立不完全共线性时ˆ()E β=1()E X X X Y -''⎡⎤⎣⎦=1()()E X X X X U β-''⎡⎤+⎣⎦=β+()1()X X X E U -''=β二、参数OLS 估计值方差扩大 如二元回归模型i Y =12233i i i X X u βββ+++中的2X 与3X 为不完全的共线性时,2X 与3X 之间的相关系数23r 可由下式给出223r=2232223()x x x x∑∑∑容易证明2ˆ()Var β=222223(1)i x r σ-∑3ˆ()Var β=222323(1)ixr σ-∑随着共线性的程度增加,23r 的绝对值趋于1,两个参数估计量的方差也增大。
第七章 多重共线性

2
X 1i 1 r 2
2
ˆ 同理:Var b2
2
X 2i 1 r 2
2
第二节
多重共线性的影响后果
2
ˆ 当完全不共线时,r=0, Var b1
X
2 1i
当不完全共线时,r越接近1,相关程度越高, bi Var ˆ 越大,参数估计值越不准确。
第四节
多重共线性的解决方法
三、逐步回归法 (1)计算因变量对每一个解释变量的回归方程,并分别 进行统计检验,从中选取最合适的基本回归方程。 (2)逐一引入其他解释变量,重新进行回归,在模型中 每个解释变量均显著,参数符号正确, R 2 值有所提高的前 提下,从中再选取最合适的二元回归方程。 (3)在选取的二元回归方程的基础上以同样的方式引 入第三解释变量;如此引入,直至无法引入新变量为止。
第四节
多重共线性的解决方法
(2)如果历年的平均收入弹性与近期的收入弹性 近似相等,就可以用 a2代替原模型中的 b2 。将原模 ln y a2 ln I b0 b1 ln P 型变为 y1 ln y a2 ln I 令:
p1 ln P 再利用时间序列数据求出价格弹性 b1 以及 b0即可。
第四节
多重共线性的解决方法
二、间接剔除重要的解释变量 1、利用已知信息 所谓已知信息,就是在建立模型之前,根据经 济理论、统计资料或经验分析,已知的解释变量之 间存在某种关系。为了克服模型的多重共线性,可 以将解释变量按已知关系加以处理。
第四节
多重共线性的解决方法
例如:柯布-道格拉斯生产函数
y aL K e
ln y / K ln a ln L / K
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多重共线性
1.含义:存在不全为0的1+p 个数p c c c c ,...,,,210,使得
0...22110=++++ip p i i x c x c x c c n
i ,...2,1=称自变量p x x x ,...,21之间存在着多重共线性
2.产生原因和背景:
1)当我们所研究的经济问题涉及到时间序列资料时,由于经济变量随时间往往存在共同的变化趋势,使得它们之间就容易出现共线性。
2)不同的观测误差也会引起异方差性
2)许多利用截面数据建立回归方程的问题常常也存在自变量高度相关的情形
3.带来的问题:
1)完全共线性下参数估计量不存在
2近似共线性下OLS 估计量非有效
3)参数估计量经济含义不合理
4)变量的显著性检验失去意义,可能将重要的解释变量排除在模型之外
5)模型的预测功能失效。
变大的方差容易使区间预测的“区间”变大,使预测
失去意义
4.多重共线性的检验:
1)方差扩大因子法
2)特征根判别法
3)直观判定法
5.消除多重共线性的方法:
1)剔除一些不重要的解释变量
2)增大样本量
课后习题
1.多重共线性对回归参数的估计有何影响?
答:1)完全共线性下参数估计量不存在;2)参数估计量经济含义不合理;
3)变量的显著性检验失去意义;4)模型的预测功能失效
2.具有严重多重共线性的回归方程能否用来作经济预测?
答:如果利用模型去作经济结构分析,要尽可能避免多重共线性;
如果利用模型去作经济预测,只要保证自变量的相关类型在未来时期中保持不变,即未来时期自变量间仍具有当初建模时数据的联系特征,即使回归模型中含有严重多重共线性的变量,也可以得到较好的预测结果;
如果不能保证自变量的相关类型在未来时期中保持不变,那么多重共线性就会对回归预测产生严重的影响。
3.多重共线性的产生与样本量的个数n,自变量的个数p有无关系?
答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。
当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。