2019年重庆市九龙坡区育才中学中考数学一诊试卷(解析版)
重庆育才中学九年级下第一次诊断考试数学试卷(无答案)

重庆育才中学九年级下第一次诊断考试数学试卷(无答案)第一次诊断考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将解答书写在答题卡(卷)对应的位置上.1. 在实数31-,2-,0,1中,最小的数是( )2.下列图形中是中心对称图形的是( )3.计算()232a a ÷正确的是( )4.函数xx y 1+=中,x 的取值范围是( ) A .1->x B .1-≥x C .1->x 且0≠x D .1-≥x 且0≠x5.估计420-的值应在( )之间A .3.2和4.2B .4.2和5.2C .5.2和6.2D .6.2和7.26.下列命题中错误的是( )A .对角线垂直且相等的四边形是正方形B .对角线互相平分且垂直的四边形是菱形C .对角线垂直的矩形是正方形D .对角线互相平分且相等的四边形是矩形7. 如图,点P 是□ABCD 边上的中点,射线CP 交DA 的延长线于点E ,若3=∆APE S ,则ABCD S 等于( )8.下列图形都是由同样大小的小圆按照一定规律组成的,其中第①个图形中一共有5个小圆圈,第②个图形中一共有13个小圆圈,第③个图中一共有25个小圆圈,……,按此规律,则第⑨个图中小圆圈的个数为( )9.如图,已知BC 与⊙O 相切于点B ,CO 的延长线交⊙O 于点A ,连接AB ,若32=BC ,6=AC ,则⊙O 的半径为( )10. 如图,在斜坡EF 上有一信号发射塔CD ,某兴趣小组想要测量发射塔CD 的高度,于是在水平地面用仪器测得塔顶D 的仰角为︒31,已知仪器AB 高为m 2,斜坡EF 的坡度为4:3=i ,塔底距离坡底的距离m CE 10=,最后测得塔高为m 12,A 、B 、C 、D 、E 在同一平面内,则仪器到坡底距离AE 约为( )米(结果精确到1.0,参考数据:52.031sin ≈︒,86.031cos ≈︒,6.031tan ≈︒)11. 若整数a 关于x 的不等式组⎪⎩⎪⎨⎧<-≤-++02132a x x a x 有解,且使关于x 的分式方程1323=----xa x x 有整数解,则符合条件的所有整数a 的和是( ) 12.如图,反比例函数()0,0<≠=x k xk y 经过ABO ∆边AO 的中点D ,与边AB 交于点E ,且7:1:=EA BE ,连接DE ,若AOE ∆的面积为445,则k 的值为( ) 二、填空题:(本大题共6个小题,每小题4分,共24分)在每小题中,请将正确答案书写在答题卡(卷)对应的位置上.13.重庆市双福育才中学位于重庆市江津双福新区,学校占地面积约为105000平方米,为同学们提供了宽阔的学习和生活环境,将数105000用科学记数法可表示为 .14.计算:=+⎪⎭⎫ ⎝⎛---1221232. 15.如图,ABC Rt ∆中,︒=∠90B ,︒=∠30C ,以B 为圆心AB 为半径画弧,交AC 于点E ,交BC 于点D ,若2=AB ,则图中阴影部分的面积是 .16. 初三(1)班统一购买夏季校服,统计出各种尺码的校服的数量如下表所示: 校服的尺码(单位:厘米)160 165 170 175 180 185 195 数量(单位:件)24 10 22 14 6 1由表可以看出,在校服的尺码组成的一组数据中,众数是 .17. 甲、乙两车在依次有A 、B 、C 三地的笔直公路上行驶,甲车从B 地出发匀速向C 地行驶,同时乙车从B 地出发匀速向A 地行驶,到达A 地并在A 地停留1小时后,调头按原速向C 地行驶,在两车行驶的过程中,甲乙两车之间的距离y (千米)与行驶时间x (小时)之间的函数图像如图所示,当甲、乙两车相遇时,距A 地的距离为 km .18.某学习小组在研究三角形的平移时,发现了一些有趣的规律,如图,有两个全等的直角ABC ∆和直角DEF ∆,且A 、B 、D 、E 在同一直线上,其中4=AB ,3=BC ,固定ABC ∆,将DEF ∆沿射线AB 向右平移,连接BF ,过D 点作BF DH ⊥,垂足点为H 点,连接CH ,当BC AD =时,求=CH .(请结合参考图作答).三、解答题:(本大题共2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)对应的位置上.19.如图,直线CD AB //,点E 在AB 上,点F 在CD 上,连接EF ,EH 平分BEF ∠,交CD 于点H ,过点F 作EF FG ⊥,交EH 于点G ,若︒=∠32G ,求HFG ∠的度数.20.2018年3月30日初2018级同学以优异的成绩在双福育才中学完成了中招体育测试,初2019级为了准备明年的体考,对1、2、3、4班进行了体考模拟测试,并对三个班的满分进行了统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中2班体育成绩满分人数对应的圆心角是 度;并补全条形统计图;(2)经过体育老师推荐,这些满分同学中有4名同学(1女3男)的跳远动作十分标准,12班班主任准备从这4名同学中任选2名给自己班级的同学示范标准动作,请利用画树状图或列表的方法求出选出2名同学恰好是一男一女的概率.四、解答题:(本大题共6个小题,21-25每小题10分,26题12分,共62分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)对应的位置上.21.化简下列各式:(1) ()()()()y x x x y x y y x ---+--102222 (2) aa a a a a 32331342+-÷⎪⎭⎫ ⎝⎛+-+- 22.如图,在平面直角坐标系中,直线()0≠+=kb kx y 的图像与正比例函数x y 2-=的图像交于点A ,与x 轴交于点C ,与y 轴交于B 点,21tan =∠BCO ,A 点的纵坐标为2;(1)求一次函数的解析式;(2)点D 是点B 关于x 轴的对称点,将正比例函数x y 2-=沿x 轴向右平移4个单位,与一次函数()0≠+=k b kx y 交于点E ,连接DE 、DC ,求ECD ∆的面积.23.最近由于网络视频的兴起,让重庆一度成为“网红”城市,并且使得到山城重庆的游客剧增,根据国家旅游××局的官方统计,2017年,来重庆旅游的人数达到42.5亿人次,并且根据今年2018年的前三个月的统计,对比去年同期都是高速增长.(1)某旅游公司2018年3月共接待国内外游客共3000人次,其中国外游客不足国内游客的101,则国内游客至少有多少人? (2)该旅游公司根据游客的需求推出了“快速游”和“精品游”两种套餐,两种套餐的3月份价格分别为:800元/人和2000元/人,公司为了接纳更多的游客,提升口碑,4月份“快速游”套餐价格比3月下降了%2a ,4月份“精品游”套餐价格比3月下降了%10,月末统计;4月旅游总人数达4500人次,其中“精品游”套餐人次占总人次的%35a ,总人数达:5.391万元,求a 的值.24. 已知菱形ABCD 中,E 为AD 边上一点,且BE BA =,连接BD .(1)如图1,过B 作AD BF ⊥,垂足为F ,若32=BD ,1=DE ,求菱形ABCD 的边长;(2)如图2,点M 为边CD 上一点,连接BM ,且DBE CBM ∠=∠,过E 作BM EG ⊥,垂足点为G 点,O 为BD 的中点,连接GO 并延长交BE 于H 点,交AD 于N 点,求证EN AN =.25. 阅读下列材料,解决问题对任意一个四位数n ,将这个四位数n 千位上的数字与十位上的数字对调、百位上的数字与个位上的数字对调后可以得到一个新的四位数m ,记()99m n n F -=,例如:1423=n ,对调千位上数字与十位上数字及百位上数字与个位上数字得到2314,所以()99923141423-=-=n F .如果四位数n 满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“平衡数”,例如:1423,因为3241+=+。
重庆市九龙坡区育才中学2019-2020学年九年级(上)开学数学试卷 解析版

2019-2020学年九年级(上)开学数学试卷一.选择题(共12小题)1.下列各数中,比﹣2大的数是()A.﹣3 B.C.0 D.﹣22.当x=2时,一次函数y=﹣2x+1的函数值y是()A.﹣3 B.﹣2 C.﹣1 D.03.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表选手甲乙丙丁平均数(环)9.4 9.4 9.4 9.4方差(环2)0.12 0.09 0.22 0.18 则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁4.若分式有意义,则x的取值范围是()A.x≠﹣3 B.x≠0 C.x≠D.x≠35.下列命题正确的是()A.有一组邻边相等的平行四边形是矩形B.四条边相等的四边形是菱形C.有一个角是直角的平行四边形是菱形D.对角线相等的四边形是矩形6.估计(2+3)的值在下列哪两个整数之间()A.6和7之间B.7和8之间C.8和9之间D.9和10之间7.已知a2﹣3a﹣7=0,则3a2﹣9a﹣1的值为()A.18 B.19 C.20 D.218.如图,在△ABC中,D为AC的中点且DE∥AB交BC于E,AF平分∠CAB交DE于点F.若DF=6,则AC的长为()A.3 B.6 C.10 D.129.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长.在这个问题中,AC的长为()A.4尺B.尺C.尺D.5尺10.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=4,将菱形OABC绕原点顺时针旋转105°至菱形OA′B′C′的位置,则点B′的坐标为()A.(2,﹣2)B.(,)C.(2,﹣2)D.(,)11.已知关于x的分式方程+1=0有整数解,且关于x的不等式组的解集为x≤﹣1,则符合条件的所有整数a的个数为()A.2 B.3 C.4 D.512.如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.二.填空题(共6小题)13.当x=时,分式的值为0.14.8月24日,据猫眼数据显示,《哪吒之魔童降世》内地票房达4410000000元,超过《超人总动员2》在北美创下的6.08亿美元纪录,成为全球单一市场票房最高动画电影.请把数4410000000科学记数法表示为.15.关于x的一元二次方程(k﹣2)x2﹣3x+2=0有实数根,则k的取值范围为.16.如图,点D是Rt△ABC斜边AB的中点,AC=8,CD=8.5,那么BC=.17.国防教育和素质拓展期间,某天小明和小亮分别从校园某条路的A,B两端同时相向出发,当小明和小亮第一次相遇时,小明觉得自己的速度太慢便决定提速至原速的倍,当他到达B端后原地休息,小亮匀速到达A端后,立即按照原速返回B端(忽略掉头时间).两人相距的路程y(米)与小亮出发时间t(秒)之间的关系如图所示,当小明到达B端后,经过秒,小亮回到B端.18.某超市以A、B两种糖果为原料,组装出了甲、乙、丙三种糖果礼盒(礼盒包装成本忽略不计).其中,甲礼盒每盒含1千克A糖果、1千克B糖果;乙礼盒每盒含2千克A糖果、1千克B糖果;丙礼盒每盒含1千克A糖果、3千克B糖果.甲礼盒每盒售价48元,利润率为20%.国庆节期间,该超市进行打折促销活动,将甲、乙、丙礼盒各一盒合组装成大礼包,并且每购买一个大礼包可免费赠送一个乙礼盒,这样即可实现利润率为30%,则每个大礼包的售价为元.三.解答题(共8小题)19.计算:(1)(1﹣π)0﹣(﹣1)2018﹣(﹣)﹣3+(2)|﹣|+﹣(+1)2﹣20.解方程:x2﹣x﹣20=0.21.在校园歌手大赛中,甲、乙两位同学的表现分外突出,现场A、B、C、D、E、F六位评委的打分情况以及随机抽取的50名同学的民意调查结果分别如下统计表和不完整的条形统计图:(说明:随机抽取的50名同学每人必须从“好”、“较好”、“一般”中选一票投给每个选手)A B C D E F甲89 97 90 93 95 94乙89 92 90 97 94 94 (1)a=,六位评委对乙同学所打分数的中位数是,并补全条形统计图;(2)学校规定评分标准如下:去掉评委评分中最高和最低分,再算平均分并将平均分与民意测评分按2:3计算最后得分.求甲、乙两位同学的最后得分.(民意测评分=“好”票数×2+“较好”票数×1+“一般”票数×0)22.已知:如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,DE平分∠ADB交AB于点E,过点C作CF∥AB交ED延长线于点F,若∠A=48°.(1)求∠DBC的度数;(2)求∠F的度数.23.直线l1:y=kx+b与直线l2:y=2x﹣4的交点M的纵坐标为2,且与直线y=﹣x﹣2交x轴于同一点.(1)求直线l1的表达式;(2)在给出的平面直角坐标系中作出直线l1的图象,并求出它与直线l2及x轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>0>2x﹣4的解集24.开学初期,天气炎热,水杯需求量大.双福育才中学门口某超市购进一批水杯,其中A 种水杯进价为每个15元,售价为每个25元;B种水杯进价为每个12元,售价为每个20元(1)该超市平均每天可售出60个A种水杯,后来经过市场调查发现,A种水杯单价每降低1元,则平均每天的销量可增加10个.为了尽量让学生得到更多的优惠,某天该超市将A种水杯售价调整为每个m元,结果当天销售A种水杯获利630元,求m的值.(2)该超市准备花费不超过1600元的资金,购进A、B两种水杯共120个,其中B种水杯的数量不多于A种水杯数量的两倍.请为该超市设计获利最大的进货方案,并求出最大利润.25.如图,在平行四边形ABCD中,AE⊥BD于E.(1)若BC=BD,,AD=15,求△ABD的周长.(2)若∠DBC=45°,对角线AC、BD交于点O,F为AE上一点,且AF=2EO,求证:CF =AB.26.如图,直线y=x+6与y轴交于点A,与x轴交于点B,点E为线段AB的中点,∠ABO的平分线BD与y轴相交于点D,A、C两点关于x轴对称.(1)一动点P从点E出发,沿适当的路径运动到直线BC上的点F,再沿适当的路径运动到点D处.当P的运动路径最短时,求此时点F的坐标及点P所走最短路径的长;(2)点E沿直线y=3水平向右运动得点E',平面内是否存在点M使得以D、B、M、E'为顶点的四边形为菱形,若存在,请直接写出点E′的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.下列各数中,比﹣2大的数是()A.﹣3 B.C.0 D.﹣2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣<﹣3<﹣2<0,所以各数中,比﹣2大的数是0.故选:C.2.当x=2时,一次函数y=﹣2x+1的函数值y是()A.﹣3 B.﹣2 C.﹣1 D.0【分析】把x=2代入函数解析式,求出即可.【解答】解:把x=2代入得:y=﹣2×2+1=﹣3,故选:A.3.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表选手甲乙丙丁平均数(环)9.4 9.4 9.4 9.4方差(环2)0.12 0.09 0.22 0.18 则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵这四人中方差最小的是乙,∴这四人中发挥最稳定的是乙,故选:B.4.若分式有意义,则x的取值范围是()A.x≠﹣3 B.x≠0 C.x≠D.x≠3【分析】分式有意义的条件是分母不等于零.【解答】解:分式有意义,所以x+3≠0,解得:x≠﹣3.故选:A.5.下列命题正确的是()A.有一组邻边相等的平行四边形是矩形B.四条边相等的四边形是菱形C.有一个角是直角的平行四边形是菱形D.对角线相等的四边形是矩形【分析】利用矩形及菱形的判定方法分别判断后即可确定正确的选项.【解答】解:A、有一组邻边相等的平行四边形是菱形,故原命题错误;B、四条边相等的四边形是菱形,正确;C、有一个角是直角的平行四边形是矩形,故原命题错误;D、对角线相等的平行四边形是矩形,故原命题错误,故选:B.6.估计(2+3)的值在下列哪两个整数之间()A.6和7之间B.7和8之间C.8和9之间D.9和10之间【分析】先根据实数的混合运算化简可得4+,再估算的值即可解答.【解答】解:(2+3)==,∵,∴,即,∴(2+3)在9和10之间.故选:D.7.已知a2﹣3a﹣7=0,则3a2﹣9a﹣1的值为()A.18 B.19 C.20 D.21【分析】原式变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵a2﹣3a﹣7=0,∴a2﹣3a=7,则原式=3(a2﹣3a)﹣1=21﹣1=20,故选:C.8.如图,在△ABC中,D为AC的中点且DE∥AB交BC于E,AF平分∠CAB交DE于点F.若DF=6,则AC的长为()A.3 B.6 C.10 D.12【分析】首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠3,根据角平分线的定义推知∠1=∠3,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.【解答】解:如图,∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠3,又∵AF平分∠CAB,∠1=∠3,∴∠1=∠2,∴AD=DF=6,∴AC=2AD=12.故选:D.9.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长.在这个问题中,AC的长为()A.4尺B.尺C.尺D.5尺【分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.解得:x=4.55,即AC=4.55.故选:C.10.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=4,将菱形OABC绕原点顺时针旋转105°至菱形OA′B′C′的位置,则点B′的坐标为()A.(2,﹣2)B.(,)C.(2,﹣2)D.(,)【分析】首先连接OB,OB′,过点B′作B′E⊥x轴于E,由旋转的性质,易得∠BOB′=105°,由菱形的性质,易证得△AOB是等边三角形,即可得OB′=OB=OA=2,∠AOB =60°,继而可求得∠AOB′=45°,由等腰直角三角形的性质,即可求得答案.【解答】解:连接OB,OB′,过点B′作B′E⊥x轴于E,根据题意得:∠BOB′=105°,∵四边形OABC是菱形,∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,∴△OAB是等边三角形,∴OB=OA=4,∴∠AOB′=∠BOB′﹣∠AOB=105°﹣60°=45°,OB′=OB=4,∴OE=B′E=OB′•sin45°=4×=2,∴点B′的坐标为:(2,﹣2).故选:A.11.已知关于x的分式方程+1=0有整数解,且关于x的不等式组的解集为x≤﹣1,则符合条件的所有整数a的个数为()A.2 B.3 C.4 D.5【分析】解分式方程得x=且x≠1,则整数a为0,1,﹣2,﹣3,﹣5时分式方程的解为整数解,再解不等式组得到a>﹣,从而得到满足条件的整数a的值.【解答】解:去分母得2﹣ax+1+1﹣x=0,解得x=且x≠1,当整数a为0,1,﹣2,﹣3,﹣5时,分式方程的解为整数解,解不等式组为,而不等式组的解集为x≤﹣1,所以>﹣1,解得a>﹣,∴满足条件的整数a的值为0,1.故选:A.12.如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=12,点E为BC的中点,∴BE=6,又∵AB=8,∴AE===10,由折叠知,BF⊥AE(对应点的连线必垂直于对称轴)∴BH==,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF===,故选:D.二.填空题(共6小题)13.当x=﹣2 时,分式的值为0.【分析】要使分式的值为0,必须分式分子的值为0,并且分母的值不为0.【解答】解:由分子x+2=0,解得x=﹣2,而x=﹣2时,分母x﹣2=﹣2﹣2=﹣4≠0.所以x=﹣2.14.8月24日,据猫眼数据显示,《哪吒之魔童降世》内地票房达4410000000元,超过《超人总动员2》在北美创下的6.08亿美元纪录,成为全球单一市场票房最高动画电影.请把数4410000000科学记数法表示为 4.41×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4410 000 000科学记数法表示为4.41×109,故答案是:4.41×109.15.关于x的一元二次方程(k﹣2)x2﹣3x+2=0有实数根,则k的取值范围为k≤且k≠2 .【分析】因为一元二次方程有实数根,所以△≥0,得关于k的不等式,求解即可.【解答】解:∵关于x的一元二次方程(k﹣2)x2﹣3x+2=0有实数根,∴△≥0且k﹣2≠0,即(﹣3)2﹣4(k﹣2)×2≥0且k﹣2≠0解得k≤且k≠2.故答案为:k≤且k≠2.16.如图,点D是Rt△ABC斜边AB的中点,AC=8,CD=8.5,那么BC=15 .【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AB,可求得答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴AB=2CD=15,∴BC===15,故答案为:15.17.国防教育和素质拓展期间,某天小明和小亮分别从校园某条路的A,B两端同时相向出发,当小明和小亮第一次相遇时,小明觉得自己的速度太慢便决定提速至原速的倍,当他到达B端后原地休息,小亮匀速到达A端后,立即按照原速返回B端(忽略掉头时间).两人相距的路程y(米)与小亮出发时间t(秒)之间的关系如图所示,当小明到达B端后,经过56 秒,小亮回到B端.【分析】根据题意和函数图象中的数据可以求得小亮的速度和小明开始的速度,以及提速后的速度,从而可以求得当小明到达B端后,经过多长时间,小亮回到B端.【解答】解:由图可得,小亮的速度为:420÷70=6(米/秒),小明刚开始的速度为:420÷42﹣6=4(米/秒),提速后的速度为:4×=6(米/秒),故小明到达B地用的时间为:42+(420﹣42×4)÷6=84(秒),小亮从B端出发到最后回到B端用的时间为:420÷6×2=140(秒),∵140﹣84=56(秒),∴当小明到达B端后,经过56秒,小亮回到B端,故答案为:56.18.某超市以A、B两种糖果为原料,组装出了甲、乙、丙三种糖果礼盒(礼盒包装成本忽略不计).其中,甲礼盒每盒含1千克A糖果、1千克B糖果;乙礼盒每盒含2千克A糖果、1千克B糖果;丙礼盒每盒含1千克A糖果、3千克B糖果.甲礼盒每盒售价48元,利润率为20%.国庆节期间,该超市进行打折促销活动,将甲、乙、丙礼盒各一盒合组装成大礼包,并且每购买一个大礼包可免费赠送一个乙礼盒,这样即可实现利润率为30%,则每个大礼包的售价为312 元.【分析】设A原料的成本为x元/千克,B原料的成本为y元/千克,根据成本×(1+利润率)=售价,即可得出关于x,y的二元一次方程,解之可得出x,y的值,找出礼盒及赠品与x,y之间的关系,再利用售价=(1+利润率)×成本,即可得出结论.【解答】解:设A原料的成本为x元/千克,B原料的成本为y元/千克,根据题意得:(1+20%)(x+y)=48,解得:x+y=40,∴礼盒的售价为(1+30%)×6(x+y)=1.3×6×40=312元.故答案为:312元.三.解答题(共8小题)19.计算:(1)(1﹣π)0﹣(﹣1)2018﹣(﹣)﹣3+(2)|﹣|+﹣(+1)2﹣【分析】(1)根据零指数幂、负整数指数幂、乘方和立方根的定义计算;(2)利用绝对值、完全平方公式计算,然后化简后合并即可.【解答】解:(1)原式=1﹣1+8+4=12;(2)原式=2﹣+﹣(2+2+1)﹣=2﹣3﹣2﹣=﹣3﹣.20.解方程:x2﹣x﹣20=0.【分析】利用因式分解法把原方程化为x﹣5=0或x+4=0,然后解两个一元一次方程即可.【解答】解:(x﹣5)(x+4)=0,x﹣5=0或x+4=0,所以x1=5,x2=﹣4.21.在校园歌手大赛中,甲、乙两位同学的表现分外突出,现场A、B、C、D、E、F六位评委的打分情况以及随机抽取的50名同学的民意调查结果分别如下统计表和不完整的条形统计图:(说明:随机抽取的50名同学每人必须从“好”、“较好”、“一般”中选一票投给每个选手)A B C D E F甲89 97 90 93 95 94乙89 92 90 97 94 94 (1)a=8 ,六位评委对乙同学所打分数的中位数是93分,并补全条形统计图;(2)学校规定评分标准如下:去掉评委评分中最高和最低分,再算平均分并将平均分与民意测评分按2:3计算最后得分.求甲、乙两位同学的最后得分.(民意测评分=“好”票数×2+“较好”票数×1+“一般”票数×0)【分析】(1)根据民意调查的总人数为50可得a的值,再根据中位数的定义求解可得.(2)先计算出评委对甲、乙同学评分的平均分和民意得分,再利用加权平均数的定义求解可得.【解答】解:(1)a=50﹣(40+2)=8,六位评委对乙同学所打分数从小到大排列为:89、90、92、94、94、97,则六位评委对乙同学所打分数的中位数是=93(分),民意调查中对乙同学评价为“较好”的人数为50﹣(42+3)=5(人),补全条形图如下:(2)评委对甲评分的平均数为=93(分),评委对乙评分的平均数为=92.5(分),甲的民意评分为40×2+8×1+2×0=88(分),乙的民意评分为42×2+5×1+3×0=89(分),则甲同学的最终得分为=90(分),乙同学的最终得分为=90.4(分).22.已知:如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,DE平分∠ADB交AB于点E,过点C作CF∥AB交ED延长线于点F,若∠A=48°.(1)求∠DBC的度数;(2)求∠F的度数.【分析】(1)根据等腰三角形的性质和角平分线的定义解答即可.(2)利用角平分线的定义和平行线的性质解答即可.【解答】解:(1)∵AB=AC,∠A=48°.∴∠ABC=66°,∵BD平分∠ABC,∴∠DBC=33°;(2)∵∠DBC=33°,∠ACB=∠ABC=66°,∴∠ADB=99°,∵DE平分∠ADB,∴∠ADE=49.5°,∴∠AED=180°﹣49.5°﹣48°=82.5°,∵CF∥AB,∴∠F=∠AED=82.5°.23.直线l1:y=kx+b与直线l2:y=2x﹣4的交点M的纵坐标为2,且与直线y=﹣x﹣2交x轴于同一点.(1)求直线l1的表达式;(2)在给出的平面直角坐标系中作出直线l1的图象,并求出它与直线l2及x轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>0>2x﹣4的解集【分析】(1)由已知条件确定直线l1经过的两个点,利用待定系数法即可求解析式;(2)分别求出l1与l2与x轴的交点坐标,利用三角形面积公式即可求解;(3)在同一坐标系中画出l1与l2的图象即可求解.【解答】解:(1)由已知可得M(3,2),直线y=﹣x﹣2与x轴的交点坐标为(﹣2,0),由题意,可知直线l1经过点(3,2)、(﹣2,0),则有,∴,∴y=x+;∵l1与x轴交点坐标为(﹣2,0),直线l2:y=2x﹣4与x轴交点坐标为(2,0),∴S=×(2+2)×2=4;(3)如图,由图象可得﹣2<x<2;24.开学初期,天气炎热,水杯需求量大.双福育才中学门口某超市购进一批水杯,其中A 种水杯进价为每个15元,售价为每个25元;B种水杯进价为每个12元,售价为每个20元(1)该超市平均每天可售出60个A种水杯,后来经过市场调查发现,A种水杯单价每降低1元,则平均每天的销量可增加10个.为了尽量让学生得到更多的优惠,某天该超市将A种水杯售价调整为每个m元,结果当天销售A种水杯获利630元,求m的值.(2)该超市准备花费不超过1600元的资金,购进A、B两种水杯共120个,其中B种水杯的数量不多于A种水杯数量的两倍.请为该超市设计获利最大的进货方案,并求出最大利润.【分析】(1)直接利用A种水杯单价每降低1元,平均每天的销量可增加10个,用m 表示出A种水杯的销量,再根据销量×每件利润=630,进而解方程得出答案;(2)设购进A种水杯x个,则B种水杯(120﹣x)个.求得利润y关于x的一次函数,再利用x的取值范围和一次函数的增减性求出y的最大值.【解答】解:(1)超市将A种水杯售价调整为每个m元,则单件利润为(m﹣15)元,销量为[60+10(25﹣m)]=(310﹣10m)个,依题意得:(m﹣15)(310﹣10m)=630,解得:m1=22,m2=24,答:为了尽量让学生得到更多的优惠,m=22.(2)设购进A种水杯x个,则B种水杯(120﹣x)个.设获利y元,依题意得:,解不等式组得:40≤x≤,本次利润y=(25﹣15)x+(120﹣x)(20﹣12)=2x+960.∵2>0,∴y随x增大而增大,当x=53时,最大利润为1066元.25.如图,在平行四边形ABCD中,AE⊥BD于E.(1)若BC=BD,,AD=15,求△ABD的周长.(2)若∠DBC=45°,对角线AC、BD交于点O,F为AE上一点,且AF=2EO,求证:CF =AB.【分析】(1)设BE=x,则AB=x,DE=BD﹣BE=15﹣x,AE===3x,由勾股定理得出方程(3x)2+(15﹣x)2=152,求出x=3,得出AB=3,即可得出答案;(2)延长AE与BC交于点M,过点O作OG∥AE,分别交BC、CF于点G、H,连接EH,BF,并延长BF,与AD交于点N,连接DF,DG,证出∠BGD=90°,证出OH是△ACF的中位线,得出OH=AF=OE,HF=HC,由等腰三角形的性质得出∠OEH=∠OHE=45°=∠OBC,得出EH∥BC,得出EF=ME,由线段垂直平分线的性质得出BF=BM,∠MBE=∠EBF=45°,得出∠DNB=∠NBG=90°,四边形BGDN是正方形,得出DG=DN=BN=BG,证出CG=FN,证明△DNF≌△DGC(SAS),得出DF=DC,∠NDF=∠GDC,因此∠FDC=∠NDG=90°,由等腰直角三角形的性质得出CF=CD,即可得出结论.【解答】(1)解:∵四边形ABCD是平行四边形,∴AD=BC,∵BC=BD,∴AD=BD=15,∵=,设BE=x,则AB=x,DE=BD﹣BE=15﹣x,∴AE===3x,AE2+DE2=AD2,即:(3x)2+(15﹣x)2=152,解得:x=3,∴AB=3,∴△ABD的周长=AD+BD+AB=15+15+3=30+3;(2)证明:延长AE与BC交于点M,过点O作OG∥AE,分别交BC、CF于点G、H,连接EH,BF,并延长BF,与AD交于点N,连接DF,DG,如图所示:∵AE⊥BD,∴OG⊥BD,∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,AB=CD,∴BG=DG,∵∠DBC=45°,∴∠BDG=45°,∴∠BGD=90°,∵OG∥AM,OA=OC,∴OH是△ACF的中位线,∴OH=AF=OE,HF=HC,∴∠OEH=∠OHE=45°=∠OBC,∴EH∥BC,∴EF=ME,∵BE⊥MF,∴BF=BM,∴∠MBE=∠EBF=45°,∴∠DNB=∠NBG=90°,∴四边形BGDN是正方形,∴DG=DN=BN=BG,∴MG=FN,∵AM∥OG,OA=OC,∴MG=CG,∴CG=FN,在△DNF和△DGC中,,∴△DNF≌△DGC(SAS),∴DF=DC,∠NDF=∠GDC,∴∠FDC=∠NDG=90°,∴CF=CD,∴CF=AB.26.如图,直线y=x+6与y轴交于点A,与x轴交于点B,点E为线段AB的中点,∠ABO的平分线BD与y轴相交于点D,A、C两点关于x轴对称.(1)一动点P从点E出发,沿适当的路径运动到直线BC上的点F,再沿适当的路径运动到点D处.当P的运动路径最短时,求此时点F的坐标及点P所走最短路径的长;(2)点E沿直线y=3水平向右运动得点E',平面内是否存在点M使得以D、B、M、E'为顶点的四边形为菱形,若存在,请直接写出点E′的坐标;若不存在,请说明理由.【分析】(1)分别求出点E,点D坐标,直线BC的解析式,作点D关于直线BC的对称点D'(4,﹣2),连接ED'交BC于点F,由勾股定理可求D'E的长,由待定系数法可求直线D'E的解析式,即可求解;(2)分两种情况讨论,由菱形的性质可求解.【解答】解:(1)∵直线y=x+6与y轴交于点A,与x轴交于点B,∴点A(0,6),点B(2,0),∵点E为线段AB的中点,∴点E(,3)∵tan∠ABO=,∴∠ABO=60°,∵BD平分∠ABO,∴∠ABD=∠DBO=30°,且OB=2,∴DO=2,BD=2DO=4∴点D(0,2)∵A、C两点关于x轴对称.∴点C坐标为(0,﹣6)∵设直线BC解析式为:y=kx+b,∴∴解得:k=,b=﹣6∴直线BC解析式为:y=x﹣6如图1,作点D关于直线BC的对称点D'(4,﹣2),连接ED'交BC于点F,∴点P所走最短路径为D'E的长,∴D'E==2设直线ED'解析式为:y=mx+n,∴解得:m=﹣,n=∴直线ED'解析式为:y=﹣x+,∴∴∴点F坐标(,)(2)若BD为边,设点E'(x,3)∵四边形BDE'M是菱形,∴BD=DE'=4∴4=∴x=,∴点E'(,3)若BD为对角线,∵四边形BE'DM是菱形∴DE'=BE',∴(x﹣0)2+(3﹣2)2=(x﹣2)2+32,∴x=∴点E'坐标(,3)。
2019-2020学年重庆市九龙坡区育才中学九年级(上)第一次月考数学试卷 (含解析)

2019-2020学年重庆市九龙坡区育才中学九年级(上)第一次月考数学试卷一、选择题(本大题共12小题,共48.0分)1.下列图形既是中心对称又是轴对称的是()A. 菱形B. 梯形C. 正三角形D. 正五边形2.将抛物线y=2x2−1,先向上平移2个单位,再向右平移1个单位后其顶点坐标是()A. (2,1)B. (1,2)C. (1,−1)D.(1,1)3.如图,△ABC内接于⊙O,CD是⊙O的直径,∠BCD=54°,则∠A的度数是()A. 36°B. 33°C. 30°D. 27°4.如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA,OB,若∠ABC=65°,则∠A等于()A. 20°B. 25°C. 35°D. 75°5.下列命题中是真命题的有().①直径是圆中最长的弦;②三点确定一个圆③圆内接平行四边形是矩形;④平分弦的直径垂直于这条弦;⑤三角形的内心到三角形三个顶点距离相等;⑥三角形的外心到三角形三边的距离相等.A. 1个B. 2个C. 3个D. 4个6.若A(−1,y1),B(−2,y2),C(2,y3)为二次函数y=ax2−2ax+m(a>0)的图象上的三点,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y1<y3C. y3<y1<y2D. y1<y3<y27.如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=30°,OD=2,那么DC的长等于()A. 2B. 4C. √3D. 2√38.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①abc<0,②b<a+c,③4a+2b+c>0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正确的是()A. ②④⑤B. ①②④C. ①③④D.①③④⑤9.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A. 14B. 15C. 16D. 1710.重庆是美丽的山城,某大楼依山而建,如果要进入大楼可以从G处沿水平方向行走150米到D大门处,或者从E处沿坡比i=1:2.4的斜坡行走130米到F处,再沿水平方向行走到M大门处,在G处仰望大楼顶端B处仰角为32°,则大楼的上部分AM的高度为()(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)A. 43米B. 77.5米C. 79.5米D. 93米11.若关于y的不等式组{1−2y3<1a−y≥0至少有两个整数解,且关于x的分式方程有x+3x−3+ax3−x=3非负整数解,求符合条件的所有整数a的值之和为()A. 14B. 15C. 16D. 1712.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(−1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=6x上,过点C作CE//x轴交双曲线于点E,连接BE,则△BCE的面积为()A. 5B. 6C. 7D. 8二、填空题(本大题共6小题,共24.0分)13. 计算:(−2)0−√83=____________.14. 如果二次函数y =x 2+2kx +k −4的图象的对称轴为x =3,那么k =________.15. 二次函数y =x 2−3x +2的图像与y 轴的交点坐标是__________,16. 如图,在Rt △ABC 中,∠B =60°,AB =1,现将△ABC 绕点A 逆时针旋转至点B 恰好落在BC 上的B′处,其中点C 运动路径为CC′⏜,则图中阴影部分的面积是______.17. 一辆快车从甲地出发到乙地,一辆慢车从乙地出发到甲地,两车同时出发,匀速行驶,慢车到甲地后停止行驶,快车到乙地后休息半小时,然后以另一速度返回甲地,两车之间的距离y(千米)与快车行驶的时间x(小时)之间的函数关系如图所示,当慢车到达甲地时,快车与乙地的距离为______千米.18. 一、二班共有100名学生参加期末体育测试,两班的平均达标率为81%,其中一班的达标率为87.5%,二班的达标率为75%,设一班有学生x 名,二班有学生y 名,根据题意,可以得到方程组______ .三、计算题(本大题共1小题,共10.0分)19. 计算:(1)(x +2y)(x −2y)−(x −y)2+5y 2(2)(2a −9a +3−a +3)÷a 2−4a +4−a −3四、解答题(本大题共7小题,共68.0分)20.如图,直线a//b,点A、D在直线a上,点C、B在直线b上,连接AB、CD交于点E,其中AB平分∠DAC,∠ACB=80°,∠BED=110°,(1)求∠ABC的度数;(2)求∠ACD的度数.21.某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有______人;(2)请你将条形统计图(2)补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).22.如图,在平面直角坐标系中,直线y=−x+8分别交两轴于点A、B,点C的横坐标为4,点D在线段OA上,且AD=7.(1)求直线CD的解析式;(2)P为直线CD上一点,若△PAB面积为20,求P的坐标;23.某文具店今年1月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长1元,销量就减少10本.(1)若该种笔记本在2月份的销售量不低于2250本,则2月份售价应不高于多少元?(2)该文具店2月份按(1)中的最高售价对笔记本销售后,准备又购进一批笔记本,连同2月份未售完的笔记本按相同的价格一起销售(先销售2月份未售完的).但由于生产商提高造纸工艺,该笔记本的进价提高了20%,文具店为了增加笔记本的销量,进行了销售调整,售价比2月份在(1)m%(m≠0),结果3月份的总销量比2月份在(1)的条件下的最低的条件下的最高售价减少了215销量增加了m%,3月份的销售总利润达到6830元,求m的值.24.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F,过点B作AE的垂线,垂足为H,交AC于点G(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG25.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+ 321+132=666,666÷111=6,所以,F(123)=6.(1)计算:F(243),F(761)的值;(2)已知一个相异数p,且p=100a+10b+c,(其中a,b,c均为小于10的正整数),则F(p)=______,(3)若m,n都是“相异数”,其中m=100x+23,n=150+y(1≤x≤9,1sy≤9且x,y都是正整数),若k=F(m),当F(m)+F(n)=16时,求k的值.F(n)26.抛物线y=x2+(2t−2)x+t2−2t−3与x轴交于A、B两点(A在B左侧),与y轴交于点C图1 图2 图3(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当−1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.-------- 答案与解析 --------1.答案:A解析:解:A、是轴对称图形,也是中心对称图形,故本选项正确;B、可能是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:D解析:解:将抛物线y=2x2−1向上平移2个单位再向右平移1个单位后所得抛物线解析式为y= 2(x−1)2+1,所以平移后的抛物线的顶点为(1,1).故选:D.直接根据平移规律作答即可.主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.3.答案:A解析:【分析】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,推论:直径所对的圆周角是直角.根据圆周角定理的推论可得∠CBD=90°,根据直角三角形的两锐角互余可求出∠D=36°,再根据圆周角定理即可求出∠A的度数.【解答】解:连接BD,∵CD是⊙O的直径,∴∠CBD=90°,∵∠BCD=54°,∴∠D=90°−∠BCD=90°−54°=36°,∴∠A=∠D=36°,故选A.4.答案:B解析:【分析】先根据切线的性质得∠OBC=90°,则利用互余得到∠OBA=25°,然后根据等腰三角形的性质求出∠A 的度数.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.【解答】解:∵BC与⊙O相切于点B,∴OB⊥BC,∴∠OBC=90°,∴∠OBA=90°−∠ABC=90°−65°=25°,而OA=OB,∴∠A=∠OBA=25°.故选B.5.答案:B解析:【分析】本题主要考查的圆的相关知识,由题意对给出的各个选项进行逐一分析即可.【解答】解:①直径是圆中最长的弦,故①正确;②不在同一条直线上的三点确定一个圆,故②错误;③圆内接平行四边形是矩形,故③正确;④平分弦(非直径)的直径垂直于这条弦,故④错误;⑤三角形的内心到三边的距离相等,故⑤错误;⑥三角形的外心到三角形三个顶点的距离相等,故⑥错误;故选B..6.答案:C解析:【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.把x=−1、−2、2分别代入y=ax2−2ax+m(a>0),计算出对应的函数值,然后比较大小即可.【解答】当x=−1时,y1=a+2a+m=3a+m;当x=−2时,y2=4a+4a+m=8a+m;当x=2时,y3=4a−4a+m=m.∵a>0,∴y3<y1<y2.故选C.7.答案:D解析:解:如图,连接OC,设AB交CD于E.∵AB⊥CD,AB是直径,∴EC=DE,∵OA=OC,∠OAC=∠OCA=30°,∴∠COE=60°,∴EC=OC⋅sin60°=√3,∴CD=2DE=2√3,如图,连接OC,设AB交CD于E.首先证明CE=DE,解直角三角形求出EC即可解决问题.本题考查圆周角定理,解直角三角形,锐角三角函数等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.8.答案:C解析:【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项正确;②当x=−1时,y=a−b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=−b2a=1,即a=−12b,代入得9(−12b)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.故选C.9.答案:C解析:方法一:解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n−1)+5]个○,则可得方程:[n(n−1)+5]=245解得:n1=16,n2=−15(舍去).方法二:设s=an2+bn+c,∴{a+b+c=54a+2b+c=79a+3b+c=11,∴{a=1b=−1 c=5,∴s=n2−n+5,把s=245代入,∴n2−n+5=245,∴n1=−15(舍去),n2=16,∴n=16.分析数据可得:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n−1)+5.据此可以再求得“龟图”中有245个“○”是n的值.此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.10.答案:A解析:解:作FH⊥CE于H,则四边形FHCM为矩形,∴MC=FH,设FH=x米,则EH=2.4x米,由勾股定理得,x2+(2.4x)2=1302,解得,x=50,即FH=50米,∴MC=FH=50米,在Rt△GBD中,tanG=BDDG,即BD=DG×tan32°≈0.62×150=93米,∴AM=93−50=43(米),故选:A.作FH⊥CE于H,根据矩形的性质得到MC=FH,根据坡度的概念和勾股定理求出MC,根据正切的概念求出BD,计算即可.本题考查的是解直角三角形的应用−仰角俯角问题,坡度坡角问题,掌握仰角和俯角,坡度和坡角的概念,熟记锐角三角函数的定义是解题的关键.解析:解:解分式方程x+3x−3+ax3−x=3,得:x=12a+2,∵分式方程的解为非负整数,且x≠3,a为整数,∴a=−1,0,1,4,10,解关于y的不等式组{1−2y3<1a−y≥0,得:−1<y≤a,∵不等式组至少有两个整数解,∴a≥1,∴符合条件的所有整数a的和1+4+10=15,故选:B.根据分式方程的解为非负整数解,即可得出a=−1,0,1,4,10,根据不等式组的解集为−1<y≤a,即可得出a≥1,找出a的所有的整数,将其相加即可得出结论.本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.12.答案:C解析:解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6x),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=−x−1,∴DG=BM,∵GQ=1,DQ=−6x,DH=AG=−x−1,由QG+DQ=BM=DQ+DH得:1−6x =−1−x−6x,解得x=−2,∴D(−2,−3),CH=DG=BM=1−6−2=4,∵AG=DH=−1−x=1,∴点E的纵坐标为−4,当y=−4时,x=−32,∴E(−32,−4),∴EH=2−32=12,∴CE=CH−HE=4−12=72,∴S△CEB=12CE⋅BM=12×72×4=7;故选:C.作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=−x−1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.13.答案:−1解析:【分析】本题主要考查实数的运算,可根据零指数幂以及立方根的定义求解各项的值,再相减即可求解.【解答】解:原式=1−2=−1,故答案为−1.14.答案:−3解析:【分析】本题主要考查二次函数的性质,解此题的关键是对二次函数的性质的理解和掌握.直接利用对称轴公式求解即可.【解答】解:∵二次函数y=x2+2kx+k−4图象的对称轴为x=3,∴对称轴为:x=−2k2×1=3,解得:k=−3,故答案为:−3.15.答案:(0,2)解析:【分析】本题考查的知识点有二次函数的图像与性质.解题关键是会根据函数解析式分别求出函数图像与y轴的交点坐标.先令x=0得到关于y的一元二次方程,解此方程即可得出y轴的交点坐标.【解答】解:令x=0得:y=2,∴二次函数y=x2−3x+2的图像与y轴的交点坐标是(0,2),故答案为(0,2).16.答案:π2+√34解析:【分析】本题考查的是旋转的性质、扇形面积计算,掌握旋转变换的性质、扇形面积公式是解题的关键.根据直角三角形的性质分别求出BC、AC,根据旋转变换的性质得到∠CAC′=60°,AC′=AC=√3,AB′=AB,根据三角形面积公式、扇形面积公式计算.【解答】解:Rt△ABC中,∠B=60°,AB=1,∴BC=2AB=2,AC=√3AB=√3,由旋转的性质可知,∠CAC′=60°,AC′=AC=√3,AB′=AB,∴△AB′B为等边三角形,∴BB′=1,即B′是BC的中点,∴S△AB′C=12S△ABC=12×1×√3×12=√34,,∴图中阴影部分的面积=π2+√34,故答案为:π2+√34.17.答案:80 解析:【分析】本题考查了函数的图象及一次函数的应用,读懂图象上点的所表示的具体意义是本题的关键. 设甲乙两地距离为s 千米,快车速度为a 千米/时,慢车速度为b 千米/时,由图象可列方程组,可求a ,b ,s 的值,即可求快车返回速度,即可求当慢车到达甲地时,快车与乙地的距离.【解答】解:设甲乙两地距离为s 千米,快车速度为a 千米/时,慢车速度为b 千米/时,由图象可得:{s =1.5(a +b)+70s =72a 210=72b,解得:a =80,b =60,s =280,则快车返回速度为280÷(193−72−12)=120(千米/时),慢车到达甲地的时间为28060=143小时,∴当慢车到达甲地时,快车与乙地的距离为120×(143−72−12)=80千米.故答案为80.18.答案:{x +y =10087.5%x +75%y =81%×100解析:【分析】此题考查二元一次方程组的实际运用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.此题中的等量关系有:①两班共有100人;②他们的体育达标率为81%.【解答】解:设一班有学生x 名,二班有学生y 名,可得{x +y =10087.5%x +75%y =81%×100, 故答案为{x +y =10087.5%x +75%y =81%×100.19.答案:解:(1)原式=x 2−4y 2−(x 2−2xy +y 2)+5y 2=x 2−4y 2−x 2+2xy −y 2+5y 2=2xy ;(2)原式=(2a−9a+3−a 2−9a+3)÷(a−2)2−(a+3)a 2−4a+4−a−3=−a(a −2)a +3⋅−(a +3)(a −2)2=a.a−2解析:(1)先利用平方差公式和完全平方公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算即可得.本题主要考查整式和分式的混合运算,解题的关键是熟练掌握分式与整式的混合运算顺序和运算法则.20.答案:解:(1)∵a//b,∴∠DAC+∠ACB=180°,∵∠ACB=80°,∴∠DAC=100°,∵BA平分∠DAC,∴∠DAB=∠CAB=50°,∴∠ABC=∠DAB=50°.(2)∵∠BED=∠AEC=110°,∠EAC=50°,∴∠ACD=180°−110°−50°=20°.解析:本题考查平行线的性质,角平分线的定义,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)利用平行线的性质求出∠DAC,再根据角平分线的定义求出∠DAB,利用平行线的性质即可解决问题.(2)利用三角形内角和定理即可解决问题.21.答案:解:(1)200;(2)如图,C有:200−20−80−40=60(人),(3)画树状图得:∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为:212=16.解析:解答:(1)∵A是36°,∴A占36°÷360=10%,∵A的人数为20人,∴这次被调查的学生共有:20÷10%=200(人),故答案为:200;(2)见答案;(3)见答案.【分析】(1)由A是36°,A的人数为20人,即可求得这次被调查的学生总人数;(2)由(1),可求得C的人数,即可将条形统计图(2)补充完整;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好同时选中甲、乙两位同学的情况,然后利用概率公式求解即可求得答案.本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.答案:解:(1)∵点C是直线y=−x+8上一点,点C的横坐标为4∴y=−4+8=4,∴点C(4,4),∵直线y=−x+8分别交两轴于点A、B,∴当x=0时,y=8,当y=0时,x=8,∴点A(8,0),点B(0,8),∴OA=8,∵点D在线段OA上,且AD=7,∴OD=OA−AD=8−7=1,∴点D(1,0),设直线CD的解析式y=kx+b,∴{4k +b =4k +b =0, 解得:{k =43b =−43, ∴直线CD 解析式为y =43x −43; (2)如图,设P(m,43m −43),S △ABO =12×BO ×AO =12×8×8=32,令x =0,则y =−43, ∴点E 的坐标为(0,−43), ①P 1在AB 的上方,S △ABO +S △ABP 1=S △BEP 1−S △ODE +S △ADP 1,即32+20=12×(8+43)×m −12×1×43+12×7×(43m −43),解得:m =437, ∴点P 1(437,487); ②P 2在AB 的下方,S △ABO −S △ABP 2=S △BEP 2−S △ODE +S △ADP 2,即32−20=12×(8+43)×m −12×1×43+12×7×(43m −43),解得:m =137, ∴点P 2(137,87),综上所述,点P 的坐标为(437,487)或(137,87).解析:本题是待定系数法求一次函数解析式、一次函数的应用、三角形的面积,考查了分类讨论思想的应用、分类讨论思想的知识点,要熟练掌握,熟练运用分类讨论思想解决问题是本题的关键.(1)先根据直线y =−x +8分别交两轴于点A 、B ,可得点A 的坐标是(8,0),点B 的坐标是(0,8),然后点C 的坐标,求出CD 的长,求出点D 的坐标,最后利用待定系数法可求直线CD 的解析式;(2)先设P(m,43m −43),求出△ABO 的面积,再求出点E 的坐标,最后分点P 在AB 的上下方进行讨论,即可解答.23.答案:解:(1)设2月份售价为每本x元,由题意,得2290−10(x−11)≥2250,解得:x≤15,答:2月份售价应不高于15元.(2)由题意可知,3月份售价为15(1−215m%)=15−2m%(元),新进笔记本进价为10(1+20%)=12(元),3月份总销量为2250(1+m%)(本),3月份新进笔记本销量为2250(1+m%)−40(本),所以有:[2250(1+m%)−40][15−2m%−12]+40(15−2m%−10)=6830,解得m1=0(舍去),m2=50.∴m=50,答:m的值为50.解析:考查了一元一次不等式的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系和等量关系,列出不等式和方程,再求解.(1)设售价应为x元,根据不等关系:该种笔记本在2月份的销售量不低于2250本,列出不等式求解即可;(2)先求出3月份的进价,再根据等量关系:3月份的销售利润达到6830元,列出方程求解即可.24.答案:解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH=√AB2−AH2=√7,∴S△ABE=12AE×BH=12×4×√7=2√7;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=12BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,{∠AME=∠BNG ∠MAE=∠NBG AE=BG,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=√2NG=√2ME=√22BE,∴BE=√2GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD−AF=BC−EC,即DF=BE,∴DF=BE=√2CG.解析:本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=√2GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=√2CG.25.答案:(1)F(243)=(423+342+234)÷111=9,F(761)=(671+167+716)÷111=14.(2)a+b+c;(3)∵m,n都是“相异数”,且m=100x+23,n=150+y(1≤x≤9,1≤y≤9且x,y都是正整数),∴F(m)=[(x+2+3)+10(x+2+3)+(x+2+3)]÷111=x+5,F(n)=(51y+y51+1=y5)=(100(1+5+y)+10(1+5+y)+(1+5+y))÷111=6+y又∵F(m)+F(n)=16∴x+y=5.又∵1≤x≤9,1≤y≤9,∴当x=1,y=4,当x=2,y=3,当x=3,y=3,当x=4,y=1.又∵m,n都是“相异数”,∴x≠2,x≠3,y≠1,∴x=1,y=4,∴F(m)=6,F(n)=10,∴k=6÷10=0.6.故k=0.6.解析:解:(1)见答案;(2)∵相异数p=100a+10b+c,(其中a,b,c均为小于10的正整数),∴F(p)=[100(a+b+c)+10(a+b+c)+(a+b+c)]÷111=a+b+c故答案为:a+b+c;(3)见答案.(1)利用已知条件及方法代数求解(2)百位数的表示方法(3)利用前两问的方法表示F(m),F(n).利用F(m)+F(n)=16,求解不定等式中x与y的值.进而求出F(m),F(n)的值.本题考查了数的表示及数的运算,解决不定等式的方法是本题的难点,最后根的取舍考查了同学对相异数定义的理解26.答案:解:(1)当t=0时,y=x2−2x−3,当x=0时,y=−3,∴C(0,−3),当y=0时,0=x2−2x−3=(x−3)(x+1),∴x1=3,x2=−1,∴B(3,0),A(−1,0),∴S△ABC=12|AB|×|OC|=6;(2)由(1)知:B(3,0),C(0,−3),∴OB=OC,∴∠ABC=45°,∴∠ACB+∠CAB=135°,∵∠PCB+∠CAB=135°,∴∠ACB=∠PCB,过B作BS⊥x轴交CP延长线于S,如图,∴∠ABC=∠SBC,又∵BC=BC,∴△ABC≌△SBC,∴AB=SB=4,∴S(3,−4),∴直线CS解析式为:y=−13x−3,∴{y=x2−2x−3 y=−13x−3,∴x2−53x=0,∴x1=0(舍),x2=53,∴P(53,−329) ;(3)当y =0时 ,∴x 2+(2t −2)x +t2−2t −3=0 ,∴[x +(t −3)]⋅[x +(t +1)]=0 ,∴x 1=−t +3,x 2=−t −1,∴A(−t −1,0),B(−t +3,0) ,当x =0时,y =t 2−2t −3,∴C(0,t 2−2t −3) ,设AQ 解析式为:y =k 1x +b 1 ,BQ 解析式为:y =k 1x +b 2,∴D(0,b 1),E(0,b 2) ,∴CD =(t 2−2t −3)−b 1,CE =b 2−(t 2−2t −3),∵{y =k 1x +b 1y =x 2+(2t −2)x +t 2−2t −3, ∴x 2+(2t −2− k 1)x +t 2−2t −3− b 1=0 ,∴x A ⋅x Q =t 2−2t −3− b 1 ①,同理:x B ⋅x Q =t2−2t −3− b 2 ② ,由②÷①,得: x A x B =t 2−2t−3−b 2t 2−2t−3−b 1=−[b 2−(t 2−2t−3)](t 2−2t−3)−b 1, ∴CE CD =−xB x A =2, ∴−t+3−t−1=−2,∴t =13.解析:本题考查二次函数与一次函数的综合运算.熟练掌握一次函数与二次函数和图象和性质是解题的关键.(1)先求出二次函数与坐标轴的交点坐标,再根据三角形面积公式计算即可;(2)过B 作BS ⊥x 轴交CP 延长线于S ,如图,证△ABC≌△SBC ,得AB =SB =4,则S(3,−4) ,从而求出直线CS 解析式为y = −13x −3 ,联立两函数解析式,即可求出两函数交点P 的坐标;(3)设AQ 解析式为:y =k 1x +b 1 ,BQ 解析式为:y =k 1x +b 2,从而有C(0,t 2−2t −3) ,D(0,b 1),E(0,b 2) ,则CD =(t 2−2t −3)−b 1,CE =b 2−(t 2−2t −3), 从而可得x A ⋅x Q =t 2−2t −3−b 1 ①,同理:x B ⋅x Q =t2−2t −3− b 2 ② , 所以CE CD =−x B x A =2,即−t+3−t−1=−2,即可求出t 值.。
2019-2020学年重庆市九龙坡区育才中学七年级(上)第一次定时练习数学试卷(原卷+解析版)

2019-2020学年重庆市九龙坡区育才中学七年级(上)第一次定时练习数学试卷一、选择题(3分/题,共30分) 1.(3分)12的相反数是( ) A .2B .2-C .12 D .12-2.(3分)某地连续四天每天的平均气温分别是:1C ︒、1C ︒-、0C ︒、2C ︒,则平均气温中最低的是( ) A .1C ︒-B .0C ︒C .1C ︒D .2C ︒3.(3分)在|4|-、|5|--、(3)--、(2)-+四个数中,负数有( ) A .1个B .2个C .3个D .4个4.(3分)下列各对数中,互为相反数的是( ) A .(2)--和2B .(3)+-和(3)-+C .122-和D .(5)--和|5|--5.(3分)下列有理数大小关系判断正确的是( ) A .0.10.01->- B .0|100|>- C .|10||10|-<-+D .11()||1011-->-- 6.(3分)若|2|2a a -=-,则数a 在数轴上的对应点在( ) A .表示数2的点的左侧B .表示数2的点的右侧C .表示数2的点或表示数2的点的左侧D .表示数2的点或表示数2的点的右侧7.(3分)下列语句:①数轴上的点仅能表示整数:②数轴是一条直线:③数轴上的一个点只能表示一个数:④数轴上找不到既不表示正数,又不表示负数的点:⑤数抽上的点所表示的数都是有理数.正确的说法有( ) A .1个B .2个C .3个D .4个8.(3分)下列说法正确的个数是( )①一个数的绝对值的相反数一定是负数;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④互为相反数的两个数的绝对值一定相等;⑤任何一个有理数一定不大于它的绝对值A .5个B .4个C .3个D .2个9.(3分)已知a 、b 、c 都是有理数,且满足||||||1a b c a b c++=,则a ,b ,c 三个数中正数的个数为( ) A .0个B .1个C .2个D .3个10.(3分)我们知道:134+=,1359++=,135716+++=,⋯.观察下面的一列数:1-,2,3-,4,5-,6,⋯,将这些数排成如下形式,根据规律猜想:第20行第4个数是( )A .363-B .365-C .367-D .369-二.填空题:(每题4分,共28分)11.(4分)若超出标准质量0.05克记作0.05+克,则低于标准质量0.03克记作 克. 12.(4分)已知[()]8x --+=,则x 的相反数是 .13.(4分)下列4对数中:①7和7.5;②0和0:③7-和(7)--;④5和15-.其中互为相反数的是 .14.(4分)若||2x =,则x = ;若|5|0a -=,则已知|2|a -与|3|b -互为相反数,则32a b +的值 .15.(4分)数轴上A 、B 两点对应的数分别为2-和m ,且线段3AB =,则m = . 16.(4分)如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点间的距离为 .17.(4分)已知||||a b >,0a <,0b >,试比较a ,b ,a -,b -的大小 .(用“<”连接)三、解答题(共3小题,满分16分)18.(4分)已知|2||1|0a b ++-=,求a b +的值.19.(4分)已知||5a =,||3b =,且||a b b a -=-,求a b +的值.20.(8分)如图,已知A 、B 、C 是数轴上三点,对应的数分别是10-、2、6,点O 为原点,点P 从A 点出发,沿着数轴向右运动,动点Q 从点C 出发,沿着数轴向左运动,点P 、Q 分别以每秒6个单位和3个单位的速度,M 为AP 中点,N 为CQ 中点,设运动时间为t ;t>,(0)(1)求点P、Q、M、N对应的数(用含t的代数式表示)(2)t为何值时,OM BN=.2019-2020学年重庆市九龙坡区育才中学七年级(上)第一次定时练习数学试卷参考答案与试题解析一、选择题(3分/题,共30分) 1.(3分)12的相反数是( ) A .2B .2-C .12 D .12-【分析】根据相反数的概念和绝对值的性质进行解答. 【解答】解:12的相反数是12-. 故选:D .【点评】解答本题的关键是弄清绝对值的性质和相反数的概念. 相反数:只有符号不同而绝对值相等的两个数互为相反数.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)某地连续四天每天的平均气温分别是:1C ︒、1C ︒-、0C ︒、2C ︒,则平均气温中最低的是( ) A .1C ︒-B .0C ︒C .1C ︒D .2C ︒【分析】根据正数大于一切负数解答.【解答】解:1C ︒、1C ︒-、0C ︒、2C ︒中气温最低的是1C ︒-,∴平均气温中最低的是1C ︒-.故选:A .【点评】本题考查了有理数的大小比较,是基础题,熟记正数大于一切负数是解题的关键. 3.(3分)在|4|-、|5|--、(3)--、(2)-+四个数中,负数有( ) A .1个B .2个C .3个D .4个【分析】先化简后,根据有理数的大小比较解答即可.【解答】解:因为|4|4-=、|5|5--=-、(3)3--=、(2)2-+=-, 所以负数有|5|--、(2)-+两个, 故选:B .【点评】此题考查正数和负数,关键是根据有理数的大小比较解答. 4.(3分)下列各对数中,互为相反数的是( ) A .(2)--和2B .(3)+-和(3)-+C .122-和D .(5)--和|5|--【分析】根据互为相反数的两数之和为0可得出答案. 【解答】解:A 、(2)24--+=,故本选项错误;B 、(3)(3)6+--+=-,故本选项错误;C 、13222-=-,故本选项错误; D 、(5)|5|0----=,故本选项正确.故选:D .【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0. 5.(3分)下列有理数大小关系判断正确的是( ) A .0.10.01->- B .0|100|>- C .|10||10|-<-+D .11()||1011-->-- 【分析】根据有理数比较大小的法则对各组数进行逐一比较即可.【解答】解:A 、错误,0.10-<,0.010-<,|0.1|0.1|0.01|0.01-=>-=, 0.10.01∴-<-;B 、错误,|100|1000-=>,0|100|∴<-;C 、错误,|10|10-=,|10|10-+=-,|10||10|∴->-+;D 、正确,1111()1010110--==,1110||1111110--=-=-,1110110110>-, 11()||1011∴-->--. 故选:D .【点评】本题考查的是有理数比较大小的法则,解答此题的关键是熟知以下知识: 正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小. 6.(3分)若|2|2a a -=-,则数a 在数轴上的对应点在( ) A .表示数2的点的左侧B .表示数2的点的右侧C .表示数2的点或表示数2的点的左侧D.表示数2的点或表示数2的点的右侧【分析】根据绝对值的性质,求出a的取值范围,进而确定点a在数轴上的位置.【解答】解:|2|2a a-=-,∴-…,即2a….a20所以数a在数轴上的对应点为表示数2的点或表示数2点的左侧.故选:C.【点评】此题主要考查绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.(3分)下列语句:①数轴上的点仅能表示整数:②数轴是一条直线:③数轴上的一个点只能表示一个数:④数轴上找不到既不表示正数,又不表示负数的点:⑤数抽上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个【分析】根据数轴上的点与实数一一对应,以及数轴的意义逐一分析可得答案.【解答】解:①数轴上的点与实数一一对性应,故原来的说法错误;②数轴是一条直线的说法正确;③数轴上的点与实数一一对性应,故原来的说法错误;④数轴上既不表示正数,又不表示负数的点是0,故原来的说法错误;⑤数轴上的点与实数一一对应,故原来的说法错误.故正确的说法有1个.故选:A.【点评】本题考查了数轴,注意数轴上的点与实数一一对应.8.(3分)下列说法正确的个数是()①一个数的绝对值的相反数一定是负数;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④互为相反数的两个数的绝对值一定相等;⑤任何一个有理数一定不大于它的绝对值A.5个B.4个C.3个D.2个【分析】根据绝对值、相反数和有理数解答即可.【解答】解:①一个数的绝对值的相反数不一定是负数,如0,不符合题意;②正数和零的绝对值都等于它本身,符合题意;③0和负数的绝对值是它的相反数,不符合题意;④互为相反数的两个数的绝对值一定相等,符合题意;⑤任何一个有理数一定不大于它的绝对值,符合题意;故选:C.【点评】此题考查正数和负数,关键是根据绝对值、相反数和有理数解答.9.(3分)已知a、b、c都是有理数,且满足||||||1a b ca b c++=,则a,b,c三个数中正数的个数为()A.0个B.1个C.2个D.3个【分析】根据绝对值分类讨论解答即可.【解答】解:当a、b、c中有3个数0<,可得:||||||1113a b ca b c++=---=-,当a、b、c中有1个数0>,可得:||||||1111a b ca b c++=--+=-,当a、b、c中有2个数0>,可得:||||||1111a b ca b c++=-++=,当a、b、c中有3个数0>,可得:||||||1113a b ca b c++=++=,故选:C.【点评】此题考查正数和负数,关键是根据绝对值分类讨论解答.10.(3分)我们知道:134+=,1359++=,135716+++=,⋯.观察下面的一列数:1-,2,3-,4,5-,6,⋯,将这些数排成如下形式,根据规律猜想:第20行第4个数是()A.363-B.365-C.367-D.369-【分析】先求出19行有多少个数,再加4就等于第20行第4个数是多少.然后根据奇偶性来决定负正.【解答】解:1行1个数,2行3个数,3行5个数,4行7个数,⋯19行应有219137⨯-=个数,∴到第19行一共有,13579371919361+++++⋯+=⨯=.第20行第4个数的绝对值是3614365+=.又365是奇数,∴第20行第4个数是365-.故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题:(每题4分,共28分)11.(4分)若超出标准质量0.05克记作0.05+克,则低于标准质量0.03克记作0.03-克.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:超出标准质量0.05克记作0.05+克,则低于标准质量0.03克记作0.03-克.故答案为:0.03-.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.(4分)已知[()]8x--+=,则x的相反数是8-.【分析】直接去括号进而利用相反数的定义得出答案.【解答】解:[()]8x--+=,则8x=,故x的相反数为:8-.故答案为:8-.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.13.(4分)下列4对数中:①7和7.5;②0和0:③7-和(7)--;④5和15-.其中互为相反数的是②③.【分析】直接利用互为相反数的定义分析得出答案.【解答】解:①7和7.5,不是相反数,不合题意;②0和0是互为相反数,符合题意;③7-和(7)7--=,是互为相反数,符合题意; ④5和15-,不是相反数,不合题意.故答案为:②③.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.14.(4分)若||2x =,则x = 2± ;若|5|0a -=,则已知|2|a -与|3|b -互为相反数,则32a b +的值 .【分析】根据绝对值的意义解答;根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列式求出a 、b ,然后代入代数式进行计算即可得解. 【解答】解:||2x =, 2x ∴=±;|2|a -与|3|b -互为相反数, |2||3|0a b ∴-+-=, 20a ∴-=,30b -=,解得2a =,3b =,所以,3232236612a b +=⨯+⨯=+=. 故答案为:2±,12.【点评】本题考查了绝对值的意义,非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.(4分)数轴上A 、B 两点对应的数分别为2-和m ,且线段3AB =,则m = 5-或1 . 【分析】根据两点间的距离公式可得绝对值方程|(2)|3m --=,解绝对值方程即可求解. 【解答】解:依题意有|(2)|3m --=, 解得5m =-或1. 故答案为:5-或1.【点评】考查了数轴,关键是熟练掌握两点间的距离公式.16.(4分)如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点间的距离为 2或8 .【分析】数轴上点A 到原点的距离为3,则A 表示的数是3或3-,同理即可判断B 所表示的数,则问题即可解决.【解答】解:点A 到原点的距离为3,则A 表示的数是3或3-;同理B 表示5或5-.则A 、B 两点间的距离为2或8.【点评】根据点到原点的距离正确求出点所表示的数是解决本题的关键.17.(4分)已知||||a b >,0a <,0b >,试比较a ,b ,a -,b -的大小 a b b a <-<<- .(用“<”连接)【分析】根据已知条件,将a 、b 、b -、a -所表示的数在数轴上找出来,然后根据数轴的性质进行填空.【解答】解:||||a b >,0a <,0b >, a ∴、b 、b -、a -表示在数轴上如图所示:a b b a ∴<-<<-;故答案是:a b b a <-<<-.【点评】本题考查了有理数大小比较.此题采用了“数形结合”的数学思想. 三、解答题(共3小题,满分16分)18.(4分)已知|2||1|0a b ++-=,求a b +的值.【分析】利用非负数的性质求出a 与b 的值,即可求出所求. 【解答】解:|2||1|0a b ++-=, 20a ∴+=,10b -=,解得:2a =-,1b =, 则211a b +=-+=-.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键. 19.(4分)已知||5a =,||3b =,且||a b b a -=-,求a b +的值.【分析】根据绝对值的性质求出a 、b ,再判断出a 、b 的对应情况,然后相加即可得解. 【解答】解:||5a =,||3b =, 5a ∴=±,3b =±,||a b b a -=-,5a ∴=-时,3b =或3-, 532a b ∴+=-+=-,或5(3)8a b +=-+-=-, 所以,a b +的值是2-或8-.【点评】本题考查了有理数的减法,有理数的加法和绝对值的性质,难点在于确定a 、b 的值的对应情况.20.(8分)如图,已知A 、B 、C 是数轴上三点,对应的数分别是10-、2、6,点O 为原点,点P 从A 点出发,沿着数轴向右运动,动点Q 从点C 出发,沿着数轴向左运动,点P 、Q 分别以每秒6个单位和3个单位的速度,M 为AP 中点,N 为CQ 中点,设运动时间为t ;(0)t >,(1)求点P 、Q 、M 、N 对应的数(用含t 的代数式表示)(2)t 为何值时,OM BN =.【分析】(1)根据点P ,Q 的出发点、速度及运动方向,可得出运动时间为t 秒时点P ,Q 对应的数,结合M 为AP 中点、N 为CQ 中点,即可得出点M ,N 对应的数;(2)由OM BN =,即可得出关于x 的含绝对值的一元一次方程,解之即可得出结论.【解答】解:(1)当运动时间为t 秒时,点P 对应的数为610t -,点Q 对应的数为36t -+, 6AP t ∴=,3CQ t =. M 为AP 中点,N 为CQ 中点,∴点M 对应的数为6103102t t -+=-,点N 对应的数为362t -. (2)点O 对应的数为0,点B 对应的数为2,|310|OM t ∴=-,33|62||4|22t t BN =--=-. OM BN =,即331042t t -=-或331042t t -=-, 解得:289t =或4t =. 答:当t 的值为289秒或4秒时,OM BN =. 【点评】本题考查了一元一次方程的应用以及数轴,找准等量关系,正确列出一元一次方程是解题的关键.。
2019-2020学年重庆市九龙坡区育才中学九年级(下)开学数学试卷 解析版

2019-2020学年重庆市九龙坡区育才中学九年级(下)开学数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.下列各数中,是分数的是()A.7B.3C.D.﹣2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形3.计算结果为a6的是()A.a3+a3B.a2•a3C.(a3)2D.a12÷a24.如图,△ABC是△DEF以点O为位似中心经过位似变换得到的,若△ABC与△DEF的周长比为2:3,则OA与OD之比为()A.2:3B.3:2C.2:5D.3:55.一个正比例函数的图象经过A(3,﹣6),B(﹣m,4)两点,则m的值为()A.2B.8C.﹣2D.﹣86.如图,四边形ABCD是半圆的内接四边形,AB是直径,点C是的中点,如果∠DAB =70°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°7.下列命题是假命题的是()A.平行四边形是中心对称图形B.对角线垂直且相等的四边形是正方形C.五边形的内角和为540°D.矩形的对角线相等8.根据如图所示的框图,若输入x=()﹣1,y=,则输出的m的值为()A.﹣2B.2C.D.﹣0.59.观察下列图形,第1个图形中有4颗棋子,第2个图形中有7颗棋子,第3个图形中有11颗棋子,第4个图形中有16颗棋子…依次规律,第7个图形中棋子的颗数是()A.29B.37C.46D.4710.如图是杨家坪步行街某天桥扶梯横截面的平面图.身高为1.5米的小明站在距离扶梯底端A处8米远的点P处,测得扶梯顶端B的仰角为18°,扶梯AB的坡度i=3:4,已知扶梯顶端B到天桥顶部的距离为2.3米,则小明所在位置点P到天桥顶部的距离是()(参考数据:sin18°=0.29,cos18°=0.95,tan18°≈)A.7.5米B.7.9米C.9.8米D.12.3米11.若关于x的不等式组至少有3个整数解,且关于y的分式方程=1的解是非负数,则符合条件的所有整数a的个数是()A.3个B.4个C.5个D.6个12.如图,△ABC中,∠ABC=45°,∠ACB=30°,BC=+1,点D是线段BC上一动点,连接AD,把△ADC沿AD翻折得到△ADE,点F为AE的中点,连接BF,则线段BF的最小值为()A.2﹣B.﹣1C.﹣1D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.截至目前,某地区民政局共接受当地防治新冠肺炎社会捐款共计约4500万元,4500用科学记数法表示为.14.如果关于x,y的二元一次方程组的解x,y满足x+y=3,则k的值是.15.一个不透明的袋中有四张形状大小质地完全相同的卡片,它们上面分别标有数字﹣2、1、2、3随机抽取一张卡片,把上面的数字记为a,则a恰好使得抛物线y=ax2+x﹣1的对称轴在y轴左侧,且双曲线y=经过二、四象限的概率是.16.如图,在△ABC中,∠ABC=90°,∠ACB=45°,以AB为直径画半圆O,半圆与AC 交于点D,且AB=4,则阴影部分面积为.(结果保留π)17.一个阳光明媚的上午,小明和小兰相约从鲁能巴蜀中学沿相同的路线去龙头寺公园写生,小明出发5分钟后小兰才出发,此时小明发现忘记带颜料,立即按原速原路回学校拿颜料,小明拿到颜料后,以比原速提高20%的速度赶去公园,结果还是比小兰晚2分钟到公园(小明拿颜料的时间忽略不计).在整个过程中,小兰保持匀速运动,小明提速前后也分别保持匀速运动,如图所示是小明与小兰之间的距离y(米)与小明出发的时间x(分钟)之间的函数图象,则学校到公园的距离为米.18.以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x、y轴的正半轴上,双曲线y=(k>0)的图象经过BC的中点D,且与AB交于点E,过OC 边上一点F,把△BCF沿直线BF翻折,使点C落在矩形内部的一点C'处,且C′E∥BC,若点C'的坐标为(2,4),则BF的长为.三、解答题:(本大题共8个小题,共78分)请把答案写在答题卡上对应的空白处,解答时每小题必须给出必要的演算过程或推理步骤.19.计算:(1)2x(x﹣y)+(x﹣y)2;(2).20.如图,等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF;(3)求△BDE的面积.21.争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取一部分学生进行测试.整理测试成绩,得到如下频数分布表和频数分布直方图:成绩(分)频数频率A组:75<x≤8060.15B组:80<x≤85a0.2C组:85<x≤90160.4D组:90<x≤9560.15E组:95<x≤1004b 其中最低分为76分,满分率为5%,C组成绩为89,89,86,88,89,89,89,86,89,90,89,89,88,88,89,87回答下列问题:(1)学校共抽取了名同学进行测试,他们的成绩的中位数为,众数为,极差为;(2)其中频数分布表中a=,b=,并补全频数分布直方图;(3)若成绩大于85分为优秀,估计该校七年级1500名学生中,达到优秀等级的人数.22.阅读材料材料1:数学世界里有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:11、171、1661、134431、…,像这样的数我们叫它“完美数”.材料2:如果一个三位数,满足a+b+c=9,我们称这个三位数“长久数”.(1)请直接写出既是“完美数”又是“长久数”的所有三位数.(2)三位数是大于500的“完美数”,它的各位数字之和等于k,k是一个完全平方数,求这个三位数(请写出必要的推理过程).23.在平面直角坐标系xOy中,函数y1=x﹣2的图象与函数y2=的图象在第一象限有一个交点A,且点A的横坐标是6.(1)m=,n=;(2)以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点(部分点已经描出),补充画y2的函数图象;x﹣3﹣2﹣101 1.2 1.523456 y2﹣11357 5.2 3.521n2(3)写出函数一条性质:;(4)已知函数y1与y2的图象在第一象限有且只有一个交点A,若函数y3=x+t与y2的函数图象有三个交点,直接写出t的取值范围.24.今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.25.已知抛物线y=ax2+bx+6交x轴于A、B两点(点A在点B的左侧),交y轴于点C,连接AC、BC.且OA:OB:OC=1:2:3.(1)请求出抛物线解析式;(2)如图1,点P是直线BC上方抛物线上一动点,是否存在直线OP平分四边形ABPC 的面积,若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,现将原抛物线沿射线CB方向移动,平移后点A的对应点为点A',点B的对应点为点B'.记BC中点为K,连接B'K、A'K.若∠KA′B'=∠KB'A',请直接写出原抛物线平移的距离.26.在正方形ABCD中,E为边CD上一点(不与点C、D重合),垂直于BE的一条直线MN分别交BC、BE、AD于点M、P、N,正方形ABCD的边长为6.(1)如图1,当点M和点C重合时,若AN=4,求线段PM的长度;(2)如图2,当点M在边BC上时,判断线段AN、MB、EC之间的数量关系,并说明理由;(3)如图3,当垂足P在正方形ABCD的对角线AC上运动时,连接NB,将△BPN沿着BN翻折,点P落在点P'处,AB的中点为Q,直接写出P'Q的最小值.2019-2020学年重庆市九龙坡区育才中学九年级(下)开学数学试卷参考答案与试题解析一.选择题(共12小题)1.下列各数中,是分数的是()A.7B.3C.D.﹣【分析】根据实数的定义判断即可.【解答】解:7是整数,3与是无理数,﹣是分数.故选:D.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、菱形是轴对称图形,也是中心对称图形,故本选项正确.故选:D.3.计算结果为a6的是()A.a3+a3B.a2•a3C.(a3)2D.a12÷a2【分析】根据合并同类项,同底数幂的乘法底数不变指数相加,幂的乘方,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、系数相加子母机指数不变,故A不符合题意;B、同底数幂的乘法底数不变指数相加,故B不符合题意;C、幂的乘方底数不变指数相乘,故C符合题意;D、同底数幂的除法底数不变指数相减,故D不符合题意;故选:C.4.如图,△ABC是△DEF以点O为位似中心经过位似变换得到的,若△ABC与△DEF的周长比为2:3,则OA与OD之比为()A.2:3B.3:2C.2:5D.3:5【分析】根据位似变换的概念得到AC∥FD,△ABC∽△DEF,证明△AOC∽△DOF,根据相似三角形的性质解答即可.【解答】解:∵△ABC是△DEF以点O为位似中心经过位似变换得到的,∴AC∥FD,△ABC∽△DEF,∵△ABC与△DEF的周长比为2:3,∴=,∵AC∥FD,∴△AOC∽△DOF,∴==,故选:A.5.一个正比例函数的图象经过A(3,﹣6),B(﹣m,4)两点,则m的值为()A.2B.8C.﹣2D.﹣8【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴正比例函数解析式为:y=﹣2x,将B(﹣m,4)代入y=﹣2x,可得:2m=4,解得m=2,故选:A.6.如图,四边形ABCD是半圆的内接四边形,AB是直径,点C是的中点,如果∠DAB =70°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°【分析】连接BD,根据圆周角定理得到∠ADB=90°,求出∠ABD,根据圆内接四边形的性质求出∠C,根据等腰三角形的性质求出∠CBD,结合图形计算,得到答案.【解答】解:连接BD,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=20°,∵四边形ABCD是半圆的内接四边形,∴∠C=180°﹣∠DAB=110°,∵点C是的中点,∴CD=CB,∴∠CBD=×(180°﹣110°)=35°,∴∠ABC=∠ABD+∠CBD=55°,故选:A.7.下列命题是假命题的是()A.平行四边形是中心对称图形B.对角线垂直且相等的四边形是正方形C.五边形的内角和为540°D.矩形的对角线相等【分析】根据平行四边形、正方形、五边形和矩形的性质判断即可.【解答】解:A、平行四边形是中心对称图形,是真命题;B、对角线平分、垂直且相等的四边形是正方形,原命题是假命题;C、五边形的内角和为540°,是真命题;D、矩形的对角线相等,是真命题;故选:B.8.根据如图所示的框图,若输入x=()﹣1,y=,则输出的m的值为()A.﹣2B.2C.D.﹣0.5【分析】先将x的值化简,再与y比较,判断x是否等于y,然后根据框图得出答案即可.【解答】解:∵x=()﹣1=2,y=,∴x≠y,∴m=y=.故选:C.9.观察下列图形,第1个图形中有4颗棋子,第2个图形中有7颗棋子,第3个图形中有11颗棋子,第4个图形中有16颗棋子…依次规律,第7个图形中棋子的颗数是()A.29B.37C.46D.47【分析】根据已知图形得到第1个图形中棋子数4,第2个图形中棋子数7=4+3,第3个图形中棋子数11=4+(3+4),第4个图形中棋子数16=4+(3+4+5),……依此找到规律得到第7个图形中棋子的颗数.【解答】解:∵第1个图形中棋子数4,第2个图形中棋子数7=4+3,第3个图形中棋子数11=4+(3+4),第4个图形中棋子数16=4+(3+4+5),……∴第7个图形中棋子数4+(3+4+5+6+7+8)=37.故选:B.10.如图是杨家坪步行街某天桥扶梯横截面的平面图.身高为1.5米的小明站在距离扶梯底端A处8米远的点P处,测得扶梯顶端B的仰角为18°,扶梯AB的坡度i=3:4,已知扶梯顶端B到天桥顶部的距离为2.3米,则小明所在位置点P到天桥顶部的距离是()(参考数据:sin18°=0.29,cos18°=0.95,tan18°≈)A.7.5米B.7.9米C.9.8米D.12.3米【分析】作BC⊥P A交P A的延长线于点E,作QD∥PE交BE于点D,设BE=x,BE﹣BD=DE,根据方程即可求出扶梯的起点A与顶部的距离.【解答】解:作BC⊥P A交P A的延长线于点E,作QD∥PE交BE于点D,由题意可得,AB的坡度i==3:4,设BE=3x,则AE=4x,由题意可知:PE=QD=P A+AE=8+4x,在Rt△QBD中,tan∠BQD=,BD=tan∠BQD•QD=tan18(8+4x)=(8+4x),根据题意,BE﹣BD=DE,即3x﹣(8+4x)=1.5,解得x=2.5,扶梯的起点A与顶部的距离:6+1.5=7.5(米),BE+2.3=9.8(米)故选:C.11.若关于x的不等式组至少有3个整数解,且关于y的分式方程=1的解是非负数,则符合条件的所有整数a的个数是()A.3个B.4个C.5个D.6个【分析】不等式组变形后,根据有3个整数解确定出a的范围,再表示出分式方程的解,由分式方程的解是非负数,确定出满足条件a的值.【解答】解:解不等式组,得,∵不等式组至少有3个整数解,∴a≥2,解分式方程=1,得y=6﹣a,∵y=6﹣a为非负数,a≥2,∴a=2、3、4、5、6,∵a=4时,y=2,原分式方程无解,故将a=4舍去,∴符合条件的所有整数a的个数为4,故选:B.12.如图,△ABC中,∠ABC=45°,∠ACB=30°,BC=+1,点D是线段BC上一动点,连接AD,把△ADC沿AD翻折得到△ADE,点F为AE的中点,连接BF,则线段BF的最小值为()A.2﹣B.﹣1C.﹣1D.【分析】过点A作AH⊥BC于H,由直角三角形的性质可得BH=AH,CH=AH,AC =2AH,AB=AH,可求AB,AC的长,由折叠的性质可得AE=AC=2,当点F在AB 上时,BF有最小值,即可求解.【解答】解:过点A作AH⊥BC于H,又∵∠ABC=45°,∠ACB=30°,∴BH=AH,CH=AH,AC=2AH,AB=AH,∴BC=BH+CH=AH+AH=+1,∴AH=BH=1,∴AC=2,AB=,∵把△ADC沿AD翻折得到△ADE,∴AE=AC=2,∵点F为AE的中点,∴AF=1,∴点F在以A为圆心,AF为半径的圆上,∴当点F在AB上时,BF有最小值,∴BF=﹣1,故选:B.二.填空题(共6小题)13.截至目前,某地区民政局共接受当地防治新冠肺炎社会捐款共计约4500万元,4500用科学记数法表示为 4.5×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将4500用科学记数法表示为:4.5×103,故答案为:4.5×103.14.如果关于x,y的二元一次方程组的解x,y满足x+y=3,则k的值是4.【分析】把方程组的两个方程相加,再把x+y=3代入即可求解.【解答】解:,①+②得:3x+3y=2k+1,即3(x+y)=2k+1,∵x+y=3,∴3×3=2k+1,解得k=4.故答案为:4.15.一个不透明的袋中有四张形状大小质地完全相同的卡片,它们上面分别标有数字﹣2、1、2、3随机抽取一张卡片,把上面的数字记为a,则a恰好使得抛物线y=ax2+x﹣1的对称轴在y轴左侧,且双曲线y=经过二、四象限的概率是.【分析】根据抛物线对称轴的位置得到x=﹣<0,求得a的取值范围;由双曲线所经过的象限得到a﹣3<0,从而确定a的值;然后根据概率的定义作答.【解答】解:根据题意,得x=﹣<0,解得a>0.又∵双曲线y=经过二、四象限,∴a﹣3<0,解得a<3,∴a=1或2.∴a恰好使得抛物线y=ax2+x﹣1的对称轴在y轴左侧,且双曲线y=经过二、四象限的情况有2种:1和2,∴a恰好使得抛物线y=ax2+x﹣1的对称轴在y轴左侧,且双曲线y=经过二、四象限的的概率==.故答案是:.16.如图,在△ABC中,∠ABC=90°,∠ACB=45°,以AB为直径画半圆O,半圆与AC交于点D,且AB=4,则阴影部分面积为6﹣π.(结果保留π)【分析】连接OD,易求得∠CAB=45°,即可求得∠BOD=90°,再由S阴影=S△ABC﹣S扇形BOD﹣S△AOD即可得出结论.【解答】解:连接OD,在△ABC中,∠ABC=90°,∠ACB=45°,∴∠CAB=45°,∴∠BOD=90°,∵AB=4,∴OA=OB=OD=2,∴S阴影=S△ABC﹣S扇形BOD﹣S△AOD=×4×4﹣π×22﹣×2×2=8﹣π﹣2=6﹣π.故答案为:6﹣π.17.一个阳光明媚的上午,小明和小兰相约从鲁能巴蜀中学沿相同的路线去龙头寺公园写生,小明出发5分钟后小兰才出发,此时小明发现忘记带颜料,立即按原速原路回学校拿颜料,小明拿到颜料后,以比原速提高20%的速度赶去公园,结果还是比小兰晚2分钟到公园(小明拿颜料的时间忽略不计).在整个过程中,小兰保持匀速运动,小明提速前后也分别保持匀速运动,如图所示是小明与小兰之间的距离y(米)与小明出发的时间x(分钟)之间的函数图象,则学校到公园的距离为720米.【分析】根据题意和函数图象中的数据可以计算出小明提速后的速度和小兰的速度,然后设学校到公园的距离为S米,即可得到相应的方程,从而可以解答本题.【解答】解:由图象可得,小明提速后的速度为:240÷2=120(米/分钟),小兰的速度为:400÷5=80(米/分钟),设学校到公园的距离为S米,,解得,S=720,故答案为:720.18.以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x、y轴的正半轴上,双曲线y=(k>0)的图象经过BC的中点D,且与AB交于点E,过OC 边上一点F,把△BCF沿直线BF翻折,使点C落在矩形内部的一点C'处,且C′E∥BC,若点C'的坐标为(2,4),则BF的长为.【分析】首先证明点E是线段AB的中点,设BC=BC′=m,则EC′=m﹣2.在Rt△BEC′中,根据BC′2=BE2+EC′2,构建方程求出m即可求得点E的坐标;延长EC′交y轴于G,则EG⊥y轴,由勾股定理求得FG,进而求得CF,再根据勾股定理求得BF.【解答】解:连接OD、OE.设BC=BC′=m,则EC′=m﹣2.∵CD=BD,∴S△CDO==S矩形ABCD,∵S△AOE=k,∴S△AOE=S△CDO=S矩形ABCD,∴AE=EB,∵C′(2,4),∴AE=EB=4,在Rt△BEC′中,∵BC′2=BE2+EC′2,∴m2=42+(m﹣2)2,∴m=5,∴E(5,4),∴B(5,8),则BC=5,延长EC′交y轴于G,则EG⊥y轴,∴C′G=2,CG=4,∴在Rt△FGC′中,C′F2=C′G2+FG2,即(4﹣FG)2=22+FG2,∴FG=,∴CF=4﹣=,∴BF===,故答案为.三.解答题19.计算:(1)2x(x﹣y)+(x﹣y)2;(2).【分析】(1)根据单项式乘多项式和完全平方公式可以解答本题;(2)根据分式的减法和除法可以解答本题.【解答】解:(1)2x(x﹣y)+(x﹣y)2=2x2﹣2xy+x2﹣2xy+y2=3x2﹣4xy+y2;(2)=÷===.20.如图,等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF;(3)求△BDE的面积.【分析】(1)依据等边三角形的性质,即可得到AD的长,进而运用勾股定理得出BD的长;(2)依据等腰三角形的性质,即可得到BF=EF;(3)先求得BE=BC+CE=9,再根据∠DBE=30°,DB=3,即可得出DF=DB =,进而得到△BDE的面积.【解答】解:(1)∵BD是等边△ABC的中线,∴BD⊥AC,BD平分AC,∵AB=6,∴AD=3,∴由勾股定理得,BD==3;(2)证明∵BD是等边△ABC的中线,∴BD平分∠ABC,∴∠DBE=∠ABC=30°,又∵CE=CD,∴∠E=∠CDE,∠E=∠ACB=30°.∴∠DBE=∠E,∴DB=DE.∵DF⊥BE,∴DF为底边上的中线.∴BF=EF;(3)∵AD=CD,CE=CD,∴CE=CD=3,∴BE=BC+CE=9,∵∠DBE=30°,DB=3,∴DF=DB=×3=,∴△BDE的面积=BE•DF=×9×=.21.争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取一部分学生进行测试.整理测试成绩,得到如下频数分布表和频数分布直方图:成绩(分)频数频率A组:75<x≤8060.15B组:80<x≤85a0.2C组:85<x≤90160.4D组:90<x≤9560.15E组:95<x≤1004b其中最低分为76分,满分率为5%,C组成绩为89,89,86,88,89,89,89,86,89,90,89,89,88,88,89,87回答下列问题:(1)学校共抽取了40名同学进行测试,他们的成绩的中位数为88.5,众数为89,极差为24;(2)其中频数分布表中a=8,b=0.1,并补全频数分布直方图;(3)若成绩大于85分为优秀,估计该校七年级1500名学生中,达到优秀等级的人数.【分析】(1)根据频数分布表中C组频数和频率可得学校共抽取的人数,再将C组成绩从低到高排列后即可得中位数,进而可得众数和极差;(2)根据频数分布表即可补全频数分布直方图;(3)利用样本估计总体的方法即可估计该校七年级1500名学生中,达到优秀等级的人数.【解答】解:(1)根据题意可知:16÷0.4=40,所以学校共抽取了40名同学进行测试,因为C组有16人,成绩从低到高为:86,86,87,88,88,88,89,89,89,89,89,89,89,89,89,90,a=40×0.2=8,所以他们的成绩的中位数为(88+89)=88.5,众数为89,极差为100﹣76=24.故答案为:40,88.5,89,24;(2)a=8,b=4÷40=0.1,故答案为:8,0.1,如图即为补全的频数分布直方图,(3)0.65×1500=975(人).答:该校七年级1500名学生中,达到优秀等级的975人.22.阅读材料材料1:数学世界里有一些整数你无论从左往右看,还是从右往左看,数字都是完全一样的,例如:11、171、1661、134431、…,像这样的数我们叫它“完美数”.材料2:如果一个三位数,满足a+b+c=9,我们称这个三位数“长久数”.(1)请直接写出既是“完美数”又是“长久数”的所有三位数.(2)三位数是大于500的“完美数”,它的各位数字之和等于k,k是一个完全平方数,求这个三位数(请写出必要的推理过程).【分析】(1)由一个三位数既是“完美数”又是“长久数”,可由a+b+c=9且a=c,得出b=9﹣2a,求解即可求得答案;(2)由是大于500的“完美数”,可得10≤a+b+c<30,又由的各位数字之和等于k是一个完全平方数,可得a+b+c=16或a+b+c=25,即:2a+b=42=16或2a+b=52=25,求解即可求得答案.【解答】解:(1)设三位数为,既是“完美数”又是“长久数”,∴a=c,a+b+c=9,∴b=9﹣2a,∴当a=c=1时,b=7,当a=c=2时,b=5;当a=c=3时,b=3,当a=c=4时,b=1,∴既是“完美数”又是“长久数”的三位数有:171,252,333,414;(2)∵是大于500的“完美数”,∴a=c∴5≤a<10,b<10,∴10≤a+b+c<30,∵的各位数字之和等于k是一个完全平方数,∴a+b+c=k2,即:2a+b=k2∴2a+b=42=16或2a+b=52=25,又∵是大于500的“完美数”,∴①若2a+b=16,则当a=c=5时,b=6;当a=c=6时,b=4;当a=c=7时,b=2;当a=c=8时,b=0;②若2a+b=25,∴b=25﹣2a<10,∴a>7.5,则当a=c=8时,b=9;当a=c=9时,b=7;∴这个三位数是:565,646,727,808,898,979.23.在平面直角坐标系xOy中,函数y1=x﹣2的图象与函数y2=的图象在第一象限有一个交点A,且点A的横坐标是6.(1)m=12,n=1;(2)以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点(部分点已经描出),补充画y2的函数图象;x﹣3﹣2﹣101 1.2 1.523456y2﹣11357 5.2 3.521n2(3)写出函数一条性质:当x≤1时,y2随着x的增大而增大;(4)已知函数y1与y2的图象在第一象限有且只有一个交点A,若函数y3=x+t与y2的函数图象有三个交点,直接写出t的取值范围.【分析】(1)将A(6,2)代入y=x+﹣6,可得m的值;(2)在直角坐标系内描出相应的点,即可画出y2的函数图象;(3)依据函数图象的增减性,即可写出函数y2的一条性质;(4)当t=﹣2时,函数y3=x+t与y2的函数图象有两个交点,当函数y3=x+t的图象经过(1,7)时,函数y3=x+t与y2的函数图象有两个交点,据此可得t的取值范围.【解答】解:(1)将A(6,2)代入y=x+﹣6,可得2=6+﹣6,解得m=12,把x=4代入y=x+﹣6得y=1,∴n=1;(2)如图所示:(3)由图可得,函数y2的一条性质:当x≤1时,y2随着x的增大而增大;故答案为:当x≤1时,y2随着x的增大而增大;(4)函数y1与y2的图象在第一象限有且只有一个交点A,当t=﹣2时,函数y3=x+t与函数y1=x﹣2的图象重合,此时函数y3=x+t与y2的函数图象有两个交点,当函数y3=x+t的图象经过(1,7)时,函数y3=x+t与y2的函数图象有两个交点,此时,把(1,7)代入y3=x+t,可得t=;∵函数y3=x+t与y2的函数图象有三个交点,∴n的取值范围为﹣2<t<.24.今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在原售价基础上每箱降价3m%,这样每天可多销售m%;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m的值.【分析】(1)设打x折销售,根据利润率=≥10%,列方程可得结论;(2)等量关系为:(售价﹣成本)×销售量=利润;原售价基础上每箱降价3m%,每天可多销售m%,依此列出方程,解方程即可.【解答】解:(1)设打x折销售,才能保证每箱脐橙的利润率不低于10%,由题意得:≥10%,x≥8.8,答:最多打8.8折销售,才能保证每箱脐橙的利润率不低于10%;(2)由题意得:5000(1+m%)[50(1﹣3m%)+m﹣40]=49000,5(1+)(50﹣m+m﹣40)=49,m2﹣5m﹣6=0,m1=6,m2=﹣1(舍).25.已知抛物线y=ax2+bx+6交x轴于A、B两点(点A在点B的左侧),交y轴于点C,连接AC、BC.且OA:OB:OC=1:2:3.(1)请求出抛物线解析式;(2)如图1,点P是直线BC上方抛物线上一动点,是否存在直线OP平分四边形ABPC 的面积,若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,现将原抛物线沿射线CB方向移动,平移后点A的对应点为点A',点B的对应点为点B'.记BC中点为K,连接B'K、A'K.若∠KA′B'=∠KB'A',请直接写出原抛物线平移的距离.【分析】(1)用待定系数法即可求解;(2)四边形ABPC的面积=S△AOC+S△OCP+S△OBP=×2×6+×6•m+×4×n=3m+2n+6,而△POB的面积=×OB•n=×4n=2n,进而求解;(3)直线BC的表达式为y=﹣x+6,则设抛物线向右平移2m个单位就向下平移了3m个单位,则A′、B′的坐标分别为(﹣2+2m,﹣3m)、(4+2m,﹣3m),而∠KA′B'=∠KB'A',则点K在A′B′的中垂线上,即可求解.【解答】解:(1)由抛物线y=ax2+bx+6知,c=6,即OC=6,而OA:OB:OC=1:2:3,故OA=2,OB=4,故点A、B、C的坐标分别为(﹣2,0)、(4,0)、(0,6),则设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x+2)(x﹣4)=a(x2﹣2x﹣8),则﹣8a=6,解得a=﹣,故抛物线的表达式为y=﹣(x2﹣2x﹣8)=﹣x2+x+6;(2)设点P的坐标为(m,n),则n=﹣m2+m+6①,则四边形ABPC的面积=S△AOC+S△OCP+S△OBP=×2×6+×6•m+×4×n=3m+2n+6,△POB的面积=×OB•n=×4n=2n,由题意得:4n=3m+2n+6②,联立①②并解得(不合题意值已舍去),故点P的坐标为(2,6);(3)∵BC中点为K,则点K(2,3),设直线BC的表达式为y=kx+t,则,解得,故直线BC的表达式为y=﹣x+6,则设抛物线向右平移2m个单位就向下平移了3m个单位,则A′、B′的坐标分别为(﹣2+2m,﹣3m)、(4+2m,﹣3m),∵∠KA′B'=∠KB'A',则点K在A′B′的中垂线上,即2=(﹣2+2m+4+2m),解得m=,则抛物线向右平移1个单位就向下平移了个单位,则平移的距离为=.26.在正方形ABCD中,E为边CD上一点(不与点C、D重合),垂直于BE的一条直线MN分别交BC、BE、AD于点M、P、N,正方形ABCD的边长为6.(1)如图1,当点M和点C重合时,若AN=4,求线段PM的长度;(2)如图2,当点M在边BC上时,判断线段AN、MB、EC之间的数量关系,并说明理由;(3)如图3,当垂足P在正方形ABCD的对角线AC上运动时,连接NB,将△BPN沿着BN翻折,点P落在点P'处,AB的中点为Q,直接写出P'Q的最小值.【分析】(1)证△DMN≌△CBE(AAS),得MN=BE,由勾股定理得BE=MN=2,证△PBC∽△CBE,得=,则BP=,再由勾股定理即可得解;(2)过点N作NF⊥BC于N,证△EBC≌△MNF(ASA),得FM=EC,进而得出结论;(3)连接BD交AC于点O,则△BPN的直角顶点P在AC上运动,设点P与点C重合时,则点P′与点A重合;设点P与点O重合时,则点P′的落点为O′,当点P在线段CO上运动时,过点P作PG⊥AD于点G,过点P′作P′H⊥AD交DA延长线于点H,连接PD,证△BPC≌△DPC(SSS),得∠CBP=∠CDP,易证∠PDN=∠PND,得PD=PN,推出BP=PN,则∠PNB=45°,∠PNP′=90°,证△PGN≌△NHP'(ASA),得PG=NH,GN=P'H,易证△AGP是等腰直角三角形,得PG=AG,推出GN=AH,AH=P'H,则∠P'AH=45°,得∠P'AB=45°,得出点P'在线段AO'上运动,过点Q作QK⊥AO',垂足为K,则当P′与K重合时,P'Q最短,即可得出结果.【解答】解:(1)∵四边形ABCD是正方形,∴AB=BC=CD=AD=6,∠D=∠BCE=90°,∵BE⊥MN,点M和点C重合,∴MD=BC=6,∠DMN+∠BCP=90°,∠CBE+∠BCP=90°,∴∠DMN=∠CBE,在△DMN和△CBE中,,∴△DMN≌△CBE(AAS),∴MN=BE,∵AN=4,∴DN=AD﹣AN=6﹣4=2,由勾股定理得:MN===2,∴BE=2,∵∠PBC=∠CBE,∠CPB=∠ECB=90°,∴△PBC∽△CBE,∴=,∴BP===,在Rt△BPM中,由勾股定理得:PM===;(2)线段AN、MB、EC之间的数量关系为:AN+EC=MB,理由如下:过点N作NF⊥BC于N,如图2所示:则四边形ANFB为矩形,∴AN=BF,NF=AB=BC,∵MN⊥BE,∴∠EBC+∠PMB=90°,∠MNF+∠NMF=90°,∴∠EBC=∠MNF,在△EBC和△MNF中,,∴△EBC≌△MNF(ASA),∴FM=EC,∴MB=BF+FM=AN+EC,即AN+EC=MB;(3)连接BD交AC于点O,如图3所示:则△BPN的直角顶点P在AC上运动,设点P与点C重合时,则点P′与点A重合;。
2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷及参考答案

2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)实数2019的相反数是()A.2019B.C.D.﹣20192.(4分)下列图形是中心对称图形的是()A.B.C.D.3.(4分)为调查某中学学生对社会主义核心价值观的了解程度,某课外活动小组进行了抽样调查,以下样本最具有代表性的是()A.初三年级的学生B.全校女生C.每班学号尾号为5的学生D.在篮球场打篮球的学生4.(4分)如图,用菱形纸片按规律依次拼成如图图案.第1个图案有5个菱形纸片,第2个图案有9个菱形纸片,第3个图案有13个菱形纸片,按此规律,第7个图案中菱形纸片数量为()A.17B.21C.25D.295.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,15cm 和18cm,另一个三角形的最长边长为9cm,则它的最短边为()A.2cm B.2.5cm C.4cm D.7.5cm6.(4分)下列命题中真命题是()A.互补的角一定是邻补角B.三角形的一个外角大于任何一个内角C.内错角一定相等D.同一平面内,垂直于同一直线的两直线平行7.(4分)估计(﹣)÷的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间8.(4分)按图所示的运算程序,若输入x=1,输出的y值为()A.﹣1B.1C.0D.﹣79.(4分)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,AD=3,BC=,则四边形ABCD的周长为()A.B.C.D.10.(4分)缙云山是国家级自然风景名胜区,上周周末,小明和妈妈到缙云山游玩,登上了香炉峰观景塔,从观景塔底中心D处水平向前走14米到点A处,再沿着坡度为0.75的斜坡A走一段距离到达B点,此时回望观景塔,更显气势宏伟,在B点观察到观景塔顶端的仰角为45°再往前沿水平方向走27米到C处,观察到观景塔顶端的仰角是22°,则观景塔的高度DE为()(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.4)A.21米B.24米C.36米D.45米11.(4分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC,则k的值为()A.﹣12B.12C.16D.1812.(4分)若数a使关于x的不等式组的解为x<2,且使关于x的分式方程+=﹣4有正整数解,则满足条件的a的值之和为()A.12B.11C.10D.9二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算(π﹣3)0+=.14.(4分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=4,以边AC为直径的半圆交AB于点D,则图中阴影部分的面积是(结果保留π)15.(4分)如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,若∠C=15°,AE=EG=2厘米,则△ABC的边BC的长为厘米.16.(4分)有背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:y=、y =﹣x+2、y=x2、y=2x+1,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图象不过第四象限的卡片的概率是.17.(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙跑了米.18.(4分)一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2a,a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物,乙车共运270吨.现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为元.(按每吨运费20元计算)三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 19.(10分)证明命题“等腰三角形两腰上的高相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,在△ABC中,AB=AC,.求证:请补全已知和求证部分,并写出证明过程.20.(10分)在新的教学改革的推动下,某中学初三年级积极推进走班制教学.为了了解一段时间以来“至善班”的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取20名同学在某一次定时测试中的数学成绩,其结果记录如下:收集数据至善班”甲班的20名同学的数学成绩统计(满分为100分)(单位:分)86 90 60 76 92 83 56 76 85 7096 96 90 68 78 80 68 96 85 81“至善班”乙班的20名同学的数学成绩统计(满分为100分)(单位:分)78 96 75 76 82 87 60 54 87 72100 82 78 86 70 92 76 80 98 78整理数据:(成绩得分用x表示)分析数据,并回答下列问题:(1)完成下表:(2)在“至善班”甲班的扇形图中,成绩在70≤x<80的扇形中,所对的圆心角α的度数为,估计全部“至善班”的1600人中优秀人数为人.(成绩大于等于80分为优秀)(3)根据以上数据,你认为“至善班”班(填“甲”或“乙”)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:①.②.21.(10分)计算(1)(x﹣y)(x+y)﹣(x+2y)(x﹣y)(2)()22.(10分)小明研究一函数的性质,下表是该函数的几组对应值:(1)在平面直角坐标系中,描出以上表格中的各点,根据描出的点,画出该函数图象(2)根据所画函数图象,写出该函数的一条性质:;(3)根据图象直接写出该函数的解析式及自变量的取值范围:;(4)若一次函数y=x+n与该函数图象有三个交点,则n的范围是.23.(10分)幸福水果店计划用12元/盒的进价购进一款水果礼盒以备销售.(1)据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?(2)在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了m%,月销量比(1)中最低月销量800盒增加了m%,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.24.(10分)如图,平行四边形ABCD中,连接AC,AC=AB,过B作BE⊥AC于E,延长BE与CD交于F.(1)若AE=2,CE=1,求△ABC的面积;(2)若∠BAC=45°,过F作FG⊥AD于G,连接AF、BG,求证:AC=EG.25.(10分)数学不仅是一门科学,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大的一个要求大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里有这么多米吗?题中问题就是求1+21+22+23+…+263是多少?请同学们阅读以下解答过程就知道答案了设S=1+21+22+23+...+263,则2S=2(1+21+22+23+24+...+263)=2+22+23+24+...+263+2642S ﹣S=2(1+22+23+24+...+263)﹣(1+2+22+23+24+ (263)即:S=264﹣1事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要1+21+22+23+…+263=(264﹣1)粒米.那么264﹣1到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744073709551615,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:(1)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增共灯三百八十一,请问尖头几盏灯?”意思是一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?(2)计算:1+3+9+27+…+3n.(3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,…,依此类推.求满足如下条件的所有正整数N:10<N<100,且这一列数前N项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N的值四、解答题:(本大题1个小题,共8分)26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G (不与点A、E重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE 的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD 为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.2019年重庆市巴蜀中学、育才中学、南开中学三校联考中考数学一诊试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)实数2019的相反数是()A.2019B.C.D.﹣2019【解答】解:因为a的相反数是﹣a,所以2019的相反数是﹣2019.故选:D.2.(4分)下列图形是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.3.(4分)为调查某中学学生对社会主义核心价值观的了解程度,某课外活动小组进行了抽样调查,以下样本最具有代表性的是()A.初三年级的学生B.全校女生C.每班学号尾号为5的学生D.在篮球场打篮球的学生【解答】解:A、B、D中进行抽查,不具有代表性,对抽取的对象划定了范围,因而不具有代表性.C、每班学号尾号为5的学生进行调查具有代表性.故选:C.4.(4分)如图,用菱形纸片按规律依次拼成如图图案.第1个图案有5个菱形纸片,第2个图案有9个菱形纸片,第3个图案有13个菱形纸片,按此规律,第7个图案中菱形纸片数量为()A.17B.21C.25D.29【解答】解:观察图形发现:第1个图案中有5=4×1+1个菱形纸片;第2个图案中有9=4×2+1个菱形纸片;第3个图形中有13=4×3+1个菱形纸片,…第n个图形中有4n+1个菱形纸片,当n=7时,4×7+1=29个菱形纸片,故选:D.5.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,15cm 和18cm,另一个三角形的最长边长为9cm,则它的最短边为()A.2cm B.2.5cm C.4cm D.7.5cm【解答】解:设另一个三角形的最短边长为xcm,根据题意,得:,解得:x=2.5,即另一个三角形的最短边的长为2.5cm.故选:B.6.(4分)下列命题中真命题是()A.互补的角一定是邻补角B.三角形的一个外角大于任何一个内角C.内错角一定相等D.同一平面内,垂直于同一直线的两直线平行【解答】解:A、两直线平行时,一对同旁内角互补,此时这一对同旁内角不是邻补角,故选项错误;B、三角形的一个外角大于与它不相邻的任何一个内角,故选项错误;C、如图,直线AB、CD被直线EF所截,AB与CD不平行,此时内错角∠AEF≠∠EFD,故选项错误;D、如图,由AB⊥EF得∠AEF=90°,由CD⊥EF得∠EFD=90°,则∠AEF=∠EFD=90°,所以AB∥CD.故选项正确.故选:D.7.(4分)估计(﹣)÷的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:原式=,∵1<<2,∴3<3﹣1<4,故选:A.8.(4分)按图所示的运算程序,若输入x=1,输出的y值为()A.﹣1B.1C.0D.﹣7【解答】解:把x=1代入程序中得:y=0,故选:C.9.(4分)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,AD=3,BC=,则四边形ABCD的周长为()A.B.C.D.【解答】解:过D作DF⊥BC于F,则∠DFB=90°,∵AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,∴AD=DE,BC=CE,∠DAB=∠CBA=90°,∴四边形ADFB是矩形,∴AD=BF,AB=DF,∵AD=3,BC=,AD=DE,BC=CE,∴DE=3,CE=,∴DC=3+=,CF=BC﹣AD=﹣3=,在Rt△CFD中,由勾股定理得:DF===8,即AB=DF=8,即四边形ABCD的周长是AD+DC+BC+AB=3+++8=,故选:D.10.(4分)缙云山是国家级自然风景名胜区,上周周末,小明和妈妈到缙云山游玩,登上了香炉峰观景塔,从观景塔底中心D处水平向前走14米到点A处,再沿着坡度为0.75的斜坡A走一段距离到达B点,此时回望观景塔,更显气势宏伟,在B点观察到观景塔顶端的仰角为45°再往前沿水平方向走27米到C处,观察到观景塔顶端的仰角是22°,则观景塔的高度DE为()(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.4)A.21米B.24米C.36米D.45米【解答】解:作BG⊥DE于G,AF⊥BG于F,设AF=3x,∵AB坡的坡度为0.75,∴BF=4x,∴BG=4x+14,CG=4x+41,∵∠ABG=45°,∴GE=BG=4x+14,在Rt△EGC中,tan C=,即=0.4,解得,x=1,∴DE=3x+4x+14=21(米),故选:A.11.(4分)如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图象经过点Q,若S△BPQ=S△OQC,则k的值为()A.﹣12B.12C.16D.18【解答】解:∵PB∥OC(四边形OABC为正方形),∴△PBQ∽△COQ,∴==,∴PB=P A=OC=3.∵正方形OABC的边长为6,∴点C(0,6),点P(6,3),直线OB的解析式为y=x①,∴设直线CP的解析式为y=ax+6,∵点P(6,3)在直线CP上,∴3=6a+6,解得:a=﹣,故直线CP的解析式为y=﹣x+6②.联立①②得:,解得:,∴点Q的坐标为(4,4).将点Q(4,4)代入y=中,得:4=,解得:k=16.故选:C.12.(4分)若数a使关于x的不等式组的解为x<2,且使关于x的分式方程+=﹣4有正整数解,则满足条件的a的值之和为()A.12B.11C.10D.9【解答】解:不等式组整理得:,由已知解集为x<2,得到a+4≥2,解得:a≥﹣2,分式方程去分母得:1﹣x+a+5=﹣4x+16,解得:x=,当a=1时,x=3;a=4时,x=2;a=7时,x=1,则满足条件a的值之和为1+4+7=12,故选:A.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算(π﹣3)0+=﹣2.【解答】解:原式=1﹣3=﹣2.故答案为:﹣2.14.(4分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=4,以边AC为直径的半圆交AB于点D,则图中阴影部分的面积是6﹣π(结果保留π)【解答】解:连接OD、CD,∵AC为半圆的直径,∴CD⊥AB,∵CA=CB,∴AD=DB,又AO=OC,∴OD=BC=2,∠COD=∠ACB=90°,∴图中阴影部分的面积是=×(2+4)×2﹣=6﹣π,故答案为:6﹣π.15.(4分)如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,若∠C=15°,AE=EG=2厘米,则△ABC的边BC的长为4+2厘米.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∠GAC=∠C=15°,∴∠AGE=30°,AE=EG=2厘米,∴∠EAG=∠AGE=30°,∴∠AEB=60°,∴△ABE是等边三角形,∴∠BAE=60°,BE=AE=AB=2厘米,∴BG=4厘米,∠BAG=60°+30°=90°,∴GC=AG==2(厘米),∴BC=BG+GC=(4+2)厘米,故答案为:4+2.16.(4分)有背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:y=、y =﹣x+2、y=x2、y=2x+1,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图象不过第四象限的卡片的概率是.【解答】解:下列函数关系式:y=;y=﹣x+2;y=x2;y=2x+1中,函数y=,y=2x+1,y=x2的图象不经过第四象限,所以函数图象不经过第四象限的概率=.故答案为:.17.(4分)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与乙出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙跑了1450米.【解答】解:乙的速度为:1500÷600=2.5(米/秒),甲的速度为:2.5+200÷400=3(米/秒),甲、乙会合地离起点的距离为:400×3=1200(米),甲到达终点时,乙离起点的距离为:1200+(1500﹣1200)÷3×2.5=1450(米).故答案为:1450.18.(4分)一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2a,a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物,乙车共运270吨.现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为2160元.(按每吨运费20元计算)【解答】解:设甲一次运x吨,乙一次运y吨,丙一次运z吨,,解得,y=z=2x,∴这批货物一共有:(x+z)×=540,∴甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为:540××20=2160(元),故答案为:2160.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上. 19.(10分)证明命题“等腰三角形两腰上的高相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,在△ABC中,AB=AC,CE⊥AB,BD⊥AC.求证:CE=BD请补全已知和求证部分,并写出证明过程.【解答】解:已知:如图,在△ABC中,AB=AC,CE⊥AB,BD⊥AC.求证:CE=BD,证明:∵AB=AC,∴∠ABC=∠ACB,∵CE⊥AB,BD⊥AC,∴∠BEC=∠CDB,∵BC=BC,∴△BEC≌△CDB(ASA),∴CE=BD.故答案为:CE⊥AB,BD⊥AC;CE=BD20.(10分)在新的教学改革的推动下,某中学初三年级积极推进走班制教学.为了了解一段时间以来“至善班”的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取20名同学在某一次定时测试中的数学成绩,其结果记录如下:收集数据至善班”甲班的20名同学的数学成绩统计(满分为100分)(单位:分)86 90 60 76 92 83 56 76 85 7096 96 90 68 78 80 68 96 85 81“至善班”乙班的20名同学的数学成绩统计(满分为100分)(单位:分)78 96 75 76 82 87 60 54 87 72100 82 78 86 70 92 76 80 98 78整理数据:(成绩得分用x表示)分析数据,并回答下列问题:(1)完成下表:(2)在“至善班”甲班的扇形图中,成绩在70≤x<80的扇形中,所对的圆心角α的度数为72°,估计全部“至善班”的1600人中优秀人数为880人.(成绩大于等于80分为优秀)(3)根据以上数据,你认为“至善班”甲班(填“甲”或“乙”)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:①甲的优秀率高.②甲的中位数比乙的中位数大.【解答】解:(1)将甲班成绩重新整理如下:56 60 68 68 70 76 76 78 80 81 83 85 85 86 90 90 92 96 96 96,其中96出现次数做多,∴众数a=96(分),将乙班成绩重新整理如下:54 60 70 72 75 76 76 78 78 78 80 82 82 86 87 87 92 96 98 100,其中中位数b==79(分),故答案为:96,79;(2)成绩在70≤x<80的扇形中,所对的圆心角α的度数为360°×=72°,估计全部“至善班”的1600人中优秀人数为1600×=880(人).(3)甲所选取做样本的同学的学习效果更好一些,你所做判断的理由是:甲的优秀率高,甲的中位数比乙的中位数大,故答案为:甲,甲的优秀率高,甲的中位数比乙的中位数大.21.(10分)计算(1)(x﹣y)(x+y)﹣(x+2y)(x﹣y)(2)()【解答】解:(1)原式=(x﹣y)(x+y﹣x﹣2y)=(x﹣y)(x+y﹣x﹣2y)=﹣y(x﹣y)=﹣xy+y2;(2)原式=[﹣]÷=•=﹣x(x﹣1)=﹣x2+x;22.(10分)小明研究一函数的性质,下表是该函数的几组对应值:(1)在平面直角坐标系中,描出以上表格中的各点,根据描出的点,画出该函数图象(2)根据所画函数图象,写出该函数的一条性质:x<﹣1时,y随x的增大而减小;(3)根据图象直接写出该函数的解析式及自变量的取值范围:;(4)若一次函数y=x+n与该函数图象有三个交点,则n的范围是.【解答】解:(1)根据表格的点所画的图象如图所示:(2)观察图象可得其中的一条性质为:x<﹣1时,y随x的增大而减小(3)当x<1时,函数经过点点(﹣3,3)(﹣2,0)(0,0)故设函数的解析式为y=a(x+2)(x﹣0),将点(﹣4,6)代入解得3=a(﹣3+2)×(﹣3),解得a=1,∴x<1时,函数解析式为:y=x2+2x,(x<1)当x≥1时,函数经过点(1,3)(2,0)故设函数解析式为:y=kx+b,解得∴x≥1时,函数解析式为:y=﹣3x+6故答案为:,(4)由图象可知,一次函数y=x+n与函数y=﹣3x+6交点在(1,3)时有3=+n得,n=一次函数y=x+n与y=x2+2x有且仅有一个交点时,有⇒∴△=,解得n=故一次函数y=x+n与该函数图象有三个交点时,n的范围是故答案为:23.(10分)幸福水果店计划用12元/盒的进价购进一款水果礼盒以备销售.(1)据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?(2)在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了m%,月销量比(1)中最低月销量800盒增加了m%,结果该月水果店销售该水果礼盒的利润达到了4000元,求m的值.【解答】解:(1)设每盒售价应为x元,依题意,得:980﹣30(x﹣14)≥800,解得:x≤20.答:每盒售价应不高于20元.(2)依题意,得:[20(1﹣m%)﹣12×(1+25%)]×800(1+m%)=4000,整理,得:m2﹣25m=0,解得:m1=25,m2=0(不合题意,舍去).答:m的值为25.24.(10分)如图,平行四边形ABCD中,连接AC,AC=AB,过B作BE⊥AC于E,延长BE与CD交于F.(1)若AE=2,CE=1,求△ABC的面积;(2)若∠BAC=45°,过F作FG⊥AD于G,连接AF、BG,求证:AC=EG.【解答】(1)解:∵AE=2,CE=1,∴AB=AC=3,∵BE⊥AC,∴BE===,∴△ABC的面积=AE×BE=×3×=;(2)证明:过G作GH⊥EG交CA延长线于H,∵AB=AC,∠BAC=45°,∴∠ABC=∠ACB=67.5°,∵BF⊥AC,∴∠EBC=22.5°,∵AB∥DC,∴∠BAC=∠ACD=45°,∴△BAE、△CEF是等腰直角三角形,∴EA=EB,EF=EC,在△BEC和△AEF中,,∴△BEC≌△AEF(SAS),∴∠CBE=∠EAF=22.5°,∵AD∥BC,∴∠ACB=∠DAC=67.5°,∴∠DAF=45°,∵FG⊥AD,∴△AGF是等腰直角三角形,∴GA=GF,∵四边形ABCD是平行四边形,∴∠D=∠ABC=67.5°,∴∠GFD=22.5°,∴∠EFG=112.5°,∵∠HAG=180°﹣67.5°=112.5°,∴∠HAG=∠EFG,∵∠HGA+∠AGE=90°,∠EGF+∠AGE=90°,∴∠HGA=∠EGF,在△HGA和△EGF中,,∴△HGA≌△EGF(ASA),∴AH=EF,HG=EG,∴△HGE是等腰直角三角形,∴HE=GE,∵HE=HA+AE,EC=EF,∴HE=AC,∴AC=EG.25.(10分)数学不仅是一门科学,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大的一个要求大臣说:“就在这个棋盘上放一些米粒吧,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里有这么多米吗?题中问题就是求1+21+22+23+…+263是多少?请同学们阅读以下解答过程就知道答案了设S=1+21+22+23+...+263,则2S=2(1+21+22+23+24+...+263)=2+22+23+24+...+263+2642S ﹣S=2(1+22+23+24+...+263)﹣(1+2+22+23+24+ (263)即:S=264﹣1事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要1+21+22+23+…+263=(264﹣1)粒米.那么264﹣1到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744073709551615,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:(1)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增共灯三百八十一,请问尖头几盏灯?”意思是一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?(2)计算:1+3+9+27+…+3n.(3)某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,…,依此类推.求满足如下条件的所有正整数N:10<N<100,且这一列数前N项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N的值【解答】解:(1)设塔的顶层由x盏灯,依题意得:x+21x+22x+23x+24x+25x+26x=381解得:x=3,答:塔的顶层共有3盏灯.(2)设S=1+3+9+27+…+3n,则3S=3(1+3+9+27+…+3n)=3+9+27+…+3n+3n+1,∴3S﹣S=(3+9+27+…+3n+3n+1)﹣(1+3+9+27+…+3n),∴2S=3n+1﹣1,∴S=,即:1+3+9+27+…+3n=(3)由题意这列数分n+1组:前n组含有的项数分别为:1,2,3,…,n,最后一组x 项,根据材料可知每组和公式,求得前n组每组的和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,总前n组共有项数为N=1+2+3+…+n=,前n所有项数的和为S n=21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需最后一组x项将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总项数为N=+2=3,不满足10<N <100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总项数为N=+3=18,满足10<N <100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总项数为N=+4=95,满足10<N<100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总项数为N=+5=440,不满足10<N<100,∴所有满足条件的软件激活码正整数N的值为:18或95四、解答题:(本大题1个小题,共8分)26.(8分)如图1,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),交y轴于点C.将直线AC以点A为旋转中心,顺时针旋转90°,交y轴于点D,交拋物线于另一点E.直线AE的解析式为:y=﹣x﹣(1)点F是第一象限内抛物线上一点,当△F AD的面积最大时,在线段AE上找一点G (不与点A、E重合),使FG+GE的值最小,求出点G的坐标,并直接写出FG+GE 的最小值;(2)如图2,将△ACD沿射线AE方向以每秒个单位的速度平移,记平移后的△ACD 为△A′C′D′,平移时间为t秒,当△AC′E为等腰三角形时,求t的值.【解答】解:(1)过点F作FK⊥x轴于点H,交直线AE于点K(如下图),过点D作DM⊥FK于点M,令y=﹣x﹣=0,则点A(﹣1,0),设点F坐标为(x,﹣x2+x+),则点K(x,﹣x﹣),S△F AD=S△F AK﹣S△FDK=FK•AH﹣FK•DM=FK(AH﹣DM)=FK•AO=(﹣x2+x++x+)×1=﹣x2+x+,当x=﹣=时,S△F AD有最大值,此时点F(,),点G是线段AE上一点,作EQ⊥y轴于点Q,作GP⊥EQ于点P,则∠PEG=30°,∴GP=GE,∴FG+GE=FG+GP,过点F作EQ的垂线交AE于点G,此时FG+GE最小,当x=时,y=﹣x﹣=﹣,此时点G(,﹣),FG+GE最小值为:;(2)连接CC′,过点C′作C′F⊥y轴于点F,则C′C=,CF=CC′=t,FC′=CC′=t,∴点C′(t,﹣t),由(1)知点E(4,﹣),∴AE2=,AC′2=t2+4,EC′2=t2﹣t+,①当AC′=EC′时,t2+4=t2﹣t+,解得:t=;②当AC′=AE时,同理可得:t=(舍去负值);③当AE=EC′时,同理可得:t=5;故:t的值为或或5或5.。
重庆育才中学初2019级初三(下)第二次诊断考试数学试题

重庆育才中学初2019级初三(下)第二次诊断考试数学试题(考试时间:120分钟考试形式:闭卷分值:150分)注意事项:1.试题卷上各题的答案用黑色签字笔或钢笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用黑色..的签字笔完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴公式为2b x a=-.一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.比1-大1的数是A .2B .1C .0D .2-2.如图是一个几何体的实物图,则其主视图是322(1)3y x =--+的顶点坐标是A.(1,3) B.(1-,3-)C.(1,3-)D.(1-,3)4.计算:()131282π-⎛⎫-++- ⎪⎝⎭A.1B.5C.1- D.35.如图所示,CD ‖AB ,,于点交平分,射线于点交F CD ABE BF E CD BE ∠︒=∠1081若则的度数为BFE ∠A.︒54 B.︒45 C.︒41 D.︒36DCB AA.B.C.D.2题图5题图11题图6.用火柴棒按下面的方式搭图形,按照这样的规律搭下去,第⑦个图形需要的火柴棒的根数是A .34B .40C .42D .467.以下命题,正确的是A .对角线相等的菱形是正方形B .对角线相等的平行四边形是正方形C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形8.估计()21533-⨯的结果应在A.9.5至10之间B.10至10.5之间C.10.5至11之间D.11至11.5之间9.如图,是一个“数值转换机”,若开始输入的x 的值为16,第1次输出的结果为8,第2次输出的结果是4,……,则第2019次输出的结果为A.8 B.4C.2 D.110.如图,矩形ABCD 中,BC =2,CD =1,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为A.24π+ B.24π-C.4π D.44π+11.某游乐场新推出一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB 自由上下选择项目难度,其中斜坡轨道BC 的坡度为1:2i =,BC =125米,CD =8米,∠D =36°(其中A ,B ,C ,D 均在同一平面内),则垂直升降电梯AB 的高度约为(精确到0.1米)参考数据:),,59.036sin 81.036cos 73.036tan ≈︒≈︒≈︒A .8.6B .11.4C .13.9D .23.412.如果关于x 的分式方程1222x m x x++=--有非负整数解,关于y 的不等式组()()21,23513y y y y m +⎧+≥⎪⎨⎪-<-+⎩有且只有3个整数解,且,则所有符合条件的m 的和是A .3-B .2-C .0D .26题图9题图10题图二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题..卡.中对应的横线上.13.据有关部门统计,2019年“五一小长假”期间,重庆主城区几个网红景点共接待游客约1750000人次,将数1750000用科学记数法表示为_______.14.如图,在Rt △ABC 中,∠C =90°,∠B =30°,其中AC =2,以AC 为直径的⊙O 交AB 于点D ,则圆周角∠A 所对的弧长为(用含π的代数式表示).15.有五张背面完全相同的卡片,正面上分别标有数字2-,1-,0,1,2.把这五张卡片背面朝上,随机抽取一张,记下数字为m ;放回搅匀,再随机抽取一张卡片,记下数字为n ,则0mn >的概率为_______.16.根据测试距离为5m 的标准视力表制作一个测试距离为3m 的视力表.如果标准视力表中“E ”的长a 是3.6cm ,那么制作出的视力表中相应“E ”的长b 是_____.17.快、慢车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早21小时,慢车速度是快车速度的一半.快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y (千米)与所用时间x (小时)的函数图象如图所示.在快车从乙地返回甲地的过程中,当慢车恰好在快车前,且与快车相距80千米的路程时,慢车行驶的总的时间是_____小时.18.甲投资销售一种利润率为0.4的电子产品,第一次购入的电子产品销售完后,甲取出28万元,并把剩下的本金和利润全部用于购入该电子产品;第二次购入的电子产品销售完后,再次取出19.6万元,并把剩下的本金和利润全部用于购入该电子产品;第三次购入的电子产品销售完后,再次取出6.72万元,并把剩下的本金和利润全部用于购入该电子产品;第四次购入的电子产品销售完后,本次销售额为9.8万元.这样,甲投资该项目的本金和利润全部收回,则甲投资该项目的本金是____万元.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)()()()23x y x y x y +--+;(2)22869111a a a a a -+⎛⎫--÷ ⎪+-⎝⎭.20.如图,在等腰ABC ∆中,AB =AC ,CE 、BD 分别为ACB ∠、ABC ∠的角平分线,CE 、BD 相交于P .(1)求证:BE CD =;(2)若 98=∠A ,求BPC ∠的度数.16题图14题图17题图第20题图21.甲、乙两校各有200名体训队队员,为了解这两校体训队员的体能,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个学校各随机抽取20名体训队员,进行了体能测试,测试成绩(百分制)如下:甲7886748175768770759075798170748086698377乙9373888172819483778380817081737882807040整理、描述数据:按如下分数段整理、描述这两组样本数据:成绩x 人数40≤x ≤4950≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100甲校0011171乙校17102(说明:成绩80分及以上为体能优秀,70~79分为体能良好,60~69分为体能合格,60分以下为体能不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:学校平均数中位数众数优秀率甲78.377.5b40%乙78a 81c 问题解决:(1)本次调查的目的是______________________________________________;(2)直接写出a ,b ,c 的值;(3)得出结论:通过以上数据的分析,你认为哪个学校的体训队学生的体能水平更高,并从两个不同的角度说明推断的合理性.22.某课外学习小组根据学习函数的经验,对函数33y x x =-的图象与性质进行了探究.请补充完整以下探索过程:(1)列表:x …2-32-1-12-0121322…y …2-m 214014-n 98-2…请直接写出m ,n 的值;(2)根据上表中的数据,在平面直角坐标系内补全该函数的图象;(3)若函数33y x x =-的图像上有三个点),(11y x A ,),(22y x B ,),(33y x C ,且32122x x x <<<-<,则1y ,2y ,3y 之间的大小关系为(用“<”连接)(4)若方程33x x k -=有三个不同的实数根,请根据函数图象,直接写出k 的取值范围.22题图23.为满足社区居民健身的需要,区政府准备采购若干套健身器材免费提供给社区,经考察,康乐公司有甲,乙两种型号的健身器材可供选择.(1)康乐公司2017年每套甲型健身器材的售价为2万元,经过连续两年降价,2019年每套售价为1.28万元,求每套甲型健身器材售价的年平均下降率n ;(2)2019年市政府经过招标,决定年内采购并安装康乐公司甲,乙两种型号的健身器材共80套,采购专项经费总计不超过95万元,采购合同规定:每套甲型健身器材售价为1.28万元,每套乙型健身器材售价为1.4()1n -万元.①甲型健身器材最多可购买多少套?②按照甲型健身器材购买最多的情况下,安装完成后,若每套甲型和乙型健身器材一年的养护费分别是购买价的8%和10%,区政府计划支出9万元进行养护,问该计划支出能否满足一年的养护需要?24.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值.为解答这题题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一将条件变形,因1x =,得1x -=再把所求的代数式变形为关于()1x -的表达式.原式=()3212222x x x --+()()21=11322x x x x x ⎡⎤----+⎣⎦()21=1322x x x ⎡⎤--+⎣⎦()13322x x =-+=2方法二先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=,可得2220x x --=,即222x x -=,222x x =+.原式=()212222x x x x +--+222x x x x =+--+=2请参照以上的解决问题的思路和方法,解决以下问题:(1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =+432295543x x x x x x ---+-+的值.25.在平行四边形ABCD中,点E是AD边上一点,连接CE,交对角线BD于点F,过点A作AB的垂线交BD的延长线于点G,过B作BH垂直于CE,垂足为点H,交CD于点P,2∠1+∠2=90°.(1)若PH=2,BH=4,求PC的长;(2)若BC=FC,求证:GF=2PC.四、解答题(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,在直角坐标系内,抛物线244y x x=--与x轴交于点A,B,与y轴交于点C,顶点为D,对称轴与x的交点为E,连接BD,DC,CE.点P是抛物线在第四象限内一点,过点P作PH⊥CE,垂足为H.点F是y轴上一点,连接PF并延长交x轴于点G,过点O作OM⊥PG,垂足为M.(1)当PH取得最大值时,求PE+PF+45OF的最小值;(2)当PE+PF+45OF取得最小值时,把△OMF绕点O旋转οα)3600(οα≤<,记旋转过程中的OMF∆为''FOM∆,直线''M F与x轴的交点为K.当△'OF K 是以OK为底的等腰三角形时,直接写出所有满足条件的点'M的坐标.25题图26题备用图26题图。
2019-2020重庆育才中学中考数学第一次模拟试卷(带答案)

2019-2020重庆育才中学中考数学第一次模拟试卷(带答案)一、选择题1 .如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y=t (kWO, x>0)上,若矩2 .下列各式中能用完全平方公式进行因式分解的是()3 .已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑 步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中X 表示时 间,表示林茂离家的距离.依据图中的信息,下列说法错误的是()林茂从体育场出发到文具店的平均速度是50m/mm林茂从文具店回家的平均速度是有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最 后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定C. 3D. 6 A. x 2+x+l B. x 2+2x - 1C. x 2- 1D. x 2- 6x+9D. 4. 不发生变化的是() A.中位数B.平均数C. 众数D.方差则下列结论中正确的是()C. 9a+3b+c>0 D, c+8a<0已知平面内不同的两点A (〃+2, 4)和8 (3, 2a+2)到x 轴的距离相等,则a 的值为( A.C. 1或-3D. 1 或-5k 的值为()4C.B. b 2- 4ac<06axjbx+c (aH0)的图象如7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参 赛,根据题意,可列方程为()2x+l<3c , c 的解集在数轴上表示正确的是() 3x+l>-211.已知直线〃〃//?,将一块含30。
角的直角三角板45c 按如图方式放置 (ZA5C = 30°),其中A, 3两点分别落在直线川,〃上,若/1 = 40。
,则N2的度数12 .如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几 何体的侧面积是(二、填空A.|x(x-l) = 36B. -x(x+l) = 36C. x(x-l) = 36D. x(x+1) = 368.A.B.-10 1C. D.-10 1 -10 1如图,AB 〃CD, AE 平分NCAB 交CD 于点E,若NC=70。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年重庆市九龙坡区育才中学中考数学一诊试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.下列数中是无理数的是()A.B.0.C.27%D.32.下列图形中,是中心对称图形的是()A.B.C.D.3.下列图案均是用相同的小正方形按一定的规律拼成:拼第1个图案需1个小正方形,拼第2个图案3个小正方形,….,依此规律,拼第6个图案需小正方形()个.A.15B.21C.24D.124.下列调查中,适宜采用抽样调查方式的是()A.检查100张面值为100元的人民币中有无假币B.检查“瓦良格号”航母的零部件质量C.调查一批牛奶的质量D.了解某班同学体育满分情况5.下列命题是真命题的是()A.同位角相等B.一个数的平方根与立方根相等,则这个数是1和0C.倒数等于本身的数是1和﹣1D.绝对值等于本身的数是0和16.估算在哪两个整数之间()A.0和1B.1和2C.2和3D.3和47.根据如图所示的程序计算函数y的值,若输入的x值是﹣3和2时,输出的y值相等,则b等于()A.5B.﹣5C.7D.3和48.已知a是方程x2﹣3x﹣2=0的根,则代数式﹣2a2+6a+2019的值为()A.2014B.2015C.2016D.20179.如图,点A、B、C在圆O的圆周上,连OA、OC,OD⊥AB于点D,若AO平分∠CAB,∠CAB =50°,则∠OCB=()A.40°B.35°C.30°D.25°10.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米11.如图,在平面直角坐标系中,Rt△AOB的边OA在y轴上,OB在x轴上,反比例函数y=(k=,则k的值为()≠0)与斜边AB交于点C、D,连接OD,若AC:CD=2:3,S△OBDA.4B.5C.6D.712.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2B.0C.1D.3二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上.13.计算:(π﹣3.14)0+|﹣2|﹣(﹣1)2019=.14.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为.(结果保留π)15.“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全,小刚每天从陈家坪骑自行车到育才中学上学都经过两个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是.16.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点F、E,若CD=,BC=4,则CE的长度为.17.甲乙沿着同一路线以各自的速度匀速从A地到B地,甲出发1分钟后乙随即出发,甲、乙到达B地后均立即按原路原速返回A地,甲、乙之间的距离y(米)与甲出发的时间x(分)之间的部分图象如图所示.当甲返回到A地时,乙距离B地米.18.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.(10分)化简:(1)(2a﹣1)2﹣a(a﹣4);(2)20.(10分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,过点D作DE ⊥AB交AB于点E,过C作CF∥BD交ED于F.(1)求证:△BED≌△BCD;(2)若∠A=36°,求∠CFD的度数.21.(10分)为深化课程改革,我校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学鉴赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成如图所示的两个不完整的统计图.根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中D部分的圆心角是度;请补全条形统计图;(2)根据本次调查,我校七年级2600名学生中,估计最喜欢“趣味数学”的学生人数为多少?22.(10分)已知y是x的函数,x的取值范围为任意实数,如图是x与y的几组对应值,小华同学根据研究函数的己有经验探素这个函数的有关性质,并完成下列问题.(1)如图,小华在平面直角坐标系中描出了上述几组值对应的点,请你根据描出的点画出函数的图象;(2)请根据你画出的函数图象,完成①当x=﹣4时,求y的值;②当2012≤|y|≤2019时,求x的取值范围.23.(10分)某水果店以每千克6元的价格购进一批水果,由于销售状况良好,该店又购进一些同一种水果,第二次进货价格比第一次每千克便宜了1元,已知两次一共进货600千克.(1)若该水果店两次进货的总价格不超过3200元,求第一次至多购进水果多少千克?(2)在(1)的条件下,以第一次购进最大重量时的数量进货,在销售过程中,第一次购进的水果有3%的损耗,其售价比其进价多2a元,第二次购进的水果有5%的损耗,其售价比其进价多a元,该水果店希望售完两批水果后获利31.75%,求a的值.24.(10分)正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+FC.25.(10分)阅读材料:黑白双雄,纵横江湖;双剑合壁,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如,,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理数因式,于是,二次根式除法可以这样解:如,.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化.解决间题:(1)比较大小:(用“>”“<”或“=”填空);(2)计算:+;(3)设实数x,y满足,求x+y+2019的值.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,抛物线y=﹣x2+x+3交x轴于A、B两点,点A在点B的左侧,交y轴于点C.(1)如图1,点P为直线BC上方抛物线上的一点,过点P作PQ∥AC交BC于点Q,连接PA,PB,当凹四边形PAQB的面积最大时,点S为y轴上一动点,点T为x轴上一动点,连接PS,ST,TB,求PS+ST+TB的最小值;(2)如图2,将△AOC绕点A逆时针旋转45°,得到△AO'C',延长C'A交y轴于点R,点S是抛物线y=﹣x2+x+3对称轴上一个动点,连接CS、RS,把△CRS沿直线CS翻折得到△CR'S,则BRR'能否为等腰三角形?若能,请直接写出所有符合条件的点S的坐标;若不能,请说明理由.2019年重庆市九龙坡区育才中学中考数学一诊试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.是无理数;B.0.是无限循环小数,是有理数;C.27%是分数,有限小数,是有理数;D.3是整数,是有理数.故选:A.【点评】本题考查了无理数:无限不循环小数叫无理数.常见有:字母表示的无理数,如π等;开方开不尽的数,如2等;无限不循环小数,如0.101001000100001…(每两个1之间多一个0)等2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,不是轴对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】设拼第n个图案需要a n个小正方形(n为正整数),观察图形,根据各图案中小正方形个数的变化可得出变化规律“a n=(n为正整数)”,再代入n=6即可求出结论.【解答】解:设拼第n个图案需要a n个小正方形(n为正整数),观察图形,可知:a1=1,a2=1+2,a3=1+2+3,a3=1+2+3+4,…,∴a n=1+2+3+…+n=(n为正整数),∴a6==21.故选:B.【点评】本题考查了规律型:图形的变化类,根据各图案中小正方形个数的变化找出变化规律“a n=(n为正整数)”是解题的关键.4.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、检查100张面值为100元的人民币中有无假币采用普查,错误;B、检查“瓦良格号”航母的零部件质量采用普查,错误;C、调查一批牛奶的质量采用抽样调查,正确;D、了解某班同学体育满分情况采用普查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.【分析】根据平行线的性质、平方根和立方根、倒数以及绝对值进行判断即可.【解答】解:A、两直线平行,同位角相等,是假命题;B、一个数的平方根与立方根相等,则这个数是0,是假命题;C、倒数等于本身的数是1和﹣1,是真命题;D、绝对值等于本身的数是0和正数,是假命题;故选:C.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.6.【分析】根据的范围进行估计解答即可.【解答】解:,∵,∴估算在1和2两个整数之间,故选:B.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.【分析】把x=﹣3与x=2代入程序中计算,根据y值相等即可求出b的值.【解答】解:当x=﹣3时,y=9,当x=2时,y=4+b,由题意得:4+b=9,解得:b=5,故选:A.【点评】此题考查了函数值,弄清程序中的关系式和理解自变量取值范围是解本题的关键.8.【分析】利用一元二次方程解的定义得到a2﹣3a=2,再把﹣2a2+6a+2019变形为﹣2(a2﹣3a)+2019,然后利用整体代入的方法计算.【解答】解:∵a是方程x2﹣3x﹣2=0的根,∴a2﹣3a﹣2=0,∴a2﹣3a=2,∴﹣2a2+6a+2019=﹣2(a2﹣3a)+2019=﹣2×2+2019=2015.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.【分析】连接OB.想办法求出∠ACB,∠ACO即可解决问题.【解答】解:连接OB.∵∠CAB=50°,OA平分∠CAB,∴∠OAD=∠OAC=∠CAB=25°,∵OD⊥AB,OA=OB,∴∠ODA=90°,∴∠AOD=∠BOD=65°,∴∠AOB=130°,∴∠ACB=∠AOB=65°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCB=65°﹣25°=40°,故选:A.【点评】本题考查圆周角定理,角平分线的定义,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】作DE⊥AB于E,作DF⊥BC于F,y由CD的坡度为i=1:2.4,CD=52米,得到=1:2.4,求出BE、AE即可解决问题;【解答】解:作DE⊥AB于E,作DF⊥BC于F,∵CD的坡度为i=1:2.4,CD=52米,∴=1:2.4,∴=52,∴DF=20(米);∴BE=DF=20(米),∵∠BDE=45°,∴DE=BE=40m,在Rt△ADE中,∠ADE=37°,∴AE=tan37°•20=15(米)∴AB=AE+BE=35(米).故选:B.【点评】本题考查了仰角与俯角的知识.此题难度适中,注意能借助仰角与俯角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用.11.【分析】设D(m,n),过点C作CE⊥y轴于点E,过点D作DF⊥y轴于点F.因此△ACE∽△ADF,由AC:CD=2:3,得到AC:AD=2:5,所以,从而CE=DF=m,故C,于是直线AB的表达式为y=,所以B(),OB=,由S=,求得mn=5,所以k=5,△OBD【解答】解:设D(m,n),过点C作CE⊥y轴于点E,过点D作DF⊥y轴于点F.∴△ACE∽△ADF,∵AC:CD=2:3,∴AC:AD=2:5,∴,∴CE=DF=m∴C,∵D(m,n),∴直线AB的表达式为y=,∴B(),OB=,∵S=,△OBD×=,∴mn=5,∴k=mn=5,故选:B.【点评】本题考查了反比例函数k的几何意义,构建相似三角形是解题的关键.12.【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【解答】解:由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选:B.【点评】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上.13.【分析】直接利用零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=1+2+1=4.故答案为:4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.14.【分析】根据题意和图形可知阴影部分的面积是正方形四分之一的面积减去弓形CE的面积,弓形CE的面积等于半圆的面积减去正方形四分之一面积差的一半,从而可以解答本题.【解答】解:∵正方形ABCD边长为4,∴AB=BC=CD=DA=4,∴阴影部分的面积是:=6﹣π,故答案为:6﹣π.【点评】本题考查扇形的面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.【分析】列举出所有情况,看所求的情况数占总情况数的多少即可.【解答】解:画树状图如下:∵总共有4种情况,两个路口都是红灯的结果有1种,∴两个路口都遇到红灯的概率是,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD=AD=AB,则AB=2,∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAF,进而求得∠CAF=∠BCD=∠B,即∠B=∠CAF,然后证得△ACE∽△BCA,即可得出CE的长.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD=AD=AB,∵CD=,BC=4∴AB=2,∴由勾股定理得AC==2,∵CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAF+∠ACF=90°,又∠ACB=90°,∴∠BCD+∠ACF=90°,∴∠CAF=∠BCD=∠B,即∠B=∠CAF,∴△ACE∽△BCA,∴=,∴CE==1.故答案为:1.【点评】本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用,有一定难度.17.【分析】根据题意和函数图象可以分别求得甲乙的速度,从而可以解答本题.【解答】解:由题意可得,甲的速度为60÷1=60米/分,则乙的速度为:100÷(7﹣6)﹣60=40米/分,设A、B两地距离为S米,2S=60×7+40×(7﹣1),解得,S=330,甲返回A地用时为:330×2÷60=11(分),则乙11分钟行驶的路程为40×(11﹣1)=400(米),400﹣330=70(米),即当甲返回到A地时,乙距离B地70米,故答案为:70.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.【分析】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.【解答】解:设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴该地区空闲时段民用电的单价比高峰时段的用电单价低×100%=60%.故答案为:60%.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.【分析】(1)根据整式的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4a2﹣4a+1﹣a2+4a=3a2+1;(2)原式=÷=•=4x;【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.【分析】(1)根据角平分线的性质和全等三角形的判定解答即可;(2)根据三角形的内角和和三角形外角以及平行线的性质解答即可.【解答】证明:(1)∵在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,过点D 作DE⊥AB交AB于点E,∴∠BED=∠BCD=90°,∴ED=DC,在Rt△BED与Rt△BCD中,∴Rt△BED≌Rt△BCD(HL);(2)∵在Rt△ABC中,∠ACB=90°,BD平分∠ABC交AC于点D,∠A=36°,∴∠ABD=∠DBC=27°,∴∠BDC=63°,∵CF∥BD,∴∠CFD=∠BDC=63°.【点评】此题考查全等三角形的判定和性质,关键是根据角平分线的性质和全等三角形的判定解答.21.【分析】(1)用A课程人数除以其对应百分比可得总人数,再用360°乘以D课程人数占总人数的比例,继而根据各课程人数之和等于总人数求出C的人数,据此可补全条形图;(2)用总人数乘以样本中D课程人数所占比例.【解答】解:(1)本次调查的总人数为40÷20%=200(人),扇形统计图中D部分的圆心角是360°×=135°,C课程的人数为200﹣(40+60+75)=25(人),补全图形如下:故答案为:200,135;(2)2600×=975,答:估计最喜欢“趣味数学”的学生人数为975人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【分析】(1)根据表格的数据即可画出图象(2)由图象可知,①当x=﹣4时,y=4②由2012≤|y|≤2019,可得﹣2019≤y≤﹣2012或2012≤y≤2019,根据图象即可以求x的取值范围【解答】解:(1)由表格的数据所画的图象如图所示:(2)①由图象可知,函数解析式为:y=|x|∴当x=﹣4时,求y=4②由2012≤|y|≤2019,可得﹣2019≤y≤﹣2012或2012≤y≤2019故所得的x的取值范围为:﹣2019≤x≤﹣2012和2012≤x≤2019【点评】此题主要考查函数值对应的函数图象及自变量的取值范围,根据题中表格的数据画出所需的图象即可.23.【分析】(1)设第一次购进水果x千克,则第二次购进(600﹣x)千克,根据单价乘以数量得费用可解;(2)根据售价乘以实际卖出数量减去进价乘以进货数量,分别计算第一次的和第二次的,两者相加等于获利额可解.【解答】解:(1)设第一次购进水果x千克,根据题意,得:6x+5(600﹣x)≤3200,解得:x≤200,答:第一次至多购进水果200千克;(2)第一次至多购进水果200千克,则第二次购进400千克,根据题意,得:(6+2a)×200(1﹣3%)﹣200×6+(5+a)×400(1﹣5%)﹣400×5=3200×31.75%,解得:a=1.5故a的值为1.5.【点评】本题属于一元一次不等式和一元一次方程的实际应用问题,需要明确成本与利润问题的基本关系,准确分析数量关系,从而解决问题.24.【分析】(1)由正方形性质得出AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周长;(2)延长GF交BC于M,连接AG,则△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=CF,证出BM=DG,证明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再证明△ABE ≌△AFH,得出BE=FH,即可得出结论.【解答】(1)解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE==2,∴△AEF的周长=AE+EF+AF=2++3=2+4;(2)证明:延长GF交BC于M,连接AG,如图2所示:则△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45°,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AFH=90°,在△ABE和△AFH中,,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,FG=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键.25.【分析】(1)根据分母有理化结果即可判断;(2)原式各项分母有理化后化为两个根式的差,计算即可得到结果.(3)将已知等式进行变形,化为①,②,由①+②得x+y=0,即可解答.【解答】解:(1)∵∴故答案为:>(2)∵====∴原式==1﹣=(3)∵,∴,∴①,同理:②,∴①+②得,∴x+y=0,∴x+y+2019=2019.【点评】本题考查了分母有理化,也是阅读材料问题,此类问题要认真阅读材料,理解材料中的知识:分母有理化.解题的关键是:根据平方差公式,将各式分母有理化.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.【分析】(1)设点P(x p,y p),Q(x Q,y Q),根据条件表示出y Q=﹣﹣x Q+3,y p=﹣x p2+x p+3,将三角形面积表示为﹣(x p﹣2)2,求出P;关于y轴的对称点P',将BA绕点B逆时针旋转30°,过P'作P'⊥BD,P'D与x轴,y轴分别交于点T,S;求P'D=3+;(2)当BR=RR'时,当BR=BR'时,当RR'=BR时三种情况求点S的坐标,结合三角形的相似或平行线的性质建立比例关系,再利用R'S=RS,建立方程求解坐标;【解答】解:(1)由已知可直接求得A(﹣1,0),B(4,0),C(0,3),设点P(x p,y p),Q(x Q,y Q),∵点P在抛物线上,∴y p=﹣x p2+x p+3,∵PQ∥AC,设直线AC的表达式y=k1x+b1,∴y=3x+3,设直线BC的表达式为y=k2x+b2,∴y=﹣x+3,∴y Q=﹣x Q+3,∴设直线PQ的表达式为y=3x+m,x p+3,与x轴的交点为(﹣x p2+x p﹣1,0),将点P代入表达式得y=3x﹣x p2﹣∵tan∠CAB==,∴y Q=﹣x Q+3=3x Q﹣x P2﹣x P+3,∴x Q=x p2+x p,∴y Q=﹣﹣x Q+3,凹四边形PAQB的面积=×AB(y p﹣y Q)=[(﹣x p2+x p+3)﹣(﹣﹣x Q+3)]=﹣(x p2﹣4x p)=﹣(x p﹣2)2,当x P=2时,面积有最大值;∴P(2,),如图1:关于y轴的对称点P',将BA绕点B逆时针旋转30°,过P'作P'⊥BD,P'D与x轴,y 轴分别交于点T,S;∴P'(﹣2,)∴PS=P'S,TD=TB,∴PS+ST+TB=P'S+ST+TD=P'D,过P'作P'E⊥x轴,在Rt△P'ET中,∠ETS=60°,P'E=,∴P'T=3,ET=,∴BT=6﹣,在Rt△BTD中,TD=3﹣,∴P'D=3+;(2)如图2:CE⊥y轴,过O'作x轴垂线与x轴交于点D,两条垂线交于点E,∵将△AOC绕点A逆时针旋转45°,得到△AO'C',∴△C'O'E和△ADO'都是等腰直角三角形,∵AO=1,C'O'=3,∴AD=O'D=,EC'=O'E,∵,∴EC'=O'E=,∴C'(﹣1﹣,2),∵A(﹣1,0),∴直线AC'的解析式为y=2x﹣2,∴R(0,﹣2);对称轴x=,①当BR=RR'时,如图3在以C因为圆心CR为半径的圆上,∴SR2=SR'2,∴HS2+(4+)2=()2+(SH+2)2,∴HS=6,∴S(,6),②当BR=BR'时,如图3∵SH∥CO,∴,∵BH=4﹣=,∴SH==,∴S(,);③当RR'=BR时,如图5延长R'C与圆相交于S'',在Rt△OCH中,OC=3,OH=,∴CH=,∴R'C=RC=5,∴R'H=5+,∵CO∥R'K,∴,∴KH=,∴R'(﹣,2+3),∴S''(,3﹣2)∵R'S=RS,∴(+)2+(2+3﹣SH)2=()2+(SH+2)2,∴SH=,∴S(,);如图6,∵R'S=RS,∴∴(﹣)2+(﹣2+3﹣SH)2=()2+(SH﹣2)2,∴SH=,∴S(,﹣);综上所述,满足条件的S 有四个S (,6),S (,),S ''(,3﹣2),S (,﹣);【点评】本题考查二次函数的图象及性质,等腰三角形的存在性,一次函数的图象和性质,平行线的性质,轴对称的性质,最短距离;这是一道综合性强的题,能够画出多种情况的图形,分类讨论,数形结合是解题的关键.。