五年级奥数之计数问题
小学五年级奥数专题之几何计数题一及答案

A B C D 1、分别用枚举法、、分别用枚举法、组合组合法数下列图形:法数下列图形:有多少条有多少条线段线段?E F 有多少个角?有多少个角?有多少个有多少个三角形三角形?有多少个有多少个长方形长方形? 有多少个有多少个梯形梯形?有多少个正方形?有多少个正方形?取出一个由四个小方格组成的田形,一共有多少种不同的方法?的田形,一共有多少种不同的方法?2、如图6-27,这是一个4×8的矩形的矩形网格网格,每一个小格都是一个正方形。
请问:⑴包含有两个“★”的矩形共有多少个?⑴包含有两个“★”的矩形共有多少个?⑵至少包含一个“★”的矩形有多少个?⑵至少包含一个“★”的矩形有多少个?3、如图6-21,木板上钉着12枚钉子,排成三行四列的长枚钉子,排成三行四列的长方阵方阵。
用橡皮筋一共可以套出多少个不同的三角形?少个不同的三角形?4、如图,如图,在在半圆弧及其直径上共有9个点,个点,以这些点以这些点为顶点可以画出多少个为顶点可以画出多少个四边形四边形?多少个多少个三角形三角形?5、一个三角形的3条边上共有7个点,画出这7个点之间的全部连线(同一条边上的(同一条边上的两点两点不画)后,发现在这些连线的发现在这些连线的交点交点没有出现过重合;没有出现过重合;请问三角形内共有多少个交请问三角形内共有多少个交点?点?答案:答案: 1、C 2 6=15;C 2 5=10;C 2 5=10;30;C 2 5·C 25=100;60;25 2、30;162 3、C 3 12-20=200 4、C 4 9-1-C 3 4·C 1 5=105 5、C 4 7-4=27 。
五年级奥数计数综合容斥原理(ABC级)学生版

一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积. 包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:知识结构容斥原理1.先包含——A B +重叠部分AB 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分AB 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 实验小学四年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组?【巩固】 芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?【例 2】 某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了.这个班既没参加美术小组也没参加音乐小组的有多少人?【巩固】 四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?【例 3】 对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人.这个班一共有多少人?【巩固】 某班组织象棋和军棋比赛,参加象棋比赛的有32人,参加军棋比赛的有28人,有18人两项比赛都参加了,这个班参加棋类比赛的共有多少人?【例 4】 47名学生参加数学和语文考试,其中语文得分95分以上的14人,数学得分95分以上的21人,两门都不在95分以上的有22人.问:两门都在95分以上的有多少人?【巩固】 有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?【例 5】 一个班48人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了.已知做完语文作业的有37人;做完数学作业的有42人.这些人中语文、数学作业都完成的有多少人?【巩固】 四年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【例 6】 某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的例题精讲图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++-A B B C A C --计算时都被减掉了.共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?【巩固】某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?【例 7】四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.【巩固】五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.【例 8】在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:⑴ 三种都带了的有几人?⑴ 只带了一种的有几个?【巩固】盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.【例 9】三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【巩固】如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【例 10】如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【例 11】在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【巩固】求在1至100的自然数中能被3或7整除的数的个数.【例 12】某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会?【巩固】某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.课堂检测【随练1】四(二)班有48名学生,在一节自习课上,写完语文作业的有30人,写完数学作业的有20人,语文数学都没写完的有6人.⑴问语文数学都写完的有多少人?⑴只写完语文作业的有多少人?【随练2】光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?【随练3】一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.家庭作业【作业1】四(1)班有46人,其中会弹钢琴的有30人,会拉小提琴的有28人,则这个班既会弹钢琴又会拉小提琴的至少有人。
五年级奥数题及答案

五年级奥数题及答案五年级奥数题及答案⼀、复杂计算题:1、(873×477-198)÷(476×874+199)2、2000×1999-1999×1998+1998×1997-1997×1996+…+2×13、297+293+289+…+209复杂计算题答案:1、(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=12、2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。
3、297+293+289+…+209解:(209+297)*23/2=5819⼆、整除问题:三个连续⾃然数的乘积是210,求这三个数.整除问题答案:∵210=2×3×5×7 ∴可知这三个数是5、6和7。
三、容积问题:测量你的试卷(取整厘⽶数.),长厘⽶,宽厘⽶.若把它的四个⾓各剪去⼀个边长为4厘⽶的正⽅形后,做成⼀个⾼4厘⽶的长⽅体纸盒,它的容积是多少?容积问题解答:容积:(长-8)×(宽-8)×4四、多少棵树问题:正⽅形操场四周栽了⼀圈树,每两棵树相隔5⽶。
甲⼄⼆⼈同时从⼀个⾓出发,向不同的⽅向⾛去(如下图),甲的速度是⼄的2倍,⼄在拐了第⼀弯之后的第5棵树与甲相遇。
操场四周⼀共栽了多少棵树? 解答:由于甲速是⼄速的2倍,所以⼄在拐了第⼀弯时,甲正好拐了两个弯,即两个⼈开始同时沿着最上边⾛。
⼄⾛过了5棵树,也就是⾛过了5个间隔,所以甲⾛过了10个间隔,四周⼀共有(5+10)×4=60个间隔,根据植树问题,⼀共栽了60棵树。
小学奥数计数之容斥原理练习【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是为⼤家整理的《⼩学奥数计数之容斥原理练习【三篇】》供您查阅。
【第⼀篇】1.⼀个班有45个⼩学⽣,统计借课外书的情况是:全班学⽣都借有语⽂或数学课外书.借语⽂课外书的有39⼈,借数学课外书的有32⼈.语⽂、数学两种课外书都借的有⼈. 3.在1~100的⾃然数中,是5的倍数或是7的倍数的数有个. 4.某区100个外语教师懂英语或俄语,其中懂英语的75⼈,既懂英语⼜懂俄语的20⼈,那么懂俄语的教师为⼈. 5.六⼀班有学⽣46⼈,其中会骑⾃⾏车的17⼈,会游泳的14⼈,既会骑车⼜会游泳的4⼈,问两样都不会的有⼈. 6.在1⾄10000中不能被5或7整除的数共有个. 7.在1⾄10000之间既不是完全平⽅数,也不是完全⽴⽅数的整数有个. 8.某班共有30名男⽣,其中20⼈参加⾜球队,12⼈参加蓝球队,10⼈参加排球队.已知没⼀个⼈同时参加3个队,且每⼈⾄少参加⼀个队,有6⼈既参加⾜球队⼜参加蓝球队,有2⼈既参加蓝球队⼜参加排球队,那么既参加⾜球队⼜参加排球队的有⼈. 9.分母是1001的最简真分数有个. 10.在100个学⽣中,⾳乐爱好者有56⼈,体育爱好者有75⼈,那么既爱好⾳乐,⼜爱好体育的⼈最少有⼈,最多有⼈.【第⼆篇】[ 例1 ] 洗好的8块⼿帕夹在绳⼦上晾⼲,同⼀个夹⼦夹住相邻的两块⼿帕的两边,这样⼀共要多少个夹⼦? 分析:两块⼿帕有⼀边重叠,⽤3个夹⼦。
三块⼿帕有两边重叠,⽤4个夹⼦,我们发现夹⼦数总⽐⼿帕数多1,因此8块⼿帕就要⽤9个夹⼦。
[ 例2 ] 把图画每两张重叠在⼀起钉在墙上,现在有5张画要多少个图钉呢? 分析:每排两张画要6个图钉,每排三张画要8个图钉,每排四张画要10个图钉。
可以看出,图画每增加⼀张,图钉就要增加2颗,那么5张画要12个图钉。
1.有两块⽊板,⼀块长72厘⽶,另⼀块长56厘⽶,如果把两块⽊板重叠后钉成⼀块⽊板,重叠部分是20厘⽶。
五年级上册数学试题-奥数:图形定稿全国通用

(2)
3
例 6.如图,从甲地到乙地有 2 条路可走,从乙地到丙地有 3 条路可走;从甲地到丁地有 4 条路可走, 从丁地到丙地有 2 条路可去。从甲地到丙地共有多少种不同的走法?
【试一试】 1、如果线段 AB 上共有 8 个点(包括 A、B 两点),那么,共有多少条线段?
2、联结 A、B、C、D 四个城市的道路如图所示: (1)从 A 城经 B 城到 C 城的不同走共有多少种? (2)从 A 城到 C 城的不同走法共有多少种?
厘米?
AE
FB
D H
【试一试】
GC
1、求出阴影部分的周长。
2、如右图,阴影部分是正方形,求出最大的长方形的周长。
5 厘米
A
B
E
H
7 厘米
C
D
E
G
当堂测试
1、下图是一个锯齿状的零件,每一个锯齿的两条线段都长 2 厘米,求这个零件的周长.
2、求图 12、图 13 的周长。
3、图 14 是一座楼房的平面图,这座楼房平面图的周长是多少米?
例 1.一个等腰三角形中,有一个内角的度数是另一个内角的 4 倍,则这个等腰三角形的顶角是 _________度。
【试一试】
1、17 点整,钟面上的分针和时针所组成的角是( )。
A、锐角
B、直角
C、钝角
D、平角
2、在直角、锐角、平角、钝角中,度数最小的角是( )。
A、 直角
B、锐角
C、平角
D、钝角
3、在一个直角三角形中,已知一个锐角是 68°,则另一个锐角是( )。
能力测试(一)…………………………………………………………………25
第六讲
割补 …………………………………………………………28
小学奥数 几何计数(三) 精选练习例题 含答案解析(附知识点拨及考点)

1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、立体几何计数【例 1】 用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。
五年级奥数专题:图形的计数

五年级奥数专题:图形的计数A 3A 1OA 2A 4A 5A 7A 6A 8A 9A 10A 11 A 12九图形的计数(A)年级班姓名得分⼀、填空题1.下图中⼀共有()条线段.2. 如右上图,O 为三⾓形A 1A 6A 12的边A 1A 12上的⼀点,分别连结OA 2,OA 3,…OA 11,这样图中共有_____个三⾓形.3. 下图中有_____4. 右上图中共有_____个梯形.5.数⼀数(1)⼀共有( )个长⽅形. (2)6. 在下图中,所有正⽅形的个数是______.AC E7. 在⼀块画有4?4⽅格⽹⽊板上钉上了25颗铁钉(如下图),如果⽤线绳围正⽅形,最多可以围出_____个.8. ⼀块相邻的横竖两排距离都相等的钉板,上⾯有4?4个钉(如右图).以每个钉为顶点,你能⽤⽪筋套出正⽅形和长⽅形共_____个.9. 如下图,⽅格纸上放了20枚棋⼦,以棋⼦为顶点的正⽅形共有_____个.10. 数⼀数,下图是由_____个⼩⽴⽅体堆成的.要注意那些看不见的.⼆、解答题11. 右图中共有7层⼩三⾓形,求⽩⾊⼩三⾓形的个数与⿊⾊⼩三⾓形的个数之⽐.12. 下图中,AB 、CD 、EF 、MN 互相平⾏,则图中梯形个数与三⾓形个数的差是多少?13.现在都是由边长为1厘⽶的红⾊、⽩⾊两种正⽅形分别组成边长为2厘⽶、4厘⽶、8厘⽶、9厘⽶的⼤⼩不同的正⽅形、它们的特点都是正⽅形的四边的⼩正⽅形都是涂有红颜⾊的⼩正⽅形,除此以外,都是涂有⽩⾊的⼩正⽅形,要组成这样4个⼤⼩不同的正⽅形,总共需要红⾊正⽅形多少个?⽩⾊正⽅形多少个?14ABC的每⼀边4等分,过各分点作边的平⾏线,在所得下图中有多少个平⾏四边形?九图形的计数(B)年级班姓名得分⼀、填空题1. 下图中长⽅形(包括正⽅形)总个数是_____.2. 右上图中有正⽅形_____个,三⾓形_____个,平⾏四边形_____个,梯形_____个.3. 下图中共出现了_____个长⽅形.4. 先把正⽅形平均分成8个三⾓形.再数⼀数,它⼀共有_____个⼤⼩不同的三⾓形.5. 图形中有_____个三⾓形.6.如右上图,⼀个三⾓形分成36个⼩三⾓形.把每个⼩三⾓形涂上红⾊或蓝⾊,两个有公共边的⼩三⾓形要涂上不同的颜⾊,已知涂成红⾊的三⾓形⽐涂成蓝⾊的三⾓形多,那么多_____个.7. 下图是由⼩⽴⽅体码放起来的,其中有⼀些⼩⽅体看不见.图中共有_____个⼩⽴⽅体.8. 右上图中共有_____个正⽅形.9. 有九张同样⼤⼩的圆形纸⽚,其中标有数码“1”的有1张;标有数码“2”的有2张;标有数码“3”的有3张,标有数码“4”的也有3张。
高斯小学奥数五年级上册含答案_第12讲_几何计数

第十二讲几何计数漫画,共一格一群古代的人在田地中劳作,田地中阡陌交错。
旁边文字描述:西周时期,道路和渠道纵横交错,把土地分隔成方块,形状像“井”字,因此称做“井田”。
分割田地大概有3条横线、4条竖线左右,可适当增减。
人的耕作情况要符合西周时的实际情况,比如不能有拖拉机,不能有牛耕。
后面给出问题:在图中,有多少个“井”字?几何计数,同学们一看这一讲的名字就知道了,我们学习的内容就是专门数几何图形的个数.可能会有同学觉得这类问题很简单,数数嘛,一个一个数就能数清楚了,而且图都画好了,一边看图一边数,肯定不会数错的.真的是这么简单吗?数图形有没有更好的办法呢?学完这一讲后,大家就知道答案了.三角形应该是很简单的几何图形了,我们先从三角形数起吧.例题1.下列图形中各有多少个三角形?「分析」对于一般的几何计数问题,最简单也最常用的方法是枚举法,但注意枚举不是漫无目的的举例,一定要注意按照一定的顺序来枚举,并注意寻找规律.那么,本题应该按照怎样的顺序去枚举呢?下图中有多少个三角形?例题2.右图中共有多少个三角形?「分析」对于这道题目,我们也首先想到枚举法.应该按照怎样的顺序去枚举呢?你能发现其中的规律吗?练习2:.请数出这个图形中有多少个三角形.下面我们来学习数正方形和长方形,同学们要学会在观察、思考、分析中总结归纳出解决问题的规律和方法.例题3.下列图形中,分别有多少个正方形?「分析」同上一题,在枚举的时候要注意顺序,这样才能做到不重不漏.围棋棋盘是由19条横线和19条竖线组成的正方形方阵,其中有多少个正方形呢?例题4.在右图中(下列各小题中,长方形均包括正方形)(1)一共有多少个长方形?(2)包含“★”的长方形共多少个?(3)包含“☆”的长方形共多少个?(4)两个五角星都包含的长方形共多少个?(5)至少包含一个五角星的长方形共多少个?(6)两个五角星都不包含的长方形共多少个?★☆「分析」如果还用枚举法处理这道题目,就会越数越复杂.那有没有好一点的方法?我们换一个角度来思考这个问题.同学们可以想想看,怎样才能在图中画出一个长方形来?当然很简单,只需要画出它的两条长和两条宽就可以了,也就是只需要画出两条横线和两条竖线.如右图所示.因此,长方形的个数就是选择两条横线和两条竖线的所有方法数.下图中是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.那么:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?通过上面的学习我们可以知道,几何计数与我们之前学过的有序思考、分类枚举、乘法原理以及排列组合都有着密切的关系.同学们在学习过程中要勤于观察,勤于思考,这样才能发现和总结出更好的方法.例题5.右图中共有多少个长方形?(注意:长方形包括正方形)「分析」我们可以考虑下方3×5的长方形和右边6×2的长方形,分别计算出两部分中长方形的个数,这样所有的长方形都考虑到了,但是其中有重复计算的.哪些重复计算了?容易看出来重复计算的是右下角重叠的3×2的部分,那么把这部分中的长方形减去就能得到最后答案.例题6.右图中有多少个平行四边形?「分析」题目中要求数出平行四边形的个数,那么你能发现图中有几类平行四边形吗?如何数出每一种的数量呢?数学家的墓志铭一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志.古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在叮嘱:“不要弄坏我的圆”.)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二.德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算而献身于数学,以至在数学上作出许多重大贡献.甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑.16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数点后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上.瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语.阿基米德(公元前287年—公元前212年)作业1. 右图中共有多少个三角形?作业2. 右图中共有多少个三角形?作业3. 右图是由12个11⨯的小正方形组成的,数一数图中一共有多少个正方形.作业4. 右图是由15个11⨯的小正方形组成的,数一数图中一共有多少个长方形.(长方形包括正方形.)作业5. 在右图中(下列各小题中,长方形均包括正方形)(1)包含“★”的长方形共多少个? (2)包含“☆”的长方形共多少个? (3)两个五角星都包含的长方形共多少个?第十二讲几何计数例题1.答案:16;15详解:注意有序枚举:(1)左图中由一部分组成的三角形有6个,由两部分组成的三角形有3个,由三部分组成的三角形有6个,由六部分组成的三角形有1个,共计16个.(2)右图中由一部分组成的三角形有4个,由两部分组成的三角形有6个,由三部分组成的三角形有2个,由四部分组成的三角形有2个,由六部分组成的三角形有1个,共计15个.例题2.答案:78详解:恰当分类,有序枚举.图中的三角形可以分为两类,一类是尖朝上的,一类是尖朝下的.设最小的三角形边长为1.(1)尖朝上的:边长为1的三角形有123410+++=个;边长为2的三角形有1236++=个;边长为3的三角形有123410+++=个;边长为4的三角形有1236++=个;边长为5的三角形有123+=个;边长为6的三角形有1个.共计56个.(2)尖朝下的:边长为1的三角形有1234515++++=个;边长为2的三角形有1236++=个;边长为3的三角形有1个.共计22个.图中一共有78个三角形.例题3.答案:91,112详解:分别考虑边长为1、2、3、4、5、6的正方形各有多少个即可.左图有66554433221191⨯+⨯+⨯+⨯+⨯+⨯=个,右图有766554433221112⨯+⨯+⨯+⨯+⨯+⨯=个.例题4.答案:(1)756;(2)216;(3)240;(4)108;(5)348;(6)408详解:(1)7条横线选2条作为长,9条竖线选2条作为宽,有22792136756C C⨯=⨯=个.(2)含★的长方形上下左右边分别有3、4、3、6种选法,这样长方形有3436216⨯⨯⨯=个.(3)含☆的长方形上下左右边分别有4、3、5、4种选法,这样长方形有4354240⨯⨯⨯=个.(4)两个五角星都含的长方形上下左右边分别有3、3、3、4种选法,长方形有3334108⨯⨯⨯=个.(5)根据容斥原理,至少包含一个五角星的长方形有216240108348+-=个.(6)用排除法,两个五角星都不包含的长方形有756348408-=个.例题5.答案:135个详解:如图,下方阴影部分中一共有长方形224690C C⨯=个;右方阴影部分中一共有长方形227363C C⨯=个.其中右下方3×2长方形中的长方形被重复计算了,共有224318C C⨯=个.所以图中一共包含长方形906318135+-=个.例题6.答案:45个.详解:所有平行四边形一共有三种不同的方向:尖朝右、尖朝左和尖朝上,如图:这就提示我们可以按这个特点来分类,因为根据图形的对称性,这三种平行四边形的个数是一样多的.只需数出其中的一种,就能算出最后的答案了.下面我们来数尖朝上的平行四边形.所有这种平行四边形的边都是斜的,没有横线,所以要数它们的个数,可以把图中的所有横线都去掉,变成如下图形:这样一来图形就简单了,这个图里的平行四边形很容易数出来:最小的平行四边形有10个,两个小平行四边形拼成的有12个,三个小平行四边形拼成的有6个,四个小平行四边形拼成的有5个,六个小平行四边形拼成的有2个,共35个.而对于另外两种平行四边形,也可根据同样的方法数出,都是35个.因此原来图形中一共有353105⨯=个平行四边形.练习1.答案:8个;12个简答:(1)左图中由一部分组成的三角形有3个,由两部分组成的三角形有4个,由四部分组成的三角形有1个,共计8个.(2)右图中由一部分组成的三角形有5个,由两部分组成的三角形有4个,由三部分组成的三角形有2个,由五部分组成的三角形有1个,共计12个.练习2.答案:48个简答:由1个小三角形组成的三角形有151025+=个;由4个小三角形组成的三角形有10313+=个;由9个小三角形组成的三角形有6个;由16个小三角形组成的三角形有3个;由25个小三角形组成的三角形有1个;共有48个.练习3.答案:2470个简答:按正方形的大小分类,共有2222191817119203962470++++=⨯⨯÷=个.练习4.答案:(1)450;(2)144简答:(1)5条横线选2条作为长,10条竖线选2条作为宽,有225101045450C C⨯=⨯=个.(2)含黑点的长方形上下左右边分别有2、3、6、4种选法,这样长方形有2364144⨯⨯⨯=个.作业1.答案:10个简答:由一个部分组成的三角形有5个,由两个部分组成的三角形有4个,由三个部分组成的三角形有1个,共计10个.作业2.答案:14个简答:边长为1的有10个,边长为2的有4个,共计14个.作业3.答案:20个简答:正方形数目:边长为1的12个,边长为2的6个,边长为3的2个,共计20个.作业4. 答案:90个简答:长方形有2246C C 90⨯=个.作业5. 答案:(1)180个;(2)192个;(2)108个简答:(1)3354180⨯⨯⨯=个;(2)4443192⨯⨯⨯=个;(3)3343108⨯⨯⨯=个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计数问题
例1、一天中,从甲地到乙地有3班火车、4班汽车、2班飞机,在这一天中从甲地到乙地,乘坐这些交通工具有多少种不同的走法?
例2、现有1克、2克、4克的砝码各一个,那么在天平上能称出多少不同重量的物体?(只允许砝码放在天平的右边的盘子里)
例3、在1~200这200个整数中含数字7的数共有多少个?
例4、下图中一只蚂蚁从A点出发,沿着某条线段爬到C点,行进中,同一点或同一线段只能经过一次,这只蚂蚁最多有多少种不同的爬法?
例5、用1、2、3、4这四个数字可以组成多少个不同的三位数?
例6、A、B、C、D、E,5人排成一排,如果C不站在中间,一共有多少有种不同的排法?
例7、四个装药用的瓶子贴了标签,其中恰好有三个贴错了,那么错的情况有多少种?
例8、现在要把A、B、C、D、E,5个棋子放在5×5的方格里,每行和每列只能出现一个棋子,一共有多少种放法?
例9、有两个相同的正方体,每个正方体的六个面上分别标有数字 1、2、3、4、5、6,将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?
例10、用红、绿、蓝、黄四色去涂编号为1、2、3、4号的长方
一共有多少种不同的涂法?
应用与拓展
1、学校组织读书活动,要求每个同学读一本书。
小明到图书馆借书时,图书馆有不同的外语书 150 本,不同的科技书200 本,不同的小说100 本。
那么小明借一本书可以有多少种不同的选法?
2、从1~9这9个数中,选2个数使它们的和能被3整除,问:有多少种不同的选法?
3、在1~100的自然数中,数字“2”出现了多少次?
4、从甲地到乙地有2 条路可走,从乙地到丙地有 2 条路可走,从甲地到丙地有 3 条路可走.那么,从甲地到丙地共有多少种走法?
5、用0、1、2、3这四个数字可以组成多少个不同的三位数?
6、有6个同学排成一排照相,共有多少种不同的站法?
7、爸爸、妈妈、客人和我四人围着圆桌喝茶。
若只考虑每人相邻的情况,问共有多少种不同的入座方法?
8、由数字1、2、3、4、5、6共可以组成多少个没有重复数字的四位偶数?
9、从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?
10、一个正六边形被分成了6个相同的小三角形。
如果用红、黄两种颜色分别涂满小三角形,那么共有多少种不同的涂法。
(旋转后图案相同的认为是同一种涂法。
)。