最优化方法全部课件
合集下载
最优化理论与算法完整版课件 PPT

Bazaraa, J. J. Jarvis, John Wiley & Sons, Inc.,
1977.
组合最优化算法和复杂性
Combinatorial
Optimization 蔡茂诚、刘振宏
Algorithms and Complexity
清华大学出版社,1988 I运nc筹.,学19基82础/1手99册8
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
2021/4/9
• 算法
5
绪论---运筹学(Operations Research -
运筹学O方R)法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
2021/4/9
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费购买这些食物, 而满足最低限度的维生素需求量。
最优化理论与算法
2021/4/9
1
提纲
使用教材:
最优化理论与算法 陈宝林
参考书 :
数学规划 黄红选, 韩继业 清华大学出版社
1. 线性规划 对偶定理
2. 非线性规划 K-K-T 定理
3. 组合最优化 算法设计技巧
2021/4/9
2
其他参考书目
数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法
最优化理论与算法完整版课件陈宝林PPT

j1
m
s.t xij bj
i1
xij 0
i 1, 2,L , m
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
2020/4/8
• 算法
5
绪论---运筹学(Operations Research -
运筹学O方R)法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
2020/4/8
12
1. 食谱问题(续)
令x表示要买的奶的量,y为要买的蛋的量。食谱问题可以写
成如下的数学形式:
Min 3x +2.5y
极小化目标函数
s.t. 40
50
2x + 4y 3x + 2y
可行区域(单纯形) 可行解
运筹学工作x,者y参与0建.立关于何时出现最小费用 (或者最大利润)的排序,或者计划,早期被标示为programs。 求最优安排或计划的问题,称作programming问题。
2020/4/8
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费买这些食物, 而满足最低限度的维生素需求量。
Printice-Hall
徐光辉、刘彦佩、程侃
科学出版社,1999
最优化方法课件01.3

值,所以一元凸函数表示连接函数图形上任 意两点的线段总是位于曲线弧的上方.
13
对于一元凸函数f(x),可以发现,位于函数曲线 上方的图形是凸集.事实上这一结论对于多元 函数也是成立的,而且是充要条件,即有下面的 定理.
定理:设f(x)是定义在凸集D Rn上的函数,则 f(x)是凸函数的充要条件是其上图epi(f)为凸 集,其中epi(f)={(x,y)|x∈ D,y ∈ R,y≥f(x)}. 证明:作业
14
凸函数的性质
(i)设f(x)是凸集D Rn上的凸函数,实数k≥0,则 kf(x)也是D上的凸函数.
(ii)设f1(x), f2(x)是凸集D Rn上的凸函数,实数
m 0,则f1(x)+m f2(x)也是D上的凸函数. (iii)设f(x)是凸集D Rn上的凸函数,b为实数,
则水平集S(f,b)={x|x∈D,f(x)≤b }是凸集.
不等式取等号,必须||y||=||z||=a,且( y,z ) =||y||||z||, 容易证明y=z=x,根据定义可知,x为极点.
9
凸函数
定义1.7.4 设函数f (x)定义在凸集D Rn上,若
对任意的x,y ∈ D,及任意的a ∈ [0,1]都有 f (a x+(1-a)y) ≤ a f(x)+(1-a) f (y)
28
例:证明集合 S {X | AX b} 是凸集。其中,A 为 mn矩阵,b为m维向量。
证明:任取 X 1, X 2 S
A,X 1 则 b, AX 2 b
A[a X 1 + (1-a )X 2] a AX 1 + (1-a )AX 2 ab + (1-a )b b
所以,a X 1 + (1-a ) X 2 S
13
对于一元凸函数f(x),可以发现,位于函数曲线 上方的图形是凸集.事实上这一结论对于多元 函数也是成立的,而且是充要条件,即有下面的 定理.
定理:设f(x)是定义在凸集D Rn上的函数,则 f(x)是凸函数的充要条件是其上图epi(f)为凸 集,其中epi(f)={(x,y)|x∈ D,y ∈ R,y≥f(x)}. 证明:作业
14
凸函数的性质
(i)设f(x)是凸集D Rn上的凸函数,实数k≥0,则 kf(x)也是D上的凸函数.
(ii)设f1(x), f2(x)是凸集D Rn上的凸函数,实数
m 0,则f1(x)+m f2(x)也是D上的凸函数. (iii)设f(x)是凸集D Rn上的凸函数,b为实数,
则水平集S(f,b)={x|x∈D,f(x)≤b }是凸集.
不等式取等号,必须||y||=||z||=a,且( y,z ) =||y||||z||, 容易证明y=z=x,根据定义可知,x为极点.
9
凸函数
定义1.7.4 设函数f (x)定义在凸集D Rn上,若
对任意的x,y ∈ D,及任意的a ∈ [0,1]都有 f (a x+(1-a)y) ≤ a f(x)+(1-a) f (y)
28
例:证明集合 S {X | AX b} 是凸集。其中,A 为 mn矩阵,b为m维向量。
证明:任取 X 1, X 2 S
A,X 1 则 b, AX 2 b
A[a X 1 + (1-a )X 2] a AX 1 + (1-a )AX 2 ab + (1-a )b b
所以,a X 1 + (1-a ) X 2 S
最优化 PPT课件

• 另外也可用学术味更浓的名称:“运筹 学”。由于最优化问题背景十分广泛,涉 及的知识不尽相同,学科分枝很多,因此 这个学科名下到底包含哪些分枝,其说法 也不一致。
• 比较公认的是:“规划论”(包括线性和
非线性规划、整数规划、动态规划、多目
标规划和随机规划等),“组合最优化”,
“对策论”及“最优控制”等等。
j
1, 2,L
,n
(5)
14
nn
min
cij xij
i 1 j 1
n
xij 1, i 1, 2,L
,n
s.t.
j 1 n
(5)
xij 1, j 1, 2,L , n
i1
xij
0
或 1 ,i,
j
1, 2,L
,n
(5)的可行解既可以用一个矩阵(称为解矩阵)表示,其每行每列均有且只
mn
min
cij xij
i 1 j 1
n
xij ai ,
i 1, , m
j 1
s.t.
m xij bj ,
j 1,2, , n
i 1
xij
0
11
对产销平衡的运输问题,由于有以下关系式存在:
n
bj
j1
m
i1
n xij
j1
n m
j1 i1
xij
费的总时间最少?
引入变量 xij ,若分配 i 干 j 工作,则取 xij 1,否则取 xij 0 。上
述指派问题的数学模型为
nn
min
cij xij
i 1 j 1
n
xij 1,i 1, 2,L
,n
j1
最优化方法全部课件

f x0
据此有
ⅰ) 等号成立当且仅当 p 与f x0 同方向或与 f x0
同方向。且当
p与
f x0
同方向时,f x0
p
取到最大值
f x0 。当 p 与 f x0 同方向时,f x0 取到最小值 p
f x0
第1章 预备知识
1.1 经典极值问题 1. 例子, 2. 数学模型 第一,无约束极值问题
min f x1, x2, , xn 或 max f x1, x2, , xn
解法:解方程组 第二,仅含等式约束的极值问题
min f x1, x2, , xn s.t. hi x1, x2, , xn 0, i 1, 2, ,l(l n)
p
思考:f x 与
f x f x f x
,
,,
的异同。
p
x1 x2
xn
根据极限理论,易见
若
f x0
p
0,则p方向是 f
x
在点
x0 处的上升方向;
若 f x0 0,则 p方向是 f x在点 p
x0
处的下降方向。
因此,方向导数的正负决定了函数值的升降。
例1.8 P19
几个常用函数的梯度公式
(1)若 f x C ,则 f x 0
(2) bT x b ;
(3) xTQx 2Qx ;
(4) xT x 2x .
,即 C 0 ;
2. Hesse矩阵
问:函数 f x 关于变量 x 的二阶导数又是什么?
1.5 梯度和Hesse矩阵
本段讨论都基于对函数 f x 可微的假定。
最优化方法课件 (1)

的研究,把几何、算术、天文、音乐称为“四艺”,在其中追求 宇宙的和谐规律性。 – 17世纪出现了笛卡尔、牛顿、莱布尼兹等数学家,奠定了微积分 的基础,其研究的对象包括行星运动、流体运动、机械运动、植 物生长等均属于数学建模的范畴; – 19世纪后期,数学成为了研究数与形、运动与变化的学问; – 可以说,数学是模式的科学,其目的是要揭示人们从自然界和数 学本身的抽象世界中所观察到的结构和对称性。
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
10
2 数学建摸的基本概念与分类
1. 数学模型与数学建模 2. 数学模型的分类 3. 数学模型的应用领域 4. 数学建模举例 5. 数学建模的过程
11
数学建模与数学模型
• 模型概念
– 把对象实体通过适当的过滤,用适当的表现规则描绘出的简 洁的模仿品.通过这个模仿品,人们可以了解到所研究实体的 本质,而且在形式上便于人们对实体进行分析和处理。
3
Introduction to Mathematic Modeling and Optimization
4
数学家名人录
5
Introduction: Concept, History, Progress and Class of Mathematic Modeling and Optimization
6
Contents
1. 引言:数学建模与最优化的背景
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
10
2 数学建摸的基本概念与分类
1. 数学模型与数学建模 2. 数学模型的分类 3. 数学模型的应用领域 4. 数学建模举例 5. 数学建模的过程
11
数学建模与数学模型
• 模型概念
– 把对象实体通过适当的过滤,用适当的表现规则描绘出的简 洁的模仿品.通过这个模仿品,人们可以了解到所研究实体的 本质,而且在形式上便于人们对实体进行分析和处理。
3
Introduction to Mathematic Modeling and Optimization
4
数学家名人录
5
Introduction: Concept, History, Progress and Class of Mathematic Modeling and Optimization
6
Contents
1. 引言:数学建模与最优化的背景
最优化计算方法PPT课件

0.91
0.91
3 (x 5)2 ( y 3)2 18 (x 1)2 ( y 1)2
0.91
0.91
8 (x 3)2 ( y 1)2 6 (x 5)2 ( y 1)2 ] / 84
▪ 问题为在区域0=<x=<6, 0=<y=<6上求z=f(x,y)的 最小值。
•15
绘制目标函数图形
xnew=a+(b-a)*rand(1); ynew=c+(d-c)*rand(1); znew=subs(z,[x,y],[xnew,ynew]); if znew<zmin
xmin=xnew; ymin=ynew; zmin=znew; fprintf('%4.0f %1.6f %1.6f %1.6f\n', n, xmin, ymin, zmin); end end
•16
16/5+...+17/140 (x2-10 x+26+y2-2 y)91/200
20
15
10
5
5 0
5 0
-5
-5
y
x
•17
绘制等值线图
ezcontourf(z,[0 6 0 6])
colorbar, grid on
16/5+...+17/140 (x2-10 x+26+y2-2 y)91/200 6
据的统计分析给出:对离救火站r英里打来
的求救电话,需要的响应时间估计
为
。下图给出了从消3.防21管.7r0员.91 处得到
的从城区不同区域打来的求救电话频率的
估计数据。求新的消防站的最佳位置。
•13
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p 0
p
n 维向量 l ,
那么称函数
f x 在点
x 处可微。 0
若令
f x0 p f x0 l T p
p
便得到(1.9)的等价形式
f x0 p f x0 l T p o p
. (1.10)
2.梯度
定理1.1 若
f : Rn R1 在点
x 处可微,则 0
f x
在该点关于各个变量的一阶偏导数存在,并且
①有不同函数值的等值面互不相交(因目标函数是单值函数的缘故); ②等值面不会在区域的内部中断,除了极值点所在的等值面以外。这是由于目标函数是连续函数的缘故;
⑶等值面稠密的地方,目标函数值变化得比较快;等值
面稀疏的地方,目标函数值变化得比较慢;
⑷在极值点附近,等值面(等值线)一般近似地呈现为同心椭球面族(椭圆线族)。
s x 0
2. 最优化问题的分类
试验问题:用于检验、比较最优化方法优劣的一些最优化问题。
3. 术语 目标函数
f x 等式约束
容许解(点)
容许集
h x 0 不等式约束
s x 0
D x h x 0, s x 0
求解问题(3)是指:在容许集
D 中找一点
目标函数
f x 在该点取极小值,即对于容许集中的任
其实,
a,b aTb a1, a2,
,
an
b2
。
bn
向量也常用希腊字母
, , , ,, 等表示。
向量内积的性质:
ⅰ) , ,(对称性);
ⅱ) , , , k, k , (线性性);
ⅲ) , 0 ,当且仅当
0 时, , 0(正定性);
向量的长
,
单位向量 向量的夹角 ,
向量的正交 1.可微
1
, arccos ,
0 ,
, , 0 (正交性)
2
定义1.7 设 对于可任意小的
f : D Rn R1, x0 D .如果存在
n 维非零向量
p ,总有
lim f x0 p f x0 l T p 0
min f x1, x2, , xn min f x (1)
以向量为变量的实值函数 定义向量间的序关系(定义1.1):
等于=,小于
,严格小于
ቤተ መጻሕፍቲ ባይዱ
。由此
min f x1, x2 , , xn s.t. hi x1, x2 , , xn 0,
min f x s.t. h x 0
意一点
x ,总有
f x* f x
最优点(极小点)
x *最优值
f x* 最优解
x *,使得
x*, f x*
局部
严格极小点 非严格极小点
全局
严格极小点 非严格极小点
全局极小点一定是局部极小点。
到目前为止,大多数最优化算法求到的都是局部极小点。为了求得全局极小点,一种解决办法是,先求出所有 的局部极小点,然后再从中找出全局极小点。
图解法的步骤:
①令 f x, y x 22 y 12 c ,显然
c0 ;
c 0,1, 4,9, ②取
并画出相应的曲线(称之为等值线).
③确定极值点位置,并用以往所学方法求之。
易知本题的极小值点
x* 2, 1T。
再复杂点的情形见P13上的例1.7。
虽然三维及以上的问题不便于在平面上画图,图解法失效,但仍有相应的等值面的概念,且等值面具有以下 性质:
第1章
1.1 经典极值问题 1. 例子, 2. 数学模型
预备知识
第一,无约束极值问题
min f x1, x2, , xn 或 max f x1, x2, , xn
解法:解方程组
第二,仅含等式约束的极值问题
min f x1, x2, , xn s.t. hi x1, x2, , xn 0, i 1, 2, ,l(l n)
f x f x
f
x
T
l
x1
,
x2
,
,
xn
。
定义1.8 以函数
n f x 的
个偏导数为分量的向量
f x f x
x1
,
x2
,
f x 。
f x T
,
xn
称为
1.5 梯度和Hesse矩阵
本段讨论都基于对函数
f x 可微的假定。
以下及今后的讨论中还经常要用到以下一些向量的知识。
向量的内积 设
a a1, a2, , an T ,b b1,b2, ,bn T ,
则 a1b1 a2b2 anbn 称为向量
a b 与
的内积,
记作 a, b 。
b1
(2)
i 1, 2, ,l(l n)
以向量为变量的实向量值函数最优化问题的一般形式
min f x1, x2, s.t. hi x1, x2,
s j x1, x2,
, xn , xn 0, , xn 0,
i 1, 2, j 1, 2,
,l(l n)
,m
(3)
min f x s.t. h x 0
最优化方法
(最优化课件研制组)
主讲:张 京
退出
开始
最优化方法
为了使系统达到最优的目标所提出的各种求解方法称为最优化方法。最优化方法是在第二次世界大战前后 ,在军事领域中对导弹、雷达控制的研究中逐渐发展起来的。
最优化方法解决问题一般步骤: (1)提出需要进行最优化的问题,开始收集有关资料和数据; (2)建立求解最优化问题的有关数学模型,确定变量,列出目标函数和有关约束条件; (3)分析模型,选择合适的最优化方法; (4)求解方程。一般通过编制程序在电子计算机上求得最优解; (5)最优解的验证和实施。 随着系统科学的发展和各个领域的需求,最优化方法不断地应用于经济、自然、军事和社会研究的各个领域 。
4. 极大值问题与极小值问题的关系
max f x
min f x
s.t. h x 0 s.t. h x 0
s x 0
s x 0
x* x*
f f x*
1.4 二维问题图解法
二维极值问题有时可以用图解的方式进行求解,有 明显的几何解释。
例 求解
min f x, y x 22 y 12
或 max f x1, x2 , s.t. hi x1, x2,
解法:Lagrange乘子法
, xn , xn 0,
i 1, 2,
,l(l n)
1.2 实例 数据拟合问题 原料切割问题 运输问题 营养配餐问题 分配问题
1.3 基本概念 1. 最优化问题的向量表示法 设
x x1, x2, , xn T 则