高中数学复习典型题专题训练20---导数的概念与几何意义
高中数学专题练习《导数的概念及其几何意义》含详细解析

5.1.2 导数的概念及其几何意义基础过关练题组一 导数的定义及其应用1.函数y=f(x)的自变量x 由x 0变化到x 0+Δx 时,函数值的改变量Δy 为( )A.f(x 0+Δx)B.f(x 0)+ΔxC.f(x 0)·ΔxD.f(x 0+Δx)-f(x 0)2.函数f(x)在x=x 0处的导数可表示为( )A.f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)ΔxB.f'(x 0)=lim Δx→0[f(x 0+Δx)-f(x 0)]C.f'(x 0)=f(x 0+Δx)-f(x 0)D.f'(x 0)=f (x 0+Δx )-f (x 0)Δx3.已知函数f(x)=ax+4,若f'(1)=2,则a= .4.如图是函数y=f(x)的图象.(1)函数f(x)在区间[-1,1]上的平均变化率为 ; (2)函数f(x)在区间[0,2]上的平均变化率为 . 5.求函数y=x 2+1在x=0处的导数.题组二 导数的几何意义及其应用6.函数y=f(x)在x=x0处的导数f'(x0)的几何意义是( )A.在点(x0,f(x0))处与y=f(x)的图象只有一个交点的直线的斜率B.过点(x0,f(x0))的切线的斜率C.点(x0,f(x0))与点(0,0)的连线的斜率D.函数y=f(x)的图象在点(x0,f(x0))处的切线的斜率7.某司机看见前方50m处有行人横穿马路,这时司机开始紧急刹车,在刹车的过程中,汽车的速度v是关于刹车时间t的函数,其图象可能是( )8.已知函数f(x)在R上有导函数,且f(x)的图象如图所示,则下列不等式正确的是( )A.f'(a)<f'(b)<f'(c)B.f'(b)<f'(c)<f'(a)C.f'(a)<f'(c)<f'(b)D.f'(c)<f'(a)<f'(b)9.如图,函数y=f(x)的图象在P点处的切线方程是y=-x+8,若点P的横坐标是5,则f(5)+f'(5)=( )B.1C.2D.0A.12题组三 求曲线的切线方程10.若曲线f(x)=x2+ax+b在点(1,1)处的切线方程为3x-y-2=0,则( )A.a=-1,b=1B.a=1,b=-1C.a=-2,b=1D.a=2,b=-111.函数f(x)=x3+x-2的图象在点P处的切线平行于直线y=4x-1,则P点的坐标为( )A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)或(-1,-4)12.若点A(2,1)在曲线y=f(x)上,且f'(2)=-2,则曲线y=f(x)在点A处的切线方程是 .13.(2020广东实验中学高二上期末)与直线2x-y+4=0平行且与抛物线y=x2相切的直线方程是 .14.试求过点M(1,1)且与曲线y=x3+1相切的直线方程.能力提升练题组一 导数的定义及其应用1.(2020浙江宁波中学高二下期中测试,)甲、乙两厂污水的排放量W与时间t的关系如图所示,则治污效果较好的是( )A.甲厂B.乙厂C.两厂一样D.不确定2.(2020河南新乡高二上期末,)若f'(2)=3,则lim Δx→0f (2+2Δx )-f (2)Δx= . 3.()服用某种药物后,人体血液中药物的质量浓度f(x)(单位:μg/mL)与时间t(单位:min)的函数关系式是y=f(t),假设函数y=f(t)在t=10和t=100处的导数分别为f'(10)=1.5和f'(100)=-0.6,试解释它们的实际意义.题组二 导数的几何意义及其应用4.(2020黑龙江佳木斯一中高二上期末,)函数f(x)的图象如图所示,则下列数值排序正确的是( )A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(3)<f(3)-f(2)<f'(2)C.0<f'(3)<f'(2)<f(3)-f(2)D.0<f(3)-f(2)<f'(2)<f'(3)5.()已知函数f(x)和g(x)在区间[a,b]上的图象如图所示,则下列说法正确的是( )A.f(x)在a到b之间的平均变化率大于g(x)在a到b之间的平均变化率B.f(x)在a到b之间的平均变化率小于g(x)在a到b之间的平均变化率C.对于任意x0∈(a,b),函数f(x)在x=x0处的瞬时变化率总大于函数g(x)在x=x0处的瞬时变化率D.存在x0∈(a,b),使得函数f(x)在x=x0处的瞬时变化率小于函数g(x)在x=x0处的瞬时变化率6.(多选)()已知函数f(x)的定义域为R,其导函数f'(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是( )A.(x1-x2)[f(x1)-f(x2)]<0B.(x1-x2)[f(x1)-f(x2)]>0>f(x1)+f(x2)2<f(x1)+f(x2)2题组三 求曲线的切线方程7.(2020浙江金华一中高二下期中,)已知f(x)=x2+2x+3,P为曲线C:y=f(x)上的点,且曲线C在点P处的切线的倾斜角的取值范围为,则点P的横坐标的取值范围为( )A.-∞,-B.[-1,0]C.[0,1]D.-1,+∞28.(2020浙江丽水高二下期末,)已知过点P(-1,1)的直线m交x轴于点A,若抛物线y=x2上有一点B,使得PA⊥PB,且AB是抛物线y=x2的切线,则直线m的方程为 .,过9.(2020福建厦门二中高二上期中,)已知曲线y=f(x)=x2,y=g(x)=1x两条曲线的交点作两条曲线的切线,求两切线与x轴围成的三角形的面积.(请用导数的定义求切线的斜率,否则只得结论分)答案全解全析基础过关练1.D 分别写出x=x 0和x=x 0+Δx 时对应的函数值f(x 0)和f(x 0+Δx),两函数值相减就得到了函数值的改变量,所以Δy=f(x 0+Δx)-f(x 0).2.A 由导数的定义知A 正确.3.答案 2解析 由题意得,Δy=f(1+Δx)-f(1)=a(1+Δx)+4-a-4=aΔx,∴lim Δx→0ΔyΔx =a,∴f'(1)=a=2.4.答案 (1)12 (2)34解析 (1)函数f(x)在区间[-1,1]上的平均变化率为f (1)-f (-1)1―(―1)=2―12=12.(2)由函数f(x)的图象知,,-1≤x ≤1,<x ≤3,所以函数f(x)在区间[0,2]上的平均变化率为f (2)-f (0)2―0=3―322=34.5.解析 Δy=(0+Δx )2+1-0+1=(Δx )2+1―1(Δx )2+1+1=(Δx )2(Δx )2+1+1,∴ΔyΔx =Δx (Δx )2+1+1,∴y'x=0=lim Δx→0ΔyΔx =lim Δx→0Δx (Δx )2+1+1=0.6.D f'(x 0)的几何意义是函数y=f(x)的图象在点(x 0,f(x 0))处的切线的斜率.7.A 在刹车过程中,汽车速度呈下降趋势,排除选项C,D;由于是紧急刹车,所以汽车开始时速度下降非常快,图象较陡,排除选项B,故选A.8.A 由题意可知,f'(a),f'(b),f'(c)分别是函数f(x)在x=a 、x=b 和x=c 处切线的斜率,则有f'(a)<0<f'(b)<f'(c),故选A.9.C ∵函数y=f(x)的图象在x=5处的切线方程是y=-x+8,∴f'(5)=-1,又f(5)=-5+8=3,∴f(5)+f'(5)=3-1=2.故选C.10.B 由题意得,f'(1)=lim Δx→0ΔyΔx=lim Δx→0(1+Δx )2+a(1+Δx )+b -1-a -bΔx =lim Δx→0(Δx )2+2Δx +aΔxΔx =2+a.∵曲线f(x)=x 2+ax+b 在点(1,1)处的切线方程为3x-y-2=0,∴2+a=3,解得a=1.又∵点(1,1)在曲线y=x 2+ax+b 上,∴1+a+b=1,解得b=-1,∴a=1,b=-1.故选B.11.C f'(x)=lim Δx→0ΔyΔx=lim Δx→0(x +Δx )3+(x +Δx )-2-x 3-x +2Δx=3x 2+1.设P(x 0,y 0),则f'(x 0)=3x 20+1=4,所以x 0=±1,当x 0=1时,f(x 0)=0,当x 0=-1时,f(x 0)=-4,因此P 点的坐标为(1,0)或(-1,-4).12.答案 2x+y-5=0解析 由题意知,切线的斜率k=-2.∴在点A(2,1)处的切线方程为y-1=-2(x-2),即2x+y-5=0.13.答案 2x-y-1=0解析 设切点坐标为(x 0,y 0),y=f(x)=x 2,则由题意可得,切线斜率f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)Δx=2x 0=2,所以x 0=1,则y 0=1,所以切点坐标为(1,1),故所求的直线方程为y-1=2(x-1),即2x-y-1=0.14.解析 Δy Δx =(x +Δx )3+1―x 3-1Δx =3x (Δx )2+3x 2Δx +(Δx )3Δx=3xΔx+3x 2+(Δx)2,则lim Δx→0ΔyΔx =3x 2,因此y'=3x 2.设过点M(1,1)的直线与曲线y=x 3+1相切于点P(x 0,x 30+1),根据导数的几何意义知曲线在点P 处的切线的斜率为k=3x 20①,过点M 和点P 的切线的斜率k=x 30+1―1x 0-1②,由①-②得3x 20=x 30x 0-1,解得x 0=0或x 0=32,所以k=0或k=274,因此过点M(1,1)且与曲线y=x 3+1相切的直线有两条,方程分别为y-1=274(x-1)和y=1,即27x-4y-23=0和y=1.能力提升练1.B 在t 0处,虽然有W 甲(t 0)=W 乙(t 0),但W 甲(t 0-Δt)<W 乙(t 0-Δt),所以在相同时间Δt 内,甲厂比乙厂的平均治污率小,所以乙厂治污效果较好.2.答案 6解析 limΔx→0f (2+2Δx )-f (2)Δx=2lim Δx→0f (2+2Δx )-f (2)2Δx =2f'(2)=6.3.解析 f'(10)=1.5表示服药后10 min 时,血液中药物的质量浓度上升的速度为1.5 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将上升1.5 μg/mL. f'(100)=-0.6表示服药后100 min 时,血液中药物的质量浓度下降的速度为0.6 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将下降0.6 μg/mL.4.B 如图所示, f'(2)是函数f(x)的图象在x=2(即点A)处切线的斜率k 1, f'(3)是函数f(x)的图象在x=3(即点B)处切线的斜率k 2,f (3)-f (2)3―2=f(3)-f(2)=k AB 是割线AB 的斜率.由图象知0<k 2<k AB <k 1,即0<f'(3)<f(3)-f(2)<f'(2).故选B.5.D ∵f(x)在a 到b 之间的平均变化率是f (b )-f (a )b -a,g(x)在a 到b 之间的平均变化率是g (b )-g (a )b -a ,f(b)=g(b),f(a)=g(a),∴f (b )-f (a )b -a=g (b )-g (a )b -a,∴A 、B 错误;易知函数f(x)在x=x 0处的瞬时变化率是函数f(x)在x=x 0处的导数,即函数f(x)在该点处的切线的斜率,同理函数g(x)在x=x 0处的瞬时变化率是函数g(x)在该点处的导数,即函数g(x)在该点处的切线的斜率,由题中图象知C 错误,D 正确.故选D.6.AD 由题中图象可知,导函数f'(x)的图象在x 轴下方,即f'(x)<0,且其绝对值越来越小,因此过函数f(x)图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得f(x)的大致图象如图所示.A 选项表示x 1-x 2与f(x 1)-f(x 2)异号,即f(x)图象的割线斜率f (x 1)-f(x 2)x 1-x 2为负,故A 正确;B 选项表示x 1-x 2与f(x 1)-f(x 2)同号,即f(x) 图象的割线斜率f (x 1)-f(x 2)x 1-x 2为正,故B 不正确表示x 1+x 22对应的函数值,即图中点B 的纵坐标,f (x 1)+f(x 2)2表示当x=x 1和x=x 2时所对应的函数值的平均值,即图中点A 的纵坐标,显然有<f (x 1)+f(x 2)2,故C 不正确,D 正确.故选AD.7.D 设点P 的横坐标为x 0,则点P 处的切线倾斜角α与x 0的关系为tan α=f'(x 0)=lim Δx→0f (x 0+Δx )-f (x 0)Δx =2x 0+2.∵α,∴tan α∈[1,+∞),∴2x 0+2≥1,即x 0≥-12,∴点P 的横坐标的取值范围为-12,+∞.8.答案 x-y+2=0或x+3y-2=0解析 令y=f(x)=x 2,设B(t,t 2),则k AB =lim Δx→0f (t +Δx )-f (t )Δx =2t,则直线AB 的方程为y=2tx-t 2.当t=0时,符合题意,此时A(-2,0),∴直线m 的方程为x-y+2=0.当t ≠0时,0,PA=+1,―1,PB =(t+1,t 2-1),∵PA ⊥PB,∴PA ·PB =0,+1(t+1)-(t 2-1)=0,解得t=4或t=-1(B,P重合,舍去),此时A(2,0),∴直线m 的方程为x+3y-2=0.综上,直线m 的方程为x-y+2=0或x+3y-2=0.9.解析 由y =x 2,y =1x,得x =1,y =1,故两条曲线的交点坐标为(1,1).两条曲线切线的斜率分别为f'(1)=lim Δx→0f (Δx +1)―f (1)Δx =lim Δx→0(Δx +1)2-12Δx =lim Δx→0(Δx+2)=2,g'(1)=lim Δx→0g (Δx +1)―g (1)Δx =lim Δx→01Δx +1-11Δx=lim Δx→0-所以两条切线的方程分别为y-1=2(x-1),y-1=-(x-1),即y=2x-1与y=-x+2,两条切线与x,0,(2,0),所以两切线与x轴围成的三角形的面积为12×1×|2―12|=34.。
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.若曲线在点处的切线方程是,则.【答案】2【解析】,又在点处的切线方程是,.【考点】三角函数化简求值.2.函数在处的切线方程是()A.B.C.D.【答案】A【解析】,因此切线方程为,即.【考点】(1)导数的运算法则;(2)导数的几何意义.3.若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”,下列方程:①x2﹣y2=1②x2﹣|x﹣1|﹣y=0③xcosx﹣y=0④|x|﹣+1=0其中所对应的曲线中存在“自公切线”的有()A.①②B.②③C.①④D.③④【答案】B【解析】①x2﹣y2=1是一个等轴双曲线,没有自公切线;②x2﹣|x﹣1|﹣y="0" ,由两圆相交,可知公切线,满足题意,故有自公切线;③xcosx﹣y=0的图象过(2π,2π ),(4π,4π),图象在这两点的切线都是y=x,故此函数有自公切线;④|x|﹣+1=0,其表示的图形为图中实线部分,不满足要求,故不存在.故选:B【考点】利用导数研究曲线上某点切线方程.4.抛物线在点处的切线的倾斜角是( )A.30B.45C.60D.90【答案】B【解析】设抛物线在点处的切线的倾斜角为,因为,由导数几何意义得:,故选B.【考点】导数几何意义.5.已知函数,若曲线存在与直线平行的切线,则实数的取值范围是()A.B.C.D.【答案】A【解析】对函数求导可得,存在与直线平行的切线,即有实数解,则,,则,得.故选A.【考点】导数的几何意义.6.函数是定义在R上的可导函数,则下列说法不正确的是()A.若函数在时取得极值,则B.若,则函数在处取得极值C.若在定义域内恒有,则是常数函数D.函数在处的导数是一个常数【答案】B.【解析】对于B,可以构造函数,则,而并不是的极值点,而A,C,D均正确,∴选B.【考点】导数的性质.7.函数的图像在点)处的切线与轴的交点的横坐标为()若,则= 。
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.2.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.3.设,则曲线在处的切线的斜率为()A.B.C.D.【答案】B【解析】因为,根据导数的几何意义可知,曲线在处的切线的斜率为,故选B.【考点】导数的几何意义.4.设曲线在点(3,2)处的切线与直线垂直,则的值是A.2B.C.D.【答案】B【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:B.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.5.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.6.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是________.【答案】【解析】与已知直线垂直的直线的斜率,,解得,代入曲线方程所以切线方程为,整理得:【考点】1.导数的几何意义;2.直线的垂直.7.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义8.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.9.在曲线处的切线方程为。
2023高考数学二轮复习专项训练《导数的概念和几何意义》(含答案)

2023高考数学二轮复习专项训练《导数的概念和几何意义》一、单选题(本大题共12小题,共60分)1.(5分)直线y=x与曲线y=e x+m(m∈R,e为自然对数的底数)相切,则m=()A. 1B. 2C. −1D. −22.(5分)与曲线y=x3−5x相切且过原点的直线的斜率为()A. 2B. −5C. −1D. −23.(5分)曲线y=ax2在点P(1,a)处的切线平行于直线y=2x+1,则a=()A. 1B. 12C. −12D. −14.(5分)在曲线y=x3+x-2的切线中,与直线4x-y=1平行的切线方程是( )A. 4x-y=0B. 4x-y-4=0C. 2x-y-2=0D. 4x-y=0或4x-y-4=05.(5分)若函数f(x)=1x−3ax的图象在x=1处的切线与直线x+4y=0垂直,则a= ()A. −1B. 1C. −712D. −536.(5分)函数f(x)=−x2+3ln x的图象在x=1处的切线倾斜角为α,则cos2α=()A. 13B. 12C. 23D. 347.(5分)已知函数y=3x在x=2处的自变量的增量为Δx=0.1,则Δy为( )A. -0.3B. 0.6C. -0.6D. 0.38.(5分)曲线在点(1,2)处的切线方程为A. B. C. D.9.(5分)曲线y=12x2−2x在点(1,−32)处的切线的倾斜角为()A. −135°B. 45°C. −45°D. 135°10.(5分)已知曲线C:x2−2x+y2+b=0,且曲线C上一点P(2,2)处的切线与直线ax−y+1=0垂直,则a=()A. 2B. 12C. −12D. −211.(5分)设f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0 ,0)处的切线方程为()A. y=xB. y=−xC. y=2xD. y=−2x12.(5分)物体运动方程为s=14t4−3,则t=5时的瞬时速率为()A. 5m/sB. 25m/sC. 125m/sD. 625m/s二、填空题(本大题共5小题,共25分)13.(5分)曲线y=x+lnx−1往点(1,0)处的切线方程为______.14.(5分)已知定义在R上的函数f(x)满足f′(x)>0,且f(f(x)−e x)=e+1,若f(x)⩾ax−a+1恒成立,则实数的取值范围是____________.15.(5分)如果质点A的位移s与时间t满足方程s=2t3,则在t=3时的瞬时速度为____.16.(5分)已知函数f(x)={1x,x∈(0,2]f(x−2),x∈(2,+∞),则f(x)在x=3处的切线方程为______.17.(5分)若函数f(x)=−x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于−1,则Δx的取值范围是____________.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=x2−2x−alnx+ax,a∈R.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设f(x)的极小值点为x0,且f(x0)<a−a24,求a的取值范围.19.(12分)已知函数f(x)=ln x−ax,其中a为非零常数.(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处的切线斜率为−1,求f(x)的极值.20.(12分)已知函数f(x)=−x2+x图像上两点A(2,f(2))、B(2+Δx,f(2+Δx)).(1)若割线AB的斜率不大于−1,求Δx的范围;(2)用导数的定义求函数f(x)=−x2+x在x=2处的导数f′(2),并求在点A处的切线方程.21.(12分)已知函数y=23x3−2x2+3,(1)求在点(1,53)处的切线方程,(2)求函数在[−1,3]的最值.22.(12分)已知函数f(x)=e x ln x−ae x(a∈R).(1)若f(x)在点(1,f(1))处的切线与直线y=−e x+1平行,求a的值;(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.23.(12分)已知函数f(x)=ae x,g(x)=ln(ax)+52,a>0.(Ⅰ)若y=f(x)的图象在x=1处的切线过点(3,3),求a的值并讨论ℎ(x)=xf(x)+m(x2+2x−1)(m∈R)在(0,+∞)上的单调增区间;(Ⅱ)定义:若直线l:y=kx+b与曲线C1:f1(x,y)=0、C2:f2(x,y)=0都相切,则我们称直线l为曲线C1、C2的公切线.若曲线y=f(x)与y=g(x)存在公切线,试求实数a的取值范围.四、多选题(本大题共5小题,共25分)24.(5分)已知函数f(x)=√x−ln x,若f(x)在x=x1和x=x2(x1≠x2)处切线平行,则()A.√x1√x2=12B. x1x2<128C. x1+x2<32D. x12+x22>51225.(5分)函数f(x)的导函数为f′(x),若已知f′(x)的图像如图,则下列说法不正确的是()A. f(x)存在极大值点B. f(x)在(0,+∞)单调递增C. f(x)一定有最小值D. 不等式f(x)<0一定有解26.(5分)关于函数f(x)=a ln x+2x,下列判断正确的是()A. 函数f(x)的图象在点x=1处的切线方程为(a−2)x−y−a+4=0B. x=2a是函数f(x)的一个极值点C. 当a=1时,f(x)⩾ln2+1D. 当a=−1时,不等式f(2x−1)−f(x)>0的解集为(12,1)27.(5分)已知函数f(x)=ax3+x2+axe x,则()A. 若曲线y=f(x)在(0,f(0))处的切线与x+5y=0相互垂直,则a=5B. 若a=0,则函数f(x)的单调递减区间为(−∞,0)∪(2,+∞)C. 若a=0,则函数f(x)有2个极值点D. 若关于x的不等式函数x2+1⩾f(x)在(0,+∞)上恒成立,则实数a的取值范围为(−∞,e-12]28.(5分)函数f(x)={e x−1,x⩽1,ln(x−1),x>1,若函数g(x)=f(x)−x+a只有一个零点,则a的值可以为()A. 2B. −2C. 0D. 1答案和解析1.【答案】C;【解析】解:设切点为(x,y),则x=y,∵y=e x+m,∴y′=e x+m∴e x+m=1,即x+m=0,又e x+m=x,∴e0=x,∴x=1,∴m=−1,故选:C.先求导函数,利用直线y=x与曲线y=e x+m相切,可知切线的斜率为1,即切点处的函数值为1,再利用切点处的函数值相等,即可求出a的值本题以直线与曲线相切为载体,考查了利用导数研究曲线上过某点切线方程的斜率,解答该题的关键是正确理解导数的几何意义.2.【答案】B;【解析】解:设切点坐标为P(x0,y0),由曲线y=f(x)=x3−5x,得f′(x)=3x2−5,所以过原点的切线斜率为k=f′(x0)=3x02−5,所以切线方程为y−y0=(3x02−5)(x−x0);又切线过原点O(0,0),所以−x03+5x0=−3x03+5x0,解得x0=0,所以y0=0,则P(0,0);所以与曲线y=x3−5x相切且过原点的直线的斜率为k=f′(0)=−5.故选:B.设切点为(x0,y0),求出切线l的斜率为f′(x0),写出切线l的方程,根据且线1过原点求出切点坐标和斜率.该题考查了导数的几何意义与应用问题,也考查了运算求解能力,是基础题.3.【答案】A;【解析】解:y=ax2的导数为y′=2ax,可得曲线在点P(1,a)处的切线斜率为k=2a,由切线平行于直线y=2x+1,可得k=2,即2a=2,解得a=1,故选:A.求得y=ax2的导数,可得切线的斜率,由两直线平行的条件可得a的方程,解方程可得a的值.该题考查导数的几何意义,考查两直线平行的条件,考查方程思想和运算能力,属于基础题.4.【答案】D;【解析】曲线y=x 3+x-2求导可得y′=3x 2+1 设切点为(a ,b)则3a 2+1=4,解得a=1或a=-1 切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x 3+x-2相切的 直线方程是:4x-y-4=0和4x-y=0 故选D 。
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.已知函数的导函数为,.求实数的取值范围。
【答案】或。
【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.2.曲线在横坐标为l的点处的切线为,则点P(3,2)到直线的距离为()A.B.C.D.【答案】A【解析】欲求点到直线的距离,需知点的坐标和直线的方程,由公式,计算可得.由于直线为已知曲线方程的切线,且已知切点,这样一般通过求导数得到切线的斜率,由点斜式得到直线方程.,,.【考点】(1)导数与切线的关系;(2)点到直线的距离.3.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()A.B.C.D.【答案】B【解析】由曲线在点处的切线方程为得:,从而可得:,所以曲线在点处切线的斜率为4;故选B.【考点】函数导数的几何意义.4.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.5.曲线在点处的切线斜率为()A.B.C.D.【答案】A【解析】由,得到,把x=0代入得:,则曲线在点A(0,1)处的切线斜率为1.故选A.【考点】1.直线的斜率;2.导数的几何意义.6.已知函数f(x)=x2-4,设曲线y=f(x)在点(xn ,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中x n为正实数.(1)用xn 表示xn+1;(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.【答案】(1);(2);(3)详见解析.【解析】(1)由题设条件知曲线y=f(x)在点处的切线方程是.由此可知.所以.(2)由,知,同理.故.由此入手能够导出.(3)由题设知,所以,由此可知.解:(1)由题可得.所以曲线在点处的切线方程是:.即.令,得.即.显然,∴.(2)由,知,’同理.----6’故.-----7’从而,即.所以,数列成等比数列.---8’故.即.----9’从而,所以.----10’(3)由(Ⅱ)知,∴∴ ---11’当时,显然.-------12’当时,-----13’∴.综上,.【考点】1.数列递推式;2.等比关系的确定;3.数列的求和;4.不等式的证明.7.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.8.已知曲线:(1)试求曲线在点处的切线方程;(2)试求与直线平行的曲线C的切线方程.【答案】(1);(2)或.【解析】(1)先求出的值,再求函数的导函数,求得的值即为点斜率,代入点斜式方程,再化为一般式方程即可;(2)设切点为,利用导数的几何意义和相互平行的直线的斜率相等,即可得所求切线的斜率,再求出切点的坐标,代入点斜式方程,再化为一般式方程即可.(1)∵,∴,求导数得:,∴切线的斜率为,∴所求切线方程为,即:.(2)设与直线平行的切线的切点为,则切线的斜率为.又∵所求切线与直线平行,∴,解得:,代入曲线方程得:切点为或,∴所求切线方程为:或,即:或.【考点】1、导数的计算;2、导数的几何意义.9.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义10.过点恰可以作曲线的两条切线,则的值为;【答案】0或1或9【解析】设切点,则有所以或.因为过点恰可以作曲线的两条切线,,所以方程有不等于零的两个等根或包含零的两个不等根.由得或,此时方程的根非零.当方程有零根时,,此时方程还有另一根【考点】导数求切线11.若曲线在点处的切线方程为,则曲线在点处切线的方程为.【答案】【解析】曲线在点处切线的方程为:.【考点】导数的几何性质.12.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.13.在曲线处的切线方程为。
高三数学导数的概念和几何意义试题答案及解析

高三数学导数的概念和几何意义试题答案及解析1.曲线f(x)=·e x-f(0)x+x2在点(1,f(1))处的切线方程为____________.【答案】y=ex-【解析】因为f′(x)=·e x-f(0)+x,故有即原函数表达式可化为f(x)=e x-x+x2,从而f(1)=e-,所以所求切线方程为y-=e(x-1),即y=ex-.2. [2014·辽宁模拟]曲线y=在点(1,-1)处的切线方程为()A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1【答案】D【解析】由题意得y=1+,所以y′=,所以所求曲线在点(1,-1)处的切线的斜率为-2,故由直线的点斜式方程得所求切线方程为y+1=-2(x-1),即y=-2x+1.3.已知函数的图象在点与点处的切线互相垂直,并交于点,则点的坐标可能是( )A.B.C.D.【答案】D【解析】由题,,,则过两点的切线斜率,,又切线互相垂直,所以,即.两条切线方程分别为,联立得,∵,∴,代入,解得,故选.【考点】导数求切线方程.4.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是( )A.B.C.D.【答案】B【解析】,即切线的斜率为,所以,因为,所以,即,所以的取值范围是,选B5.设函数的定义域是,其中常数.(1)若,求的过原点的切线方程.(2)当时,求最大实数,使不等式对恒成立.(3)证明当时,对任何,有.【答案】(1)切线方程为和.(2)的最大值是.(3)详见解析.【解析】(1)一般地,曲线在点处的切线方程为:.注意,此题是求过原点的切线,而不是求在原点处切线方程,而该曲线又过原点,故有原点为切点和原点不为切点两种情况.当原点不为切点时需把切点的坐标设出来.(2)令,则问题转化为对恒成立.注意到,所以如果在单调增,则必有对恒成立.下面就通过导数研究的单调性.(3)不等式可变形为:.为了证这个不等式,首先证;而证这个不等式可利用导数证明.故令,然后利用导数求在区间上范围即可.试题解析:(1).若切点为原点,由知切线方程为;若切点不是原点,设切点为,由于,故由切线过原点知,在内有唯一的根.又,故切线方程为.综上所述,所求切线有两条,方程分别为和.(2)令,则,,显然有,且的导函数为:.若,则,由知对恒成立,从而对恒有,即在单调增,从而对恒成立,从而在单调增,对恒成立.若,则,由知存在,使得对恒成立,即对恒成立,再由知存在,使得对恒成立,再由便知不能对恒成立.综上所述,所求的最大值是.(3)当时,令,则,故当时,恒有,即在单调递减,故,对恒成立.又,故,即对恒有:,在此不等式中依次取,得:,,,,,…………………………,将以上不等式相加得:,即.【考点】导数及其应用.6.已知函数(1)若,求曲线在处的切线方程;(2)求的单调区间;(3)设,若对任意,均存在,使得,求的取值范围.【答案】(1)(2)详见解析(3)【解析】(1)已知函数的解析式,把切点的横坐标带入函数即可求出切点的纵坐标,对求导得到函数的导函数,把带入导函数即可求的切线的斜率,利用点斜式即可得到切线的方程.(2)对函数进行求导和求定义域,导函数喊参数,把分为两种情况进行讨论,首先时,结合的定义域即可得到导函数在定义域内恒大于0,进而得到原函数在定义域内单调递增,当时,求解导函数大于0和小于0的解集,得到原函数的单调递增和单调递减区间.(3)该问题为存在性问题与恒成立问题的结合,即要求,而的最大值可以利用二次函数的图像得到函数在区间上的最值,函数的最大值可以利用第二问的单调性求的,当时,函数单调递增,无最大值,故不符合题意,当时,函数在处前的最大值,带入不等式即可求的的取值范围.试题解析:(1)由已知, 1分,所以斜率, 2分又切点,所以切线方程为),即故曲线在处切线的切线方程为。
高二数学导数的概念和几何意义试题答案及解析
高二数学导数的概念和几何意义试题答案及解析1.我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得,两边对x求导数,得于是,运用此方法可以求得函数在(1,1)处的切线方程是 .【答案】【解析】:仿照题目给定的方法,所以,所以,所以,即:函数在处的切线的斜率为1,故切线方程为:,即,故答案为:.【考点】归纳推理.2.曲线y=e2x在点(0,1)处的切线方程为().A.y=x+1B.y=﹣2x+1C.y=2x﹣1D.y=2x+1【答案】D.【解析】,,则切线斜率,切线方程为,即.【考点】导数的几何意义.3.设函数的图像在点处切线的斜率为,则函数的部分图像为()【答案】B【解析】 =xcosx,所以k=g(t)=tcost,是奇函数,图像关于原点对称,所以排除A,C,在t>0时,cost的值是先正后负的连续变换,故选B.【考点】导数,函数图像.4.已知函数的导函数为,.求实数的取值范围。
【答案】或。
【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.5.已知函数在上可导,且,则函数的解析式为()A.B.C.D.【答案】B【解析】由得,当时,有,进而得,所以,故选择B.【考点】导数的应用.6.曲线y=-在点M处的切线的斜率为()A.-B.C.-D.【答案】B【解析】因为==,所以曲线在M处的切线的斜率为=,故选B.考点:常见函数的导数,导数的运算法则,导数的几何意义7.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.8.抛物线在点处的切线的倾斜角是 ( )A.30B.45C.60D.90【答案】B.【解析】已知抛物线,对其进行求导,即,当时,,即切线的斜率为,从而问题解决.【考点】导数的几何意义;利用导数研究曲线上某点切线方程.9.已知抛物线,和抛物线相切且与直线平行的的直线方程为()A.B.C.D.【答案】D【解析】由题得,与直线平行,则斜率为2,可得切点为,所以直线方程为.【考点】导数的几何意义,直线方程.10.曲线在点处切线的斜率为()A.B.C.D.【答案】B【解析】,则在点(1,-)处切线的斜率为,所以倾斜角为45°.【考点】导数的几何意义.特殊角的三角函数值.11.函数在点处的切线的斜率为()A.B.C.D.【答案】B【解析】令,则,所以。
《导数的概念及其几何意义》典型例题
《导数的概念及其几何意义》典型例题深研1 导数的几何意义1.可导函数在0x x =处切线的斜率为此处函数的导数值.2.根据导数值的变化可确定原函数图象的变化情况. 考向1 由切线确定导数值例1(★)如图,函数()y f x =的图象在点P 处的切线方程是29y x =-+,点P 的横坐标是4,则(4)(4)f f +'=_______________.解析 ∵函数()f x 的图象在点P 处的切线为29y x =-+, ∴2(4)k f '=-=切.又 ∵点P 在切线29y x =-+上,∴(4)1f =,∴(4)(4) 1.f f +'=-① 答案 1-考向2 由切线特点确定函数图象②例2(★)已知函数()y f x =的图象如图所示,则其导函数()y f x '=的图象可能是___________.(填序号)解析 由()y f x =的图象及导数的几何意义可知,当x <0时,()f x '>0;当x =0时,()f x '=0;当x >0时,()f x '<0,故②符合. 答案 ② 方法技巧①1.由切线方程可确定函数()y f x =在0x 处的导数值,即()0f x k '=切. 2.切点为切线与曲线的公共点. 即时训练1.(1)(★★)已知函数()f x 在R 上可导,其部分图象如图所示,设(2)(1)21f f a -=-,则下列不等式正确的是( )A.(1)(2)f f a '<'<B.(1)(2)f a f '<<'C.(2)(1)f f a '<'<D.(1)(2)a f f <'<'解析 由题中图象可知,在区间(0,)+∞上,函数()f x 增长得越来越快,∴(1)f '(2)f <',∵(2)(1)21f f a -=-,∴通过作切线与割线可知(1)(2)f a f '<<',故选B.答案 B 方法技巧②导数的符号、曲线的升降、切线的斜率、切线的倾斜角之间的关系即时训练2.(★)()()()y f x y g x y h x ===,,的图象如图1所示:而图2是其对应导数的图象:则()y f x =的导数图象对应___________;()y g x =的导数图象对应___________;()y h x =的导数图象对应___________.解析 由导数的几何意义,知()f x 图象上任一点处的切线斜率均小于零且保持不变,故()y f x =的导数图象对应B ;()y g x =图象上任一点处的切线斜率均小于零,且在起始部分斜率值趋近负无穷,故()y g x =的导数图象对应C ;()y h x =图象上任一点处的切线斜率都大于零,且先小后大,故()y h x =的导数图象对应A. 答案 B ;C ;A深研2 求曲线的切线方程由于可导函数()f x 在0x x =处切线的斜率为0()f x ',从而可用点斜式确定切线方程.考向1 求过曲线上一点的切线方程 例3(★★)求曲线213y x x=+-在2x =处的切线方程. 解析 设()y f x =,则21()3f x x x=+-.2222(2)(2)11(2)32322114()224().2(2)14.2(2)y f x f x x x x x xx x x yx x x ∆=+∆-⎛⎫=+∆+--+- ⎪+∆⎝⎭=∆+∆+-+∆∆=∆+∆+∆∆∴=+∆-∆+∆-∵当x ∆无限趋近于0时,y x ∆∆无限趋近于115444-=, ∴曲线()y f x =在2x =处的切线斜率为154. 又2x =时,32y =,∴切点坐标为32,2⎛⎫ ⎪⎝⎭. ∴曲线在2x =处的切线方程为315(2)24y x -=-, 即154240x y --=.考向2 求过曲线外一点的切线方程例4(★★)求曲线2y x =过点(3,5)的切线方程.思路分析 先判断点(3,5)是否在曲线上,不在曲线上则需设切点坐标为(0x ,20x ),再利用(3,5)与(0x ,20x )连线的斜率等于0()f x '建立方程求0x ,从而确定切线斜率.解析 因为点(3,5)不在曲线上,所以设切点坐标为(0x ,20x ), 又()()()220000lim lim 22x x x x x f x x x x x∆→∆→+∆-'==+∆=∆,故切线斜率为02x ,则切线方程为()20002y x x x x -=-, 因为点(3,5)在切线上,所以()2000523x x x -=-,解得01x =或05x =,则切点坐标为(1,1)或(5,25),故切线方程为12(1)y x -=-或2510(5)y x -=-, 即210x y --=或10250x y --=. 主编点评求过某点的曲线的切线方程④时,需先设切点(0x ,0y ),再对()y f x =求导得出切线斜率()0f x ',从而得到含参的切线方程0y y -=()()00f x x x '-,最后代入已知点,从而求出切点坐标以及切线方程.即使已知点在曲线上,也不能按在某点处的切线方程求解,否则易漏解.⑤ 方法技巧③求曲线()y f x =在点()00,P x y 处的切线方程,其切线只有一条,点()00,P x y 在曲线()y f x =上,且是切点.切线方程为()()000y y f x x x -='-.如图1,在点()00,P x y 处的切线为1l ,如图2,在点()00,P x y 处的切线为(22l l 与曲线()y f x =有两个公共点不影响结果).即时训练3.(★★)已知3()21f x x x =-+,求曲线()y f x =在点(1,0)处的切线方程.解析 因为330()2()121()lim x x x x x x x f x x ∆→∆+-∆++-+-'=∆3220()3()32lim x x x x x x xx∆→∆+⋅∆+⋅∆-∆=∆ 220lim ()332x x x x x ∆→⎡⎤=∆+⋅∆+-⎣⎦ 232x =-,所以(1)321f '=-=, 所以切线的方程为1y x =-, 即10x y --=. 知识补充④求曲线()y f x =过点()00,P x y 的切线方程的步骤 第一步:设出切点坐标()()11,P x f x ';第二步:写出过()()11,P x f x '的切线方程()()()111y f x f x x x -='⋅-; 第三步:将点P 的坐标()00,x y 代入切线方程,求出1x ;第四步:将1x 的值代入方程()()11y f x f x -='()1x x ⋅-,由此即可得过点()00,P x y 的切线方程. 误区警示⑤此处点()00,P x y 可以在曲线()y f x =上,也可以不在曲线()y f x =上.如图1,过点()00,P x y (不在曲线()y f x =上)的切线12l l ,,如图2,过点(0P x ,0y )(在曲线()y f x =上)的切线34l l ,.即时训练4.(★★)求过点(-1,-2)且与曲线32y x x =-相切的直线方程.解析 33002()()2limlim x x y x x x x x x y x x∆→∆→∆+∆-+∆-+'==∆∆2220lim 233()23x x x x x x ∆→⎡⎤=--∆-∆=-⎣⎦. 设切点坐标为()3000,2x x x -,则切线方程为()320000223()y x x x x x -+=--.∵切线过点(1,2)--,∴()()32000022231x x x x --+=---,即320230x x +=,解得00x =或032x =-, ∴切点坐标为(0,0)或33,28⎛⎫- ⎪⎝⎭,当切点坐标为(0,0)时,切线斜率2k =,切线方程为20x y -=;当切点坐标为33,28⎛⎫- ⎪⎝⎭时,切线斜率23192324k ⎛⎫=-⨯-=- ⎪⎝⎭,切线方程为192(1)4y x +=-+,即194270x y ++=. 综上可知,过点(1,2)--且与曲线32y x x =-相切的直线方程为20x y -=或19x +4270y +=.考点3 导数几何意义的综合应用求解导数几何意义的综合应用问题的关键是对函数进行求导,利用题目所提供的直线的位置关系、斜率的范围等条件求解相关问题,此处常与函数、方程、不等式等知识相结合. 考向1 求切点坐标⑥例5(★★)在曲线2y x =上取一点,使得在该点处的切线; (1)平行于直线45y x =-; (2)垂直于直线2650x y -+=; (3)倾斜角为135︒.分别求出满足上述条件的点的坐标.思路分析 先求函数的导函数()f x ',再设切点()00,P x y ,由导数的几何意义知切点()00,P x y 处的切线的斜率为()0f x ',最后根据题意列方程,解关于0x 的方程即可求出0x ,又点()00,P x y 在曲线2y x =上,易得0y .解析 设()y f x =,则2200()()()()lim lim x x f x x f x x x x f x x x∆→∆→+∆-+∆-'==∆∆lim(2)2x x x x ∆→=+∆=.设()00,P x y 是满足条件的点.(1)因为点P 处的切线与直线45y x =-平行,所以024x =,解得0x 2=,所以04y =,即(2,4)P .(2)因为点P 处的切线与直线2650x y -+=垂直,且直线265x y -+0=的斜率为13, 所以01213x ⋅=-,解得032x =-,所以094y =,即39,24P ⎛⎫- ⎪⎝⎭. (3)因为点P 处的切线的倾斜角为135︒,所以切线的斜率为tan1351︒=-,即021x =-,解得012x =-,所以014y =,即11,24P ⎛⎫- ⎪⎝⎭.⑦知识补充⑥根据切线斜率求切点坐标的步骤 (1)设切点坐标为()00,x y ; (2)求导函数()f x '; (3)求切线的斜率()0f x ';(4)由斜率间的关系列出关于0x 的方程,解方程求0x ;(5)由点()00,x y 在曲线()f x 上,将()00,x y 代入解析式求0y ,即得切点坐标. 知识补充⑦求解本题注意方程思想的应用.切点坐标()00,x y 有两个变量,因此需建立两个方程求解. 即时训练5.(★)已知曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.解析 设点P 的坐标为()300,x x ,∵()()000limx f x x f x x∆→+∆-∆22300033()()lim x x x x x x x ∆→∆+∆+∆=∆ 22000lim 33()x x x x x ∆→⎡⎤=+∆+∆⎣⎦ 203x =,2033x =,解得01x =±,∴点P 的坐标是(1,1)或(1,1)--. 考向2 切线围成的三角形的面积问题例6(★★)已知直线1l 为曲线22y x x =+-在点(1,0)处的切线,2l 为该曲线的另一条切线,且12l l ⊥. (1)求直线2l 的方程;(2)求由直线1l 、2l 和x 轴所围成的三角形的面积.解析(1)因为()2200()()22lim lim x x x x x x x x y y x x∆→∆→+∆++∆--+-∆'==∆∆21x =+,所以12113x y ='=⨯+=,所以直线1l 的方程为3(1)y x =-,即330x y --=. 设直线2l 与曲线22y x x =+-切于点()2,2B b b b +-,则2l 的方程为2(21)2y b x b =+--.因为12l l ⊥,所以1213b +=-,所以23b =-,所以直线2l 的方程为12239y x =--,即39220x y ++=.(2)由(1)知,联立330,39220,x y x y --=⎧⎨++=⎩解得1,65.2x y ⎧=⎪⎪⎨⎪=-⎪⎩所以直线1l 和2l 的交点坐标为15,62⎛⎫- ⎪⎝⎭.又易知1l 、2l 与x 轴的交点的坐标分别为22(1,0),03⎛⎫- ⎪⎝⎭、,所以所求三角形的面积125512523212S =⨯⨯-=.主编点评本题求解时应抓住两切线斜率的关系及切线斜率与导数的关系,构建方程组求解. 方法技巧求切线围成的三角形的面积时,关键是准确求得切线方程,然后分析围成的三角形的特点,进而求其面积.6.(★★)求曲线1(0)y x x x =->上一点()00,P x y 处的切线分别与x 轴、y 轴交于点,A B O 、是坐标原点,若△OAB 的面积为13,则0x =_____________.解析 ∵1(0)y x x x=->, ∴011lim x x x x x x x y x∆→⎡⎤⎛⎫+∆--- ⎪⎢⎥+∆⎝⎭⎣⎦'=∆011()lim x x x x x x x x∆→⎡⎤⎛⎫+∆-+- ⎪⎢⎥+∆⎝⎭⎣⎦=∆ 0()lim x x x x x x x∆→∆∆++∆=∆ 01lim 1()x x x x ∆→⎡⎤=+⎢⎥+∆⎣⎦ 211x=+, ∴切线的斜率为2011x +,则切线的方程为()00200111y x x x x x ⎛⎫-+=+- ⎪⎝⎭, 令0x =得02y x =-,令0y =得02021x x x =+,∴△OAB 的面积020********x S x x =⨯⨯=+,解得0x =(负根舍去).答案考向3 根据切线求参数值例7(★★)设函数32()91(0)f x x ax x a =+--<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值.思路分析 先利用定义求导,结合二次函数求最值,最后结合切线斜率求a . 解析 ∵32()()()()9()1y f x x f x x x a x x x x ∆=+∆-=+∆++∆-+∆--()()3222391329(3)()()xax x x ax x x a x x +--=+-∆++∆+∆, ∴22329(3)()y x ax x a x x x∆=+-++∆+∆∆, ∴22220()lim 329399333x y a a a f x x ax x x ∆→∆⎛⎫'==+-=+---- ⎪∆⎝⎭. 由题意知()f x '的最小值是12-,∴29123a --=-,即29a =,∵0a <,∴3a =-.⑨ 主编点评本题得到()f x '的表达式是关于x 的二次函数,从而可利用二次函数求最值. 方法技巧⑨当题中涉及切线方程、切线的斜率(或倾斜角)、切点坐标等问题时,可利用导数的定义与几何意义迅速获解.遇到“切线的斜率最小、最大”问题时,通常只需求出导函数,再求其最值即可解决.即时训练⑦(★★)已知函数3()1f x x ax =++的图象在点(1,(1))f 处的切线过点(1,1)-,求a 的值.解析 函数3()1f x x ax =++的导函数为3320()()11()lim 3x x x a x x x ax f x x a x∆→⎡⎤+∆++∆+---⎣⎦'==+∆, ∴(1)3f a '=+,而(1)2f a =+,∴切线方程为2(3)(1)y a a x --=+-,∵切线方程过点(1,1)-,∴12(3)(11)a a --=+--,解得5a =-.。
高考数学专题《导数的概念、运算及导数的几何意义》习题含答案解析
专题4.1 导数的概念、运算及导数的几何意义1.(2021·浙江高三其他模拟)函数312x y +=在0x =处的导数是( )A .6ln 2B .2ln 2C .6D .2【答案】A 【解析】利用符合函数的求导法则()()()()()()f g x '''f g x g x =⋅,求出312x y +=的导函数为3131'223322x x y ln ln ++=⋅⋅=⋅,代入x =0,即可求出函数在x =0处的导数.【详解】312x y +=的导函数为3131'223322x x y ln ln ++=⋅⋅=⋅,故当x =0时,'62y ln =.故选:A2.(2021·黑龙江哈尔滨市·哈师大附中高三月考(文))曲线2cos sin y x x =+在(,2)π-处的切线方程为()A .20x y π-+-=B .20x y π--+=C .20x y π++-=D .20x y π+-+=【答案】D 【解析】先求得导函数,根据切点求得斜线的斜率,再由点斜式即可求得方程.【详解】'2sin cos y x x=-+当x π=时,2sin cos 1k ππ=-+=-所以在点(),2π-处的切线方程,由点斜式可得()21y x π+=-⨯- 化简可得20x y π+-+=故选:D练基础3.(2021·全国高三其他模拟(理))曲线12sin()2x y e x π-=-在点(1,1)-处的切线方程为( )A .0x y -=B .10ex y e --+=C .10ex y e ---=D .20x y --=【答案】D 【解析】根据切点和斜率求得切线方程.【详解】因为12sin()2x y ex π-=-,所以1cos()2x y e x ππ-'=-,当1x =时,1y '=,所以曲线12sin()2x y e x π-=-在点(1,1)-处的切线的斜率1k =,所以所求切线方程为11y x +=-,即20x y --=.故选:D4.(2021·山西高三三模(理))已知a R ∈,设函数()ln 1f x ax x =-+的图象在点(1,(1))f 处的切线为l ,则l 过定点( )A .(0,2)B .(1,0)C .(1,1)a +D .(,1)e 【答案】A 【解析】根据导数几何意义求出切线方程,化成斜截式,即可求解【详解】由()1()ln 1'f x ax x f x a x=-+⇒=-,()'11f a =-,()11f a =+,故过(1,(1))f 处的切线方程为:()()()11+112y a x a a x =--+=-+,故l 过定点(0,2)故选:A5.(2021·云南曲靖一中高三其他模拟(理))设曲线()xf x ae b =+和曲线()cos2xg x c π=+在它们的公共点()0,2M 处有相同的切线,则b c a +-的值为( )A .0B .πC .2-D .3【答案】D 【解析】利用导数的几何意义可知()()00f g '=',可求得a ;根据()0,2M 为两曲线公共点可构造方程求得,b c ,代入可得结果.【详解】()x f x ae '= ,()sin22xg x ππ'=-,()0f a '∴=,()00g '=,0a ∴=,又()0,2M 为()f x 与()g x 公共点,()02f b ∴==,()012g c =+=,解得:1c =,2103b c a ∴+-=+-=.故选:D.6.(2021·重庆高三其他模拟)曲线()ln f x ax x x =-在点()()1,1f 处的切线与直线0x y +=垂直,则a =()A .1-B .0C .1D .2【答案】D 【解析】求得()f x 的导数,可得切线的斜率,由两直线垂直的条件,可得a 的方程,解方程可得所求值.【详解】解:()f x ax xlnx =-的导数为()1f x a lnx '=--,可得在点()()1,1f 处的切线的斜率为()11k f a '==-,由切线与直线0x y +=垂直,可得11a -=,解得2a =,故选:D .7.(2021·重庆八中高三其他模拟)已知定义在()0,∞+上的函数()f x 满足ln a fx x =-,若曲线()y f x =在点()()1,1P f 处的切线斜率为2,则()1f =( )A .1B .1-C .0D .2【答案】C 【解析】先由换元法求出()f x 的解析式,然后求导,利用导数的几何意义先求出a 的值,然后可得出()1f 的值.【详解】设t =,则()22ln t f t t a =-,()22at tf t '=-.由()2212a f =-=',解得0a =,从而()10f a =-=,故选: C .8.(2018·全国高考真题(理))设函数f (x )=x 3+(a ―1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0 , 0)处的切线方程为( )A .y =―2xB .y =―xC .y =2xD .y =x 【答案】D【解析】分析:利用奇函数偶此项系数为零求得a =1,进而得到f (x )的解析式,再对f (x )求导得出切线的斜率k ,进而求得切线方程.详解:因为函数f (x )是奇函数,所以a ―1=0,解得a =1,所以f (x )=x 3+x ,f′(x )=3x 2+1,所以f′(0)=1,f (0)=0,所以曲线y =f (x )在点(0,0)处的切线方程为y ―f (0)=f′(0)x ,化简可得y =x ,故选D.9.(2021·河南洛阳市·高三其他模拟(理))设曲线2xy x =-在点()3,3处的切线与直线10ax y ++=平行,则a 等于( )A .12B .2C .12-D .2-【答案】B 【解析】利用导数求出曲线 2xy x =-在点()3,3处的切线的斜率,利用两直线平行可得出实数a 的值.【详解】对函数2x y x =-求导得()()222222x x y x x --'==---,由已知条件可得32x a y ='-==-,所以,2a =.故选:B.10.(2020·河北高三其他模拟(文))已知曲线()xax e f x x =+在点()()0,0f 处的切线斜率为2,则a =___________.【答案】1【解析】求导数,由导数的几何意义,可得切线的斜率,解方程即可求解.【详解】解:()xax e f x x =+的导数为()()1xf x a x e =++',可得曲线()xax e f x x =+在点()()0,0f 处的切线斜率为12a +=,解得1a =.故答案为:1.1.(2021·浙江金华市·高三三模)已知点P在曲线y =θ为曲线在点P 处的切线的倾斜角,则θ的取值范围是( )A .0,3π⎛⎤ ⎥⎝⎦B .,32ππ⎡⎫⎪⎢⎣⎭C .2,23ππ⎛⎤⎥⎝⎦D .2,3ππ⎡⎫⎪⎢⎣⎭【答案】D 【解析】首先根据导数的几何意义求得切线斜率的取值范围,再根据倾斜角与斜率之间的关系求得倾斜角的取值范围.【详解】因为y ==',由于124xxe e ++≥,所以[y ∈',根据导数的几何意义可知:tan [θ∈,所以2[,)3πθπ∈,故选:D.练提升2.(2021·四川成都市·石室中学高三三模)已知函数()2xf x ae x =+的图象在点()()1,1M f 处的切线方程是()22y e x b =++,那么ab =( )A .2B .1C .1-D .2-【答案】D 【解析】根据导数的几何意义确定斜率与切点即可求解答案.【详解】因为()2xf x ae x =+,所以()2x f x ae x '=+,因此切线方程的斜率(1)2k f ae '==+,所以有222ae e +=+,得2a =,又切点在切线上,可得切点坐标为(1,22)e b ++,将切点代入()f x 中,有(1)2122f e e b =+=++,得1b =-,所以2ab =-.故选:D.3.(2021·四川成都市·成都七中高三月考(文))已知直线l 为曲线sin cos y x x x =+在2x π=处的切线,则在直线l 上方的点是( )A .,12π⎛⎫⎪⎝⎭B .()2,0C .(),1π-D .()1,π-【答案】C 【解析】利用导数的几何意义求得切线的方程,进而判定点与切线的位置关系即可.【详解】'cos cos sin 2cos sin y x x x x x x x =+-=-,22x y ππ==-',又 当2x π=时,1y =,所以切线的方程为122y x ππ⎛⎫=--+ ⎪⎝⎭,对于A,当2x π=时,1y =,故点,12π⎛⎫⎪⎝⎭在切线上;对于B,当2x =时,2921π11 3.2502244y πππππ⎛⎫=--+=-++>-++=-> ⎪⎝⎭,故点()2,0在切线下方;对于C,当x π=时,2π91111,2512244y πππ⎛⎫=--+=-+<-+=-<- ⎪⎝⎭,故点(),1π-在切线上方;对于D,当x =1时,211122242y ππππππ⎛⎫=--+=-++>->- ⎪⎝⎭,故点()1,π-在切线下方.故选:C.4.(2021·甘肃高三二模(理))已知函数()ln f x x x =,()2g x x ax =+()a ∈R ,若经过点()0,1A -存在一条直线l 与()f x 图象和()g x 图象都相切,则a =( )A .0B .-1C .3D .-1或3【答案】D 【解析】先求得过()0,1A -且于()f x 相切的切线方程,然后与()()2g x x ax a =+∈R 联立,由0∆=求解.【详解】设直线l 与()ln f x x x =相切的切点为(),ln m m m ,由()ln f x x x =的导数为()1ln f x x '=+,可得切线的斜率为1ln m +,则切线的方程为()()ln 1ln y m m m x m -=+-,将()0,1A -代入切线的方程可得()()1ln 1ln 0m m m m --=+-,解得1m =,则切线l 的方程为1y x =-,联立21y x y x ax=-⎧⎨=+⎩,可得()2110x a x +-+=,由()2140a ∆=--=,解得1a =-或3,故选:D .5.(2021·安徽省泗县第一中学高三其他模拟(理))若点P 是曲线2ln 1y x x =--上任意一点,则点P 到直线3y x =-的最小距离为( )A .1BCD .2【答案】C 【解析】由已知可知曲线2ln 1y x x =--在点P 处的切线与直线3y x =-平行,利用导数求出点P 的坐标,利用点到直线的距离公式可求得结果.【详解】因为点P 是曲线2ln 1y x x =--任意一点,所以当点P 处的切线和直线3y x =-平行时,点P 到直线的3y x =-的距离最小,因为直线3y x =-的斜率等于1,曲线2ln 1y x x =--的导数12y x x'=-,令1y '=,可得1x =或12x =-(舍去),所以在曲线2ln 1y x x =--与直线3y x =-平行的切线经过的切点坐标为()1,0,所以点P 到直线3y x =-的最小距离为d .故选:C.6.(2021·安徽省舒城中学高三三模(理))若函数()ln f x x x =+与2()1x mg x x -=-的图象有一条公共切线,且该公共切线与直线21y x =+平行,则实数m =( )A .178B .176C .174D .172【答案】A 【解析】设函数()ln f x x x =+图象上切点为00(,)x y ,求出函数的导函数,根据0()2f x '=求出切点坐标与切线方程,设函数()21x m g x x -=-的图象上的切点为11(,)x y 1(1)x ≠,根据1()2g x '=,得到211244m x x =-+,再由1112211x mx x --=-,即可求出1x ,从而得解;【详解】解:设函数()ln f x x x =+图象上切点为00(,)x y ,因为1()1f x x'=+,所以001()12f x x '=+=,得01x =, 所以00()(1)1y f x f ===,所以切线方程为12(1)y x -=-,即21y x =-,设函数()21x mg x x -=-的图象上的切点为11(,)x y 1(1)x ≠,因为222(1)(2)2()(1)(1)x x m m g x x x ----'==--,所以1212()2(1)m g x x -'==-,即211244m x x =-+,又11111221()1x m y x g x x -=-==-,即211251m x x =-+-,所以221111244251x x x x -+=-+-,即2114950x x -+=,解得154x =或11x =(舍),所以25517244448m ⎛⎫=⨯-⨯+= ⎪⎝⎭.故选:A7.(2021·全国高三其他模拟)已知直线y =2x 与函数f (x )=﹣2lnx +xe x +m 的图象相切,则m =_________.【答案】2ln 4-+【解析】设出切点()00000,2ln ,0xx x x e m x -++>,根据切线方程的几何意义,得到()00000002ln 2212x x x x e m x x e x ⎧-++=⎪-⎨++=⎪⎩,解方程组即可.【详解】因为()2ln xf x x xe m =-++,所以()()21x f x x e x-'=++设切点为()00000,2ln ,0xx x x e m x -++>,所以切线的斜率为()()000021x k f x x e x -'==++又因为切线方程为y =2x ,因此()00000002ln 2212x x x x e m x x e x ⎧-++=⎪-⎨++=⎪⎩,由()000212x x e x -++=,得()000210x x e x ⎛⎫+-= ⎪⎝⎭,因为010x +≠,所以02x ex =,又00ln 2ln x x =-,所以()000022ln 2ln 2ln x x m x x -+⋅+=-,得2ln 4m =-+.故答案为:2ln 4-+.8.(2021·黑龙江佳木斯市·佳木斯一中高三三模(理))若两曲线y =x 2+1与y =a ln x +1存在公切线,则正实数a 的取值范围是_________.【答案】(0,2e ]【解析】设公切线与曲线y =x 2+1和y =a ln x +1的交点分别为(x 1,x 12+1),(x 2,a ln x 2+1),其中x 2>0,然后分别求出切线方程,对应系数相等,可以得到122122111a x x x a nx a⎧=⎪⎨⎪-=+-⎩,然后转化为﹣2224a x =a ln x 2﹣a ,,然后参变分离得到a =4x 2﹣4x 2ln x ,进而构造函数求值域即可.【详解】解:设公切线与曲线y =x 2+1和y =a ln x +1的交点分别为(x 1,x 12+1),(x 2,a ln x 2+1),其中x 2>0,对于y =x 2+1,y ′=2x ,所以与曲线y =x 2+1相切的切线方程为:y ﹣(x 12+1)=2x 1(x ﹣x 1),即y =2x 1x ﹣x 12+1,对于y =a ln x +1,y ′=ax,所以与曲线y =a ln x +1相切的切线方程为y ﹣(a ln x 2+1)=2a x (x ﹣x 2),即y =2ax x ﹣a +1+a ln x 2,所以122122111a x x x a nx a⎧=⎪⎨⎪-=+-⎩,即有﹣2224a x =a ln x 2﹣a ,由a >0,可得a =4x 2﹣4x 2ln x ,记f (x )=4x 2﹣4x 2ln x (x >0),f ′(x )=8x ﹣4x ﹣8x ln x =4x (1﹣2ln x ),当x时,f ′(x )>0,即f (x )在(0x时,f ′(x )<0,即f (x ),+∞)上单调递减,所以f (x )max =f)=2e ,又x →0时,f (x )→0,x →+∞时,f (x )→﹣∞,所以0<a ≤2e .故答案为:(0,2e ].9.(2021·湖南永州市·高三其他模拟)已知函数()2ln f x x x =+,点P 为函数()f x 图象上一动点,则P 到直线34y x =-距离的最小值为___________.(注ln 20.69≈)【解析】求出导函数,利用导数的几何意义求出切线与已知直线平行时切点坐标,然后转化为求点到直线的距离即可求解.【详解】解:()12f x x x'=+,()0x >,与直线34y x =-平行的切线斜率132k x x ==+,解得1x =或12x =,当1x =时,()11f =,即切点为()1,1,此时点P 到直线34y x =-的距离为d 当12x =时,11ln 224f ⎛⎫=- ⎪⎝⎭,即切点为11,ln 224⎛⎫- ⎪⎝⎭,此时点P 到直线34y x =-的距离为d =>10.(2021·湖北荆州市·荆州中学高三其他模拟)已知1P ,2P 是曲线:2|ln |C y x =上的两点,分别以1P ,2P 为切点作曲线C 的切线1l ,2l ,且12l l ⊥,切线1l 交y 轴于A 点,切线2l 交y 轴于B 点,则线段AB 的长度为___________.【答案】44ln 2-【解析】由两切线垂直可知,1P ,2P 两点必分别位于该函数的两段上,故可设出切点坐标111222(,),(,)P x y P x y ,表示出两条切线方程,根据两切线垂直,可得124x x =,又两切线分别与y 轴交于1(0,22ln )A x -,2(0,22ln )B x -+,则可求出44ln 2AB =-.【详解】曲线2ln ,01:2ln ,1x x C y x x -<<⎧=⎨≥⎩ ,则2,012,1x x y x x⎧-<<⎪⎪=⎨'⎪≥⎪⎩,设111222(,),(,)P x y P x y ,两切线斜率分别为1k ,2k ,由12l l ⊥得121k k =-,则不妨设1201,1x x <<³,111(,2ln )P x x \-,112k x =-,11112:2ln ()l y x x x x +=--,令0x =,得1(0,22ln )A x -222(,2ln )P x x ,222k x =,22222:2ln ()l y x x x x -=-,令0x =,得2(0,22ln )B x -+由121k k =-,即12221x x -×=-,得124x x =,则1242ln()44ln 2AB x x =-=-.故答案为:44ln 2-.1.(2021·全国高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a<B .e a b <C .0e ba <<D .0e ab <<【答案】D【解析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;练真题解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【详解】在曲线x y e =上任取一点(),t P t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()tt y e e x t -=-,即()1t t y e x t e =+-,由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()t f t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D.2.(2020·全国高考真题(理))函数的图像在点处的切线方程为()A .B .C .D .【答案】B【解析】,,,,因此,所求切线的方程为,即.故选:B.3.(2020·全国高考真题(理))若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D【解析】43()2f x x x =-(1(1))f ,21y x =--21y x =-+23y x =-21y x =+()432f x x x =- ()3246f x x x '∴=-()11f ∴=-()12f '=-()121y x +=--21y x =-+设直线l在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k =,设直线l的方程为)0y x x -=-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D.4.(2020·全国高考真题(文))设函数.若,则a =_________.【答案】1【解析】由函数的解析式可得:,则:,据此可得:,整理可得:,解得:.故答案为:.5.(2019·全国高考真题(文))曲线在点处的切线方程为___________.【答案】.【解析】所以,所以,曲线在点处的切线方程为,即.6.(2020·全国高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.e ()xf x x a =+(1)4e f '=()()()()()221x xx e x a e e x a f x x a x a +-+-'==++()()()()12211111e a aef a a ⨯+-'==++()241ae e a =+2210a a -+=1a =123()e x y x x =+(0,0)30x y -=/223(21)3()3(31),x x x y x e x x e x x e =+++=++/0|3x k y ===23()e x y x x =+(0,0)3y x =30x y -=【答案】2y x=【解析】设切线的切点坐标为001(,),ln 1,1x y y x x y x =++'=+,00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2),所求的切线方程为22(1)y x -=-,即2y x =.故答案为:2y x =.。
2023北京高考数学 20题导数
2023北京高考数学 20题导数一、导数的概念和性质导数是微积分的基本概念之一,用于描述函数在某一点上的变化率。
在数学高考中,导数是一个非常重要的考点。
理解导数的概念和性质对于解题和应用非常关键。
1. 导数的定义导数的定义是函数在某一点上的变化率,即函数在该点的斜率。
对于函数y=f(x),在点x=a处的导数定义为:f'(a) = lim(Δx→0) [f(a+Δx) - f(a)] / Δx其中,lim表示极限,Δx表示x的增量。
2. 导数的几何意义导数的几何意义是函数图像在某一点的切线的斜率。
函数的导数越大,表示函数的变化越快,切线的斜率越陡峭。
3. 导数的性质导数的性质包括线性性、乘积法则、商法则和链式法则等。
线性性:对于常数k和函数f(x),有f'(k) = 0和[kf(x)]' = kf'(x)。
乘积法则:对于函数u(x)和v(x),有[u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)。
商法则:对于函数u(x)和v(x),有[u(x)/v(x)]' = [u'(x)v(x) - u(x)v'(x)] / [v(x)]^2。
链式法则:对于复合函数y = f(g(x)),有y' = f'(g(x))g'(x)。
二、导数的计算方法导数的计算方法包括基本函数的导数、常用函数的导数和隐函数的导数等。
1. 基本函数的导数常用的基本函数有常数函数、幂函数、指数函数、对数函数和三角函数等。
这些函数的导数可以通过基本导数公式和导数的性质进行计算。
常数函数的导数为0,幂函数的导数可以通过公式y = x^n的导数公式计算,指数函数的导数为其本身的导数,对数函数的导数可以通过公式y = log(x)的导数公式计算,三角函数的导数可以通过公式y = sin(x)和y = cos(x)的导数公式计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学复习典型题专题训练201.函数的平均变化率:一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ∆=-,10y y y ∆=-10()()f x f x =-00()()f x x f x =+∆-,则当0x ∆≠时,商00()()f x x f x yx x+∆-∆=∆∆称作函数()y f x =在区间00[,]x x x +∆(或00[,]x x x +∆)的平均变化率.注:这里x ∆,y ∆可为正值,也可为负值.但0x ∆≠,y ∆可以为0.2.函数的瞬时变化率、函数的导数:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变00()()y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率00()()f x x f x y x x+∆-∆=∆∆趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率.“当x ∆趋近于零时,00()()f x x f x x+∆-∆趋近于常数l ”可以用符号“→”记作:“当0x ∆→时,00()()f x x f x l x +∆-→∆”,或记作“000()()lim x f x x f x l x∆→+∆-=∆”,符号“→”读作“趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ∆→时,000()()()f x x f x f x x +∆-'→∆”或“0000()()lim ()x f x x f x f x x∆→+∆-'=∆”.3.可导与导函数:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y ').导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数.4.导数的几何意义:设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线.由此割线的斜率是00()()f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化知识内容板块一.导数的概念 与几何意义yD CB A率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD叫做此曲线过点A 的切线,即000()()lim x f x x f x x∆→+∆-=∆切线AD 的斜率.由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '.题型一:极限与导数【例1】正三棱锥相邻两侧面所成的角为α,则α的取值范围是( ) A .(0180)︒︒, B .(060)︒︒, C .(6090)︒︒, D .(60180)︒︒,【例2】在正n 棱锥中,相邻两侧面所成的二面角的取值范围是( ) A .2ππn n -⎛⎫⎪⎝⎭, B .1ππn n -⎛⎫ ⎪⎝⎭, C .π02⎛⎫ ⎪⎝⎭, D .21ππn n n n --⎛⎫ ⎪⎝⎭,【例3】对于任意π02ϕ⎛⎫∈ ⎪⎝⎭,都有( )A .sin(sin )cos cos(cos )ϕϕϕ<<B .sin(sin )cos cos(cos )ϕϕϕ>>C .sin(cos )cos cos(sin )ϕϕϕ<<D .sin(sin )cos cos(sin )ϕϕϕ<<【例4】若0()lim1x f x x →=,则0(2)lim x f x x →=________.【例5】若1(1)lim11x f x x →-=-,则1(22)lim 1x f x x →-=-_______.【例6】设()f x 在0x 可导,则()()0003limx f x x f x x x∆→+∆--∆∆等于( )A .()02f x 'B .()0f x 'C .()03f x 'D .()04f x '【例7】若000(2)()lim13x f x x f x x ∆→+∆-=∆,则0()f x '等于( )A .23B .32C .3D .2【例8】设()f x 在x 处可导,a b ,为非零常数,则0()()limx f x a x f x b x x∆→+∆--∆=∆( ). A .()f x ' B .()()a b f x '+ C .()()a b f x '- D .()f x '【例9】设(3)4f '=,则0(3)(3)lim2h f h f h →--=( )A .1-B .2-C .3-D .1【例10】 若()2f a '=,则当h 无限趋近于0时,()()2f a h f a h--=______.【例11】 已知函数2()8f x x x=+,则0(12)(1)limx f x f x∆→-∆-∆的值为 .典例分析【例12】 已知1()f x x =,则0(2)(2)lim x f x f x∆→+∆-∆的值是( )A .14-B .2C .14D .2-【例13】 若2(1)(1)2f x f x x +-=+,则(1)f '=_______.【例14】 已知函数()f x 在0x x =处可导,则22000[()][()]lim x f x x f x x∆→+∆-=∆( )A .0()f x 'B .0()f xC .20[()]f x ' D .002()()f x f x '【例15】 计算32lim 43n n n →∞-=+________.【例16】 222lim 23n n nn →∞+=-_______.【例17】 将直线2:0l nx y n +-=、3:0l x ny n +-=(*n ∈N ,2n ≥)x 轴、y 轴围成的封闭图形的面积记为n S ,则lim n n S →∞= .【例18】 2111lim 1333n n →∞⎛⎫++++= ⎪⎝⎭L ( ) A .53B .32C .2D .不存在【例19】 如图,在半径为r的圆内作内接正六边形,再作正六边形的内切圆,又在此内切圆内作内接正六边形,如此无限继续下去.设n S 为前n 个圆的面积之和,则lim n n S →∞=( )r OA .22πrB .28π3r C .24πr D .26πr【例20】 22112lim 3243x x x x x →⎛⎫-=⎪-+-+⎝⎭______.【例21】 若1()n n n a n =+-,则常数a =_______.【例22】 πx x →=-_____.【例23】 2123limn nn →∞++++=L _________【例24】 012lim (2)x x x x →⎛⎫-= ⎪+⎝⎭________.【例25】 211lim34x x x x →-=+-__________.【例26】 2241lim 42x x x →⎛⎫-=⎪--⎝⎭( ) A .1- B .14- C .14D .1【例27】1x →= .【例28】 设函数12()sin sin 2sin n f x a x a x a nx=+++L ,其中12n a a a n +∈∈R N L ,,,,,已知对一切x ∈R ,有()sin f x x ≤和0sin lim1x xx→=,求证:1221n a a na +++L ≤.【例29】 如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;函数()f x 在1x =处的导数(1)f '= .【例30】 如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为()04,,()20,,()64,,则((0))f f = ;0(1)(1)limx f x f x∆→+∆-=∆ .(用数字作答)【例31】 下列哪个图象表示的函数在1x =点处是可导的()B.A.【例32】 函数2()21f x x =+在闭区间[11]x +∆,内的平均变化率为()A .12x +∆B .2x +∆C .32x +∆ D .42x +∆【例33】 求函数y =0x 到0x x +∆之间的平均变化率.【例34】 若函数2()f x x=,则当1x =-时,函数的瞬时变化率为( )A .1B .1-C .2D .2-【例35】 求函数2()f x x x =-+在1x =-附近的平均变化率,在1x =-处的瞬时变化率与导数.【例36】 求函数3()2f x x x=-在1x =附近的平均变化率,在1x =处的瞬时变化率与导数.【例37】 已知某物体的运动方程是3199s t t =+,则当3t =s 时的瞬时速度是_______.【例38】 已知某物体的运动方程是22232t s tt -=+,则3t =时的瞬时速度是_______.【例39】 已知物体的运动方程是23s t t=+,则物体在时刻4t =时的速度v =____,加速度a = .【例40】 物体运动方程为4134s t =-,则2t =时瞬时速度为( ) A .2B .4C .6D .8【例41】 一质点做直线运动,由始点起经过ts 后的距离为43214164s t t t =-+,则速度为零的时刻是( )A .4s 末B .8s 末C .0s 与8s 末D .0s ,4s ,8s 末【例42】 如果某物体做运动方程为22(1)s t =-的直线运动(s 的单位为m ,t 的单位为s ),那么其在1.2s末的瞬时速度为( )A .0.88-m/sB .0.88m/sC . 4.8-m/sD .4.8m/s【例43】 求y =在0x x =处的导数.题型二:导数的几何意义【例44】 已知曲线1y x x =+上一点522A ⎛⎫⎪⎝⎭,,用斜率定义求: ⑴ 过点A 的切线的斜率;⑵ 过点A 的切线方程.【例45】 已知曲线1y x=上一点(12)A ,,用斜率定义求: ⑴过点A 的切线的斜率;⑵过点A 的切线方程.【例46】 函数()f x 的图象如图所示,下列数值排序正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(3)(3)(2)(2)f f f f ''<<-<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(3)(2)(2)(3)f f f f ''<-<<【例47】 求函数()af x ax x=+(0)a ≠的图象上过点A 2(1)a a +,的切线方程.【例48】 曲线321y x x =+-在点(11)P --,处的切线方程是()A .1y x =-B .2y x =-C .y x =D .1y x =+【例49】 求曲线1y x=在点(11),的切线1l 方程,与过点(20)-,的切线2l 的方程.【例50】 函数1y x =-在点122⎛⎫- ⎪⎝⎭,处的切线方程为( ) A .4y x = B .44y x =- C .4(1)y x =+ D .24y x =+【例51】 已知曲线214y x =的一条切线的斜率为12,则切点的横坐标为_______.【例52】 曲线324y x x =-+在点(13),处的切线的倾斜角为()A .30︒B .45︒C .60︒D .120︒【例53】 过点(11),作曲线3y x =的切线,则切线方程为__________.【例54】 曲线2xy x =-在点(11)-,处的切线方程为__ .【例55】 若曲线21y x =-与31y x=-在0x x =处的切线互相垂直,则0x 等于( )AB. C .23 D .23或0【例56】 设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-【例57】 设曲线2y ax=在点(1)a ,处的切线与直线260x y --=平行,则a =( ) A .1B .12C .12- D .1-【例58】 若曲线4y x =的一条切线l 与直线48y x =+平行,则l 的方程为______________.【例59】 若曲线4y x=的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=【例60】 设P 为曲线C :21y x x =-+上一点,曲线C 在点P 处的切线的斜率的范围是[13],,则点P 纵坐标的取值范围是_______.【例61】 设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,【例62】 曲线21xy x =-在点()11,处的切线方程为( ) A .20x y --= B .20x y +-= C .450x y +-=D .450x y --=【例63】 设函数2()()f x g x x=+,曲线()y g x =在点(1(1))g ,处的切线方程为21y x =+,则曲线()y f x =在点(1(1))f ,处切线的斜率为( )A .4B .14-C .2D .12-【例64】 设()f x 是偶函数.若曲线()y f x =在点()()11f ,处的切线的斜率为1,则该曲线在点()()11f --,处的切线的斜率为 .【例65】 函数sin y x =的图象上一点π3⎛⎝⎭处的切线的斜率为( )A .1B C D .12【例66】 曲线ln(21)y x =-上的点到直线230x y -+=的最短距离是()AB .C .D .0【例67】 在平面直角坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 .【例68】 抛物线2y x bx c =++在点(1,2)处的切线与其平行线0bx y c ++=间的距离为________.【例69】 若0y =是曲线3y x bx c=++的一条切线,则32()()32b c+=( )A .1-B .0C .1D .2【例70】 函数2(0)y x x =>的图像在点()2k ka a ,处的切线与x 轴交点的横坐标为1k a+,其中*k ∈N ,若116a =,则135a a a ++的值是 .【例71】 已知点P 在曲线4e 1x y =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .π04⎡⎫⎪⎢⎣⎭,B .ππ42⎡⎫⎪⎢⎣⎭,C .π3π24⎛⎤ ⎥⎝⎦,D .3ππ4⎡⎫⎪⎢⎣⎭,【例72】 曲线2xy x =+在点(11)--,处的切线方程为( ) A .21y x =+ B .21y x =- C .23y x =--D .22y x =--【例73】 若曲线12y x-=在点12a a -⎛⎫ ⎪⎝⎭,处的切线与两个坐标围成的三角形的面积为18,则a =( )A .64B .32C .16D .8【例74】 函数()ln f x x =的图象在点()e ,(e)f 处的切线方程是.【例75】 设曲线()1*n y xn +=∈N 在点(11),处的切线与x 轴的交点的横坐标为nx ,则12n x x x ⋅L 等于( )A .1nB .11n + C .1n n +D .1【例76】 直线1y kx =-与曲线ln y x =相切,则k =( )A .0B .1-C .1D .1±【例77】 已知直线1y x =+与曲线()ln y x a =+相切,则a 的值为()A .1B .2C .1-D .2-【例78】 在平面直角坐标系xOy 中,点P 在曲线C :3103y x x =-+上,且在第二象限内,已知曲线C在点P 处的切线的斜率为2,则点P 的坐标为____ .【例79】 若存在过点(10),的直线与曲线3y x=和21594y ax x =+-都相切,则a 等于( ) A .1-或2564- B .1-或214 C .74-或2564- D .74-或7【例80】 已知函数21()()5g x f x x =+的图象在P 点处的切线方程为8y x =-+,又P 点的横坐标为5,则(5)(5)f f '+=________.【例81】 设曲线1cos sin x y x +=在点π12⎛⎫⎪⎝⎭,处的切线与直线10x ay -+=平行,则实数a 等于( ) A .1- B .1 C .2- D .2【例82】 已知函数()log a f x x =和()2log (22)(01)a g x x t a a t =+->≠∈R ,,的图象在2x =处的切线互相平行,则t =_______.【例83】 ⑴曲线32242y x x x =--+在点(13)-,处的切线方程是____.⑵曲线32242y x x x =--+过点(13)-,的切线方程是_________.【例84】 已知曲线31433y x =+,则过点(24)P ,的切线方程是_______.【例85】 已知曲线s :33y x x=-及点(22)P -,,则过点P 可向s 引切线的条数为_____.【例86】 曲线1y x=和2y x =在它们的交点处的两条切线与x 轴所围成的三角形的面积是______.【例87】 曲线12ex y =在点2(4e ),处的切线与坐标轴所围三角形的面积为( ) A .29e 2B .24eC .22eD .2e【例88】 曲线3y x=在点3()(0)a a a ≠,处的切线与x 轴、直线x a =所围成的三角形的面积为16,则a = .【例89】 曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A .19 B . 29 C .13D .23【例90】 求曲线221y x =-的斜率等于4的切线方程.【例91】 若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________.【例92】 曲线cos y x =在点π4P ⎛ ⎝⎭处的切线方程是 .【例93】 函数cos2y x =在点π04⎛⎫⎪⎝⎭,处的切线方程是( ) A .42π0x y ++= B .42π0x y -+= C .42π0x y --= D .42π0x y +-=【例94】 已知函数()f x 在R 上满足()()22288f x f x x x =--+-,则曲线()y f x =在点()()11f ,处的切线方程是( ) A .21y x =-B .y x =C .32y x =-D .23y x =-+【例95】 已知曲线C :4323294y x x x =--+,求曲线C 上横坐标为1的点的切线方程.【例96】 已知抛物线2y ax bx c =++通过点(11)P ,,且在点(21)Q -,处与直线3y x =-相切,求实数a 、b 、c 的值.【例97】 曲线(1)(2)y x x x =+-有两条平行于直线y x =的切线,求此二切线之间的距离.【例98】 已知曲线32()21f x x x =-+,求经过点(21)P ,且与曲线()f x 相切的直线l 的方程.【例99】 已知曲线32y x x =+-在点0P 处的切线1l 平行直线410x y --=,且点0P 在第三象限,⑴求0P 的坐标;⑵若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程.【例100】 已知函数32()(1)(2)f x x a x a a x b =+--++()a b ∈R ,.若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求a ,b 的值.【例101】 已知函数x x e a e x f -⋅+=)((a ∈R )的导函数是)(x f ',且)(x f '是奇函数,若曲线)(x f y =的一条切线的斜率是23,则切点的横坐标为( )A .ln 2B .2ln -C .22ln D .22ln -【例102】 已知函数32()c f x x bx x d=+++的图象过点(02)P ,,且在点(1(1))M f --,处的切线方程为670x y -+=.求函数()y f x =的解析式.【例103】 已知直线1l 为曲线22y x x =+-在点(10),处的切线,2l 为该曲线的另一条切线,且12l l ⊥,⑴求直线2l 的方程;⑵求由直线1l 、2l 和x 轴所围成的三角形的面积.【例104】 设函数()bf x ax x=-,曲线()y f x =在点(2(2))f ,处的切线方程为74120x y --=. ⑴求()y f x =的解析式;⑵证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.【例105】 设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为3y =. ⑴求()y f x =的解析式;⑵证明:曲线()y f x =的图像是一个中心对称图形,并求其对称中心;⑶证明:曲线()y f x =上任一点的切线与直线1x =和直线y x =所围三角形的面积为定值,并求出此定值.【例106】 已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,公切线上两个切点之间的线段,称为公切线段.⑴则a 取什么值时,1C 和2C 有且仅有一条公切线?写出此公切线的方程.⑵若1C 和2C 有两条公切线,证明相应的两条公切线段互相平分.【例107】 设0t ≠,点(0)P t ,是函数3()f x x ax =+与2()g x bx c =+的图象的一个公共点,两函数的图象在点P 处有相同的切线.试用t 表示a b c ,,.【例108】 已知曲线1C :2y x=与2C :2(2)y x =--,直线l 与12C C ,都相切,求直线l 的方程.【例109】 已知函数3()f x x x =-.⑴求曲线()y f x =在点(())M t f t ,处的切线方程; ⑵求曲线()y f x =过点(26)P --,的切线的方程. ⑶设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<. ⑷求过任一点()N a b ,能作的曲线3()f x x x =-的切线的条数.【例110】 如图,在平面直角坐标系xOy 中,过y 轴正方向上一点(0)C c ,任作一直线,与抛物线2y x =相交于A B ,两点,一条垂直于x 轴的直线,分别与线段AB 和直线:l y c =-交于点P Q ,, ⑴若2OA OB ⋅=u u u r u u u r,求c 的值;⑵若P 为线段AB 的中点,求证:QA 为此抛物线的切线; ⑶试问⑵的逆命题是否成立?请说明理由.11【例111】 证明如下命题: 命题:设(0)C c ,是y 轴正半轴上的一动点,过C 的动直线与抛物线22(0)x py p =>交于A B,两点,则过A B ,的抛物线的两切线的交点的轨迹方程为y c =-,且轨迹上任一点的横坐标一定是该点对应的切点弦AB 中点的横坐标.【例112】 设Q 为直线(0)y c c =-<上任意一点,过Q 作抛物线22x py =(0)p >的两条切线,切点分别为A B ,,求证:直线AB 必过定点(0)C c ,,且线段AB 的中点的横坐标一定对应于Q 点的横坐标.【例113】 已知函数()2ln f x x x =-.⑴写出函数()f x 的定义域,并求其单调区间; ⑵已知曲线()y f x =在点()()00x f x ,处的切线是2y kx =-,求k 的值.【例114】 求曲线12y x =+上的点到直线10x y ++=的距离的最小值.。