midas支座的模拟方法
(整理)MIDAS支座模拟.

MIDAS中支座的模拟对于空间结构而言,墩柱与梁体连接条件,支座刚度的模拟至关重要。
在我们做的“多支座节点模拟”技术资料里,重点说明了多支座模拟的过程。
首先“在支座下端建立节点,并将所有的支座节点按固结约束”,这是一种模拟实际情况的建模方法。
意思是:在墩顶处结构是全约束的,在各个方向都不可能有位移和转角。
然后“复制支座节点到梁底标高位置生成支座顶部节点,并将支座节点与复制生成的顶部节点用“弹性连接”中的“一般类型”进行连接,并按实际支座刚度定义一般弹性连接的刚度”,这句话的意思是相当于建立一个支座单元,它的三个方向的刚度值则是由实际工程中支座的类型和尺寸来提供。
然后再建立支座顶部节点与主梁节点之间的联系。
此时将利用Civil提供的“刚性连接”,以主梁节点作为主节点,支座顶部单元作为从节点,将其连接起来。
这样做的意思是:将主梁节点与支座顶部节点形成一个受力的整体,目的也是为了真实模拟其受力情况。
在MIDAS中,在使用“弹性连接”中的一般类型时,会要求输入您说到的SDX,SDY,SDZ这三个值,它们分别是指:SDx:单元局部坐标系x轴方向的刚度。
SDy:单元局部坐标系y轴方向的刚度。
SDz:单元局部坐标系z轴方向的刚度。
另外,在弯桥中需要定义支座节点的局部坐标系和BETA角。
这三个值是由由实际桥梁工程使用的橡胶支座类型决定的,也就是说与支座的刚度系数指标有关。
在桥梁工程中,一般使用较多的是板式支座和盆式支座。
其中大桥盆式支座使用相对较多,在输入这种类型支座的刚度值时,一般要么很大,要么取0;中小桥多用板式支座,在输入刚度值时可以根据支座橡胶层厚度来计算即可。
具体的计算式如下:板式橡胶支座的刚度计算式:单元局部坐标系X轴方向刚度:SDx=EA/L单元局部坐标系y ,z轴方向刚度:SDy =SDz=GA / L单元局部坐标系x轴方向转动刚度:SRx=GIp/L单元局部坐标系y.轴方向转动刚度:SRy=EIy/L单元局部坐标系y.轴方向转动刚度:SRz=EIz/L 式中:E、G为板式橡胶支座抗压、抗剪弹性模量;A为支座承压面积;Iy , Iz为支座承压面对局部坐标轴y、z的抗弯惯性矩;Ip 为支座抗扭惯性矩;L为支座净高。
MIDAS多支座模拟注意事项

MIDAS多支座模拟注意事项内容,然后用刚性弹簧(弹性连接的刚性类型)连接主梁节点和支座节点。
但在模拟多支座时,尤其是支座数量多于2个时,这样的模拟方法就不对了,会出现靠近主梁的支反力特别大的情况。
多支座时正确的模拟方法如下:1、要求模拟出支座的高度情况,在支座底部采用一般支承进行全约束(D-ALL,R-ALL);2、用一般弹性连接模拟支座(注意弹性连接的刚度是按照弹簧的局部坐标输入,输入支座的各个自由度的实际刚度);3、主梁节点为主节点,各支座顶部节点为丛属节点建立主从约束刚性连接。
4、额外的操作:对于弯桥建模时,支座的约束方向通常是沿桥的径向和切向,可以通过修改弹性连接的beta角来实现。
不是很赞同支点处支反力的分布,更近似于各个腹板位置集中力作用下的杠杆原理的分布而且支座的竖向刚度并不是很好求,不如球形刚支座的多支座最好用梁格模拟用单主梁模拟多支座的宽箱梁不合适腹板的传力作用和抗扭刚度都不准确宽梁用单梁模拟的确不太合适,不过还是见过不少梁宽15、6m的仍然坚持用单梁模拟。
因此我上面说的应该有个前提,就是针对已经决定用单梁建模的情况,尤其是对弯桥,即使桥面不是很宽,最好还是要按空间分析,这里顺便补充一句,对于弯桥的多支座模拟时,如果用一般弹性连接模拟支座,那么修要修改弹性连接的beta角以保证弹簧的约束方向为该点曲线的切向或径向,如果是用一般支承+刚性弹簧模拟的话,那么需要修改支座节点的局部坐标。
具体的操作我正准备写个资料出来,现在MIDAS主页上已经有最新的9个资料的简介了,包括弯桥、斜桥、抗震、临时支撑等。
其他的资料简介可以参考建筑软件GEN的16份资料简介,因为两个软件的分析内核是一样的。
我想请教各位高手:我最近在建一座2孔的框架桥,框架桥底板与地基采用弹簧支撑来连接,我在输入地基弹性模量(基床系数)时,根据使用说明书中取最大值,最终计算结果变形查看到:框架桥整体向下移动?不知什么原因?是我的支撑条件有问题吗?望给与帮助,谢谢!我认为第三点不好,应该在各支座顶部支点的中心建个节点,以此节点为主节点,主梁节点和支座顶部节点为从属节点建立刚性连接我想,一般的,如果是双支座,可以考虑建立支座节点时按照支座横向位置到梁横向中心的距离作为到主梁节点的值,这只对等截面梁和变宽不大的桥可以这样操作,其设计值一般接近精确值。
midas-减隔震支座的刚度模拟知识分享

m i d a s-减隔震支座的刚度模拟精品文档01、减隔震支座的刚度模拟➢具体问题:根据《公路桥梁抗震细则》(JTGB02-01-2008)中第10.2条中关于减隔震装置的说明,常用的减隔震支座装置分为整体型和分离型两类。
目前常用的整体型减隔震装置有:铅芯橡胶支座、高阻尼橡胶支座、摩擦摆式减隔震支座;目前常用的分离型减隔震装置有:橡胶支座+金属阻尼器、橡胶支座+摩擦阻尼器、橡胶支座+黏性材料阻尼器。
目前设计人员普遍存在两个误区,其一:抗震分析时一味的考虑用桥墩的塑性能力耗散地震效应,忽略增设减隔震支座的设计思路;其二:由于设计人员对减隔震支座的模拟方式不清楚,造成潜意识里回避减隔震支座的采用。
本文考虑上述两点对《公路桥梁抗震细则》(JTGB02-01-2008)第10.2条中涉及的减隔震支座模拟进行说明。
限于篇幅,本文仅对整体型减隔震装置进行叙述。
➢解决斱法:1、铅芯橡胶支座①②涉及规范及支座示意图(《公路桥梁铅芯隔震橡胶支座》(JT/T 822-2011))图1.1铅芯橡胶支座示意图铅芯橡胶支座的实际滞回曲线和等价线性化模型精品文档(第1页,共1 0页)精品文档01、减隔震支座的刚度模拟图1.2实际滞回曲线图从实际滞回曲线可以得到3点重要的结论:图1.3等价线性化模型1)2)3) ③铅芯橡胶支座的位移剪力曲线所围面积明显大于较普通的橡胶支座,而且滞回曲线所谓面积反映了支座耗能能力,故间隔震支座(对于本图为铅芯橡胶支座)的本质是通过自身的材料或构造特性提供更有效的耗能机制,耗散地震产生的能量,从而起到减轻地震对结构的破坏程度。
实际滞回曲线一般为梭形,图形成反对称形态。
目前通用的方法是将其等效为图1.2所示的线性化模型。
通过K1、K2、 KE、Qy四个参数来模拟铅芯橡胶支座的滞回曲线。
等价线性化模型中涉及的四个参数含义如下:K1——弹性刚度:表示初始加载时,结构处于弹性状态是的刚度(力与变形之间的关系)。
midas-减隔震支座的刚度模拟

.01、减隔震支座的刚度模拟具体问题:根据《公路桥梁抗震细则》(JTGB02-01-2008)中第10.2条中关于减隔震装置的说明,常用的减隔震支座装置分为整体型和分离型两类。
目前常用的整体型减隔震装置有:铅芯橡胶支座、高阻尼橡胶支座、摩擦摆式减隔震支座;目前常用的分离型减隔震装置有:橡胶支座+金属阻尼器、橡胶支座+摩擦阻尼器、橡胶支座+黏性材料阻尼器。
目前设计人员普遍存在两个误区,其一:抗震分析时一味的考虑用桥墩的塑性能力耗散地震效应,忽略增设减隔震支座的设计思路;其二:由于设计人员对减隔震支座的模拟方式不清楚,造成潜意识里回避减隔震支座的采用。
本文考虑上述两点对《公路桥梁抗震细则》(JTGB02-01-2008)第10.2条中涉及的减隔震支座模拟进行说明。
限于篇幅,本文仅对整体型减隔震装置进行叙述。
解决斱法:1、铅芯橡胶支座①②涉及规范及支座示意图(《公路桥梁铅芯隔震橡胶支座》(JT/T 822-2011))图1.1铅芯橡胶支座示意图铅芯橡胶支座的实际滞回曲线和等价线性化模型. (第1页,共1页).01、减隔震支座的刚度模拟图1.2实际滞回曲线图从实际滞回曲线可以得到3点重要的结论:图1.3等价线性化模型1)2)3) ③铅芯橡胶支座的位移剪力曲线所围面积明显大于较普通的橡胶支座,而且滞回曲线所谓面积反映了支座耗能能力,故间隔震支座(对于本图为铅芯橡胶支座)的本质是通过自身的材料或构造特性提供更有效的耗能机制,耗散地震产生的能量,从而起到减轻地震对结构的破坏程度。
实际滞回曲线一般为梭形,图形成反对称形态。
目前通用的方法是将其等效为图1.2所示的线性化模型。
通过K1 、K2、KE 、Qy四个参数来模拟铅芯橡胶支座的滞回曲线。
等价线性化模型中涉及的四个参数含义如下:K1——弹性刚度:表示初始加载时,结构处于弹性状态是的刚度(力与变形之间的关系)。
K2——屈服刚度:表示屈服之后的刚度。
KE——等效刚度:等效的含义是指如果不考虑加载由弹性到塑性的变化过程,仅考虑屈服后累计位移与力的关系折算出的刚度。
板式橡胶支座刚度计算、MIDAS 支座刚度计算模拟(矩形、圆形)

支座短边尺寸l a (mm)
300支座长边尺寸l b (mm)
450支座总厚度t(mm)
74支座橡胶总厚度te(mm)
53抗剪弹性模量G(Mpa)
1.1 5.4.2支座单元局部坐标系Y、Z方向刚度SDy、SDz(KN/m)2801.9加劲钢板短边尺寸l 0a (mm)
290加劲钢板长边尺寸l 0b (mm)
440支座中间单层橡胶片厚度t 1(mm)
8支座形状系数S
10.9支座抗压弹性模量E(Mpa)
708.9支座单元局部坐标系x方向刚度SDz(KN/m)1293314.5短边转动刚度SRy
9699.9长边转动刚度SRx
21824.7Ip
38032000000.0扭转刚度SRx
565.3支座直径d(mm)
250支座总厚度t(mm)
63支座橡胶总厚度te(mm)
45抗剪弹性模量G(Mpa)
1.1 5.4.2
支座单元局部坐标系Y、Z方向刚度SDy、SDz(KN/m)1199.9加劲钢板直径d 0(mm)
240支座中间单层橡胶片厚度t1(mm)
8支座形状系数S
7.5支座抗压弹性模量E(Mpa)
334.1支座单元局部坐标系x方向刚度SDz(KN/m)260338.4Ip
383495190.4转动刚度SRx
6.7Iz/Iy
191747595.2转动刚度SRy\z
1016.9橡胶板式支座 刚度计算
<公路桥梁板式橡胶支座> JTT4-2019
B.3B.2圆形支座矩形支座。
Midas 使用经验

从04年工作后开始学习midas,将所作的计算挑选10个典型,由简入难做一简单总结.附图,因涉及实际设计图纸,模型未附上,仅介绍一下思路和注意事项即自己曾走的弯路。
一、钢筋混凝土弯桥:刚工作后接触的第一个计算:4*20半径70m。
用gqjs直线桥、midas空间梁单元弯桥、桥博梁格法分别建模计算。
midas思路:当时做法excel中计算节点坐标,pl导入cad,dxf导入midas。
注意局部坐标系的建立,支座与主梁采用刚性连接。
仅与其他软件比较弯矩内力和支反力,未考虑支座预偏心。
二、3-30滑模施工:为与桥博作比较,截面顶面中心对齐,建模节点与梁底节点加刚性连接。
顺便做了模态分析,基频计算与规范理论计算差不多。
通过有效宽度系数考虑应力验算的有效宽度。
注意梯度温差中B的取值、支座沉降组沉降的正负、施工阶段分析中的单元组、混凝土龄期、边界组取变形后、psc设计注意施工阶段用的荷载定义为施工阶段荷载。
荷载组合中预应力乘以0.8需要手动修改,,但是psc设计用的混凝土设计中的组合系数不用修改,程序自动考虑。
当时对两个程序预应力损失的计算逐项做了一下对比,两者基本吻合。
第四项损失midas 未考虑逐根张拉。
我是在施工阶段中将预应力分组在子阶段分批张拉。
三、横向预应力:等效荷载我是定义为用户定义荷载;自动生成组合后用包络再与用户定义荷载组合。
注意1.单向张拉钢束特征值的数据;2.长期组合中仅考虑恒活载,其余可不计。
附:1.根部弯矩一般比计算值大0.15-0.3,可参考城市规范,自己酌情考虑。
2.规范中冲击系数为1.3,有疑问,一般为0.3吧,布置是否笔误。
取1.3的话,承载能力要求太高了。
四、下部结构的联合计算:1)m法对节点采用节点弹性支撑系数的计算。
2)支座刚度的计算,在墩顶考虑支座加了约束3)截面特征系数的调整:0.67或0.85。
五.小箱梁上下部联合计算:验算小箱梁预应力,计算盖梁与qlt简支计算结果作比较,结论桥梁通简支计算偏不安全。
盆式橡胶支座刚度计算及设置
midas Civil 技术资料----盆式橡胶支座刚度计算及设置目录midas Civil 技术资料1 ----盆式橡胶支座刚度计算及设置 1 1 概述2 1.1盆式橡胶支座简介 2 1.2 分类 2 1.3结构形式2 1.4相关规范条文对盆式支座选用的规定 4 2 利用midas Civil 模拟普通盆式支座 4 3利用midas Civil 模拟抗震型盆式支座5 3.1反应谱法分析 5 3.2非线性时程分析6 4 例题-盆式橡胶支座的模拟7 4.1不同边界模拟方式 7 4.2模型简介及支座初选 10 4.3支座参数修正 11 5小结 13 参考文献13北京迈达斯技术有限公司 桥梁部2013/04/281 概述1.1盆式橡胶支座简介与普通金属支座相比,橡胶支座具有构造简单,加工方便,造价低,支座高度小,安装便捷等优点。
此外,橡胶支座能方便地适应各方向上的变形,故适合应用户各类变宽桥、斜桥、弯桥等工程[1]P174。
目前应用于桥梁支座的橡胶主要是化学合成的氯丁橡胶(适用温度:-25℃至60℃),三元乙炳橡胶及天然橡胶(适用温度:-40℃至+60℃)。
盆式橡胶支座的主要特点:(一)将纯氯丁橡胶块放置在钢制的凹形金属盆内,由于橡胶处于有侧向受压状态,大大提高了支座的承载能力;(二)金属盆顶面的聚四氟乙烯板与不锈钢板相对摩擦系数小,使活动支座满足了梁的水平移动的要求。
1.2 分类根据通用的使用性能,盆式橡胶支座可分为:(1)双向活动(SX):具有竖向承载、竖向转动和多向滑移性能(多向滑动铰支座);(2)单向活动(DX):具有竖向承载、竖向转动和单一方向滑移性能(单向滑动支座);(3)固定(GD):具有竖向承载和竖向转动性能(固定铰支座)1.3结构形式双向活动支座、单向活动支座的滑动向位移量分为五级:±50mm,±100mm,±150mm,±200mm,±250mm。
迈达斯midascivil 梁格法建模实例
北京迈达斯技术有限公司目录概要 (2)设置操作环境........................................................................................................... 错误!未定义书签。
定义材料和截面....................................................................................................... 错误!未定义书签。
建立结构模型........................................................................................................... 错误!未定义书签。
PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。
输入荷载 .................................................................................................................. 错误!未定义书签。
定义施工阶段. (59)输入移动荷载数据................................................................................................... 错误!未定义书签。
输入支座沉降........................................................................................................... 错误!未定义书签。
迈达斯(Midas_civil)建模助手做移动支架法施工阶段分析教程
概要
使用建模助手做移动支架法施工阶段分析
逐跨施工预应力箱型梁桥的的方法有移动支架法(Movable Scaffolding System ; 简称MSS)和满堂支架法(Full Staging Method ; 简称FSM)。移动支架法法的模板设置 在导梁上,因此无需进行水上作业和架设大量的脚手架。另外,移动支架法与满堂支架 法相比,因为不与地面、河流等直接接触,所以施工时可以灵活使用桥梁下空间。
施加预应力初期
f' ca
=
0.55 fci
= 148.5
kgf / cm2
f' ta
= 0.8
fci = 13.1 kgf / cm2
预应力损失之后
fca = 0.4 fck = 160.0 kgf / cm2 fta = 1.6 fck = 32.0 kgf / cm2
¾ 下部结构混凝土 材料强度标准值 : fck = 270 kgf / cm2 弹性模量 : Ec = 2.35 ×105 kgf / cm2
选择桥梁类型为移动支架法,输入桥梁材料、区段组成、曲率半径、固定支撑位 置、施工缝位置、施工缝到钢束锚固端位置距离、施工一跨所需时间(20天)以及预 应力箱型梁的初期材龄。选择桥梁类型为移动支架法时,程序自动计算出施工持续时 间与构件初期材龄的差作为添加步骤,并计算出移动支架自重和混凝土湿重引起的反 力将其加载到悬臂端。
5
高级应用例题
¾ 后横梁的反力 假设因移动支架梁自重引起的后横梁反力的大小和位置如下: - P = 400 tonf - 作用位置 : 从施工缝位置沿已现浇桥梁段方向3m处 正在施工的桥梁跨的混凝土湿重引起的反力由程序自动计算。
6
使用建模助手做移动支架法施工阶段分析
桥梁工程MIDAS建模方案
桥梁工程MIDAS建模方案1. 引言桥梁工程在交通基础设施中具有重要的地位,其承载着车辆和行人的重量,必须具备充分的强度和稳定性。
MIDAS是一款专业的结构建模软件,被广泛用于桥梁工程的建模和分析。
本文将介绍如何使用MIDAS进行桥梁工程的建模。
2. 建模流程2.1 数据准备在建模之前,需要准备以下数据:•桥梁的设计图纸或CAD文件•桥梁的材料参数,如混凝土的强度等•桥梁的荷载信息,如车辆荷载、自重等2.2 建立模型使用MIDAS建模软件,按照以下步骤建立桥梁模型:1.导入设计图纸或CAD文件,根据设计要求创建桥梁的几何形状。
2.根据桥梁的材料参数,设置梁、柱等构件的材料属性。
3.设置梁、柱等构件的截面属性,包括形状、尺寸等。
4.根据桥梁的荷载信息,定义荷载类型和大小,如车辆荷载、自重等。
5.将荷载应用到桥梁模型中的相应位置。
2.3 边界条件设置为确保建模结果的准确性,需要设置正确的边界条件。
以下是设置边界条件的步骤:1.设置支座条件:根据实际情况确定桥梁的支座类型和位置,并设置支座的约束条件。
2.设置约束条件:根据实际情况,设置构件的约束条件,如固支、铰支等。
2.4 材料模型定义MIDAS提供了多种材料模型供选择,根据桥梁的具体材料特性选择合适的材料模型,并进行参数设置。
2.5 荷载分析完成模型的建立和边界条件的设置后,使用MIDAS进行荷载分析。
以下是荷载分析的步骤:1.设置分析类型:根据需要选择静力分析、动力分析、地震分析等。
2.进行荷载分析:根据桥梁的设计要求和实际情况,设置荷载类型和大小,并进行荷载分析。
3. 结果分析完成荷载分析后,可以对建模结果进行分析。
以下是结果分析的步骤:1.查看计算结果:MIDAS会生成桥梁各部位的应力、变形等计算结果,可以通过查看计算结果来评估桥梁的性能。
2.进行结果分析:根据计算结果,进行桥梁的强度、稳定性等性能分析。
4. 结论本文介绍了使用MIDAS进行桥梁工程建模的方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MIDAS中支座的模拟弹性连接刚性与刚性连接的区别1、概念解释:1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计算奇异。
2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节点有相对的平动位移。
2、弹性连接定义多支座反力:注:如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分配下部的支反力越均匀,如左边显示,三个支座反力均相等;而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结果是错误,建议选用刚性连接的方法来定义单梁多支座。
3、刚性连接定义多支座反力:注:定义多支座反力,尽量选用刚性连接来做。
还有一个问题,用弹性连接的刚性容易出错,因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;4、建议:1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建议采用刚性连接来处理,防止计算奇异。
2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方式。
3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。
4)在利用midas做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m,如果定义支座轴向刚度,大概在106~107次KN/m左右。
对于空间结构而言,墩柱与梁体连接条件,支座刚度的模拟至关重要。
在我们做的“多支座节点模拟”技术资料里,重点说明了多支座模拟的过程。
首先“在支座下端建立节点,并将所有的支座节点按固结约束”,这是一种模拟实际情况的建模方法。
意思是:在墩顶处结构是全约束的,在各个方向都不可能有位移和转角。
然后“复制支座节点到梁底标高位置生成支座顶部节点,并将支座节点与复制生成的顶部节点用“弹性连接”中的“一般类型”进行连接,并按实际支座刚度定义一般弹性连接的刚度”,这句话的意思是相当于建立一个支座单元,它的三个方向的刚度值则是由实际工程中支座的类型和尺寸来提供。
然后再建立支座顶部节点与主梁节点之间的联系。
此时将利用Civil提供的“刚性连接”,以主梁节点作为主节点,支座顶部单元作为从节点,将其连接起来。
这样做的意思是:将主梁节点与支座顶部节点形成一个受力的整体,目的也是为了真实模拟其受力情况。
在MIDAS中,在使用“弹性连接”中的一般类型时,会要求输入您说到的SDX,SDY,SDZ这三个值,它们分别是指:SDx:单元局部坐标系x轴方向的刚度。
SDy:单元局部坐标系y轴方向的刚度。
SDz:单元局部坐标系z 轴方向的刚度。
另外,在弯桥中需要定义支座节点的局部坐标系和BETA角。
这三个值是由由实际桥梁工程使用的橡胶支座类型决定的,也就是说与支座的刚度系数指标有关。
在桥梁工程中,一般使用较多的是板式支座和盆式支座。
其中大桥盆式支座使用相对较多,在输入这种类型支座的刚度值时,一般要么很大,要么取0;中小桥多用板式支座,在输入刚度值时可以根据支座橡胶层厚度来计算即可。
具体的计算式如下:板式橡胶支座的刚度计算式:单元局部坐标系X轴方向刚度:SDx=EA/L单元局部坐标系y ,z轴方向刚度: SDy =SDz=GA / L单元局部坐标系x轴方向转动刚度:SRx=GIp/L单元局部坐标系y.轴方向转动刚度:SRy=EIy/L单元局部坐标系y.轴方向转动刚度:SRz=EIz/L式中:E、G为板式橡胶支座抗压、抗剪弹性模量;A为支座承压面积;Iy , Iz为支座承压面对局部坐标轴y、z的抗弯惯性矩;Ip为支座抗扭惯性矩;L为支座净高。
固定盆式支座以较大的刚度约束板体的位移而放松对转动的约束,因此模拟在墩顶设置一个横、纵、竖二维抗压、抗剪的大值,各方向抗弯的小值.即SDx=SDy=SDz=无穷大,而SRx=SRy=SRz=0的一个弹性连接五.支座〔边界条件〕1.几中常用边界条件a.桥墩底部固接在模型>边界条件>一般支承中将六个自由度全部选中。
b.主梁支座只约束竖向:在模型>边界条件>一般支承中仅选择Dz。
约束竖向和纵向:在模型>边界条件>一般支承中选择Dz和Dx。
约束竖向和横向:在模型>边界条件>一般支承中选择Dz和Dy。
约束竖向、纵向和横向:在模型>边界条件>一般支承中选择Dz、Dx、Dz。
c.主梁与桥墩的连接一般来说在主梁的建模点和主梁底〔也需要建立一个节点〕之间用刚性连接连接〔使用模型>边界条件>刚性连接功能,主节点可选择为主梁建模点〕。
桥墩的顶点与主梁底的连接可用弹性连接连接,弹性连接的刚度可按厂家提供的支座产品说明书上的竖向和水平向刚度。
只约束竖向:在模型>边界条件>弹性连接中仅输入SDx。
约束竖向和纵向:在模型>边界条件>弹性连接中仅输入SDx和SDz〔或SDz〕。
约束竖向和横向:在模型>边界条件>弹性连接中仅输入SDx和SDyz〔或SDy〕。
约束竖向、纵向和横向:在模型>边界条件>弹性连接中输入SDz、SDx、SDz。
注意:a.可在显示中选择显示弹性连接坐标轴查看要约束方向的坐标轴。
b.当用户希望使用单向〔只〕受压支座时,可在弹性连接中选择“只受压”。
一般来说不推荐用户使用只受压支座,当用户担心产生负反力时,可先用既能受压又能受拉的弹性连接先分析一次,查看弹性连解是否受拉,如有受拉的情况,通过结果>移动荷载追踪器查出发生负反力时的移动荷载布置,然后按静力荷载加载且把弹性连接修改为只受压后重新分析即可。
c.释放梁端部约束当梁与其他构件铰接时,可使用边界条件>释放梁端部约束功能释放弯曲约束。
注意:不能释放一个节点周边所有梁单元在此节点上的弯曲约束,否则产生奇异。
1.边界定义中应注意的问题a.在弯桥中一般沿着径向和切向约束,此时应事先给节点定义节点局部坐标轴,这样在一般支承中定义的桥墩底部固结支座和主梁支座会沿着局部坐标轴方向约束,输出的反力也是局部坐标轴方向的。
b.弯桥中双支座的模拟,可在实际支座位置〔实际支座位置在径向时,可通过复制主梁节点,复制方向选择圆心和主梁节点即可。
〕建立两个节点,节点与主梁建模点用刚性连接连接,主节点选用主梁建模点。
将这两个节点向下复制,距离为支座高度+梁高〔梁截面以顶对齐时〕,复制生成的点与对应的点用弹性连接连接,刚度参考厂家产品介绍。
当弹性连接的下部没有模拟桥墩时,按固接处理;下部模拟了桥墩时,则连接桥墩相应的点。
c.一定要注意支座节点的位置,特别是用板单元建立斜桥时,支座位置一定要设置在板下。
此时可在板的建模点支座位置节点向下复制半个板厚的距离,用刚性连接将其连接起来,然后再向下复制相当于支座高度的距离,用弹性连接将其连接起来,将弹簧下面点固结,这样才能正确地计算出是否产生负反力。
d.当用户自行输入弹性连接的刚度值不要输的过大,一般来说模拟近似刚性时可使用“刚性”或输入10e5~10e10之间值。
e.当用户用虚拟梁单元模拟刚臂时,虚拟梁单元的刚度也不应过大,可输入10e5~10e10之间值,但当虚拟梁单元的材料中弹性模量值也输入的相当大时,也会发生警告。
此虚拟梁单元的弹性模量可用一般材料的值,容重可设为0。
f.虚拟梁单元的刚度过小或过大分析时均会出现警告,将会影响自振周期结果,当虚拟梁单元的刚度过小时,可能会影响屈曲分析的结果〔在外力很小的情况下会发生屈曲〕。
g.刚性连接与弹性连接的“刚性”,两者分析结果应接近〔会有精度差异〕。
刚性连接是通过强制将两个点的位移设置为相同来计算的,弹性连接的“刚性”是将两点间的连接弹簧的刚度设置为很大来计算的。
h.非线性弹性连接特性值中的非线性特性仅适用于动力分析。
静力分析时将使用其在线性弹性支承中输入的值计算。
误区1.在支座位置建立节点,并将所有的支座节点与主梁节点刚性连接,荷载会按照就近原则分配,导致离主梁越近的支座反力越大。
误区2.当用弹性连接的一般类型模拟单支座时,如果没有定义转角刚度,相当于一个具有平动刚度而没有旋转刚度的梁单元,这样的约束情况当然有可能发生奇异。
3.所有的支座反力都相等的问题,当放在弹性地基上的梁的刚度很大而地基的弹簧系数又相同时,上部荷载会均匀地传递到下部弹簧上,弹簧的反力是相同的。
同样的道理,当对支座间的联系梁刚度的模拟(目前他用的是弹性连接的一般连接,弹簧系数很大而又相同时),地基的反力会相同。
在不模拟下部结构的情况下多支座模拟的正确的方法:1.在所有支座的下端建立多个节点,所有的节点按固结约束(D-ALL,R-all);2.复制支座底部节点到梁底标高位置生成支座顶部节点,将支座底部节点和顶部节点使用弹性连接的一般类型建立连接,并按实际支座刚度定义一般弹性连接的刚度,输入轴向和另外一个或两个方向的弹簧系数。
如果是弯桥,要通过调整弹性连接的beta角来调整弹性连接的y向和z向(即保证弹性连接的约束方向为沿主梁的切向约束和径向约束方向)注:调整角度是为了保证支座的约束方向与该点主梁的径向和切向一致,Sdx 等为弹簧的刚度。
3.将支座上部节点和主梁节点用刚性连接连接起来,选择主梁节点为主节点,支座顶节点为从属节点。
要注意的是,其中第三步是将梁在端部的横向联系视为刚性杆模拟的,当荷载和结构对称时,所有反力将相等。
荷载偏载时(比如活荷载偏载布置)时,支座反力会不相等。
此时可查看是否有负反力。
如果用户准确知道横向联系的刚度,可输入实际的横向联系的刚度建立梁格模型,横向联系的刚度越小,各支座的反力之间的差别会越大。
方法一:《公路桥梁板式橡胶支座(JT/T 4——2004)》规定如下:支座抗压弹性模量24.5S G E ⋅⋅=矩形支座 )(200100b a b a l l t l l S +⋅⋅= 圆形支座 104t d S =E ——支座抗压弹性模量,MPa ;G ——支座抗剪弹性模量,MPa ;S ——支座形状系数;a l 0——矩形支座加劲钢板短边尺寸,mm ;b l 0——矩形支座加劲钢板长边尺寸,mm ;1t ——支座中间单层橡胶片厚度,mm ;0d ——圆形支座加劲钢板直径,mm ;方法二:“衡水前进工程橡胶有限公司”的《支座资料》支座抗压弹性模量16266-⨯=S ES ——支座形状系数,由支座型号表格可直接查到;。