曲柄滑块机构的定义
曲柄(导杆)滑块机构设计分析正文.

目录1 引言1.1 选题的依据及意义·························································································(1)1.2 国内外研究概况及发展趋势··········································································(2)1.3 论文主要工作·······························································································(3)2 曲柄(导杆)滑块机构简介····································································(4)3 曲柄(导杆)滑块机构的运动学分析3.1 曲柄导杆滑块机构的运动分析······································································(5)3.1.1 机构装配的条件····················································································(6)3.1.2 建立数学模型·························································································(6)3.1.3 计算机辅助分析及其程序设计······························································(9)3. 2曲柄滑块机构的运动分析3.2.1 机构装配的条件·····················································································(25)3.2.2 建立数学模型·······················································································(25)3.2.3 计算机辅助分析及其程序设计·····························································(27)4 曲柄(导杆)滑块机构实验台装置设计4. 1 实验台结构·································································································(40)4.2 实验台硬件操作说明···················································································(41)4.3 用SolidWorks 2006实现实验台的立体图形················································(42)总结·········································································································(46)参考文献·········································································································(47)致谢·········································································································(48)1 引言1.1 选题的依据及意义1.曲柄(导杆)滑块机构定义曲柄滑块机构是铰链四杆机构的演化形式,由若干刚性构件用低副(回转副、移动副)联接而成的一种机构。
机械基础--简答题综合

综合简单题一(机构和零件部分)1、机器与机构有什么区别?试举例说明。
答:机器是执行机械运动的装置,用来变换或传递能量、物料和信息。
机器就是人为实体(构件)的组合,它的各部分之间具有确定的相对运动,并能代替或减轻人类的体力劳动,完成有用的机械功或实现能量的转换。
例如:电动机和内燃机。
机构是用来传递运动和力的构建系统,机构也是人为实体(构件)的组合,各运动实体之间也具有确定的相对运动,但不能做机械功,也不能实现能量转换。
例如:航空发动机、纺织机、拖拉机。
2、机器通常由哪几个部分组成?个部分起什么作用?答:机器通常由动力部分、工作部分和传动装置三部分组成。
除此之外,还有自动控制部分。
动力部分是机器动力的来源,常用的发动机有电动机、内燃机和空气压缩机等。
工作部分是直接完成机器工作任务的部分,处于整个传动装配的终端,起结构形式取决于机器的用途。
例如金属切削机床的主轴、拖板、工作台等。
传动装置是将动力部分的运动和动力传递给工作部分的中间环节。
例如:金属切削机床中常用的带传动、螺旋传动、齿轮传动、连杆机构、凸轮机构等。
机器应用的传动方式主要有机械传动、液压传动、气动传动及电气传动等。
3、什么是构件?什么是零件?构件与零件关系如何?试举例说明。
答:构件是机构中的运动单元体,也就是相互之间能作相对运动的物体。
零件是构件的组成部分。
构件与零件既有联系又有区别,构件可以是单一的零件,如单缸内燃机中的曲轴,既是构件,也是零件:构件也可以是由若干零件连接而成的刚性结构,如连杆构件是由连接体、连杆盖、螺栓和螺母等零件连接而成。
区别在于:构件是运动的单元,零件是加工制造的单元。
4、什么是运动副?运动副如何分类?运动副是高副、低副区分?特点?答:运动副是两构件直接接触组成的可动连接,它限制了两构件之间的某些相对运动。
而允许有另一些相对运动。
根据运动副中两构件的接触形成不同,可分为低副和高副。
低副是指两构件之间以面接触的运动副,分为:转动副,移动副,螺旋副高副是指两构件以点或线接触的运动副低副承载能力大,易制造和维修,但滑动摩擦损失大,效率低,不能传递较复杂的运动。
曲柄滑块机构的结构

工作原理
当曲柄绕固定轴转动 时,通过连杆带动滑 块做往复直线运动。
通过改变曲柄的转速 和转向,可以控制滑 块的往复运动速度和 方向。
曲柄的长度和安装位 置可以改变滑块的行 程长度和方向。
应用领域
内燃机
曲柄滑块机构广泛应用于内燃机的活塞运动,通过曲柄的转动使活塞 进行往复运动,实现内燃机的吸气、压缩、做功和排气过程。
可能是由于润滑不良、部件磨损或异物卡住引起 的。应检查润滑状况,清洁机构并更换磨损部件。
异响
可能是由于部件松动、润滑不良或部件损坏引起 的。应检查紧固件和润滑状况,必要时更换损坏 部件。
精度下降
可能是由于部件磨损、松动或导轨弯曲引起的。 应检查并调整部件的精度,必要时更换磨损部件 或修正导轨。
谢谢观看
热处理工艺
总结词
热处理工艺能够显著提高材料的机械性能,是曲柄滑块机构优化的重要环节。
详细描述
热处理工艺包括淬火、回火、表面淬火和化学热处理等。淬火可以提高材料的硬度和强度,回火则可以改善材料 的韧性和降低内应力。表面淬火可以强化材料表面的硬度,提高耐磨性。化学热处理可以改变材料表面的化学成 分,提高耐腐蚀性和疲劳强度。
曲柄滑块机构的结构
目录
• 曲柄滑块机构简介 • 曲柄滑块机构类型 • 曲柄滑块机构的设计 • 曲柄滑块机构的优化 • 曲柄滑块机构的维护与保养
01
曲柄滑块机构简介
定义与特点
定义
曲柄滑块机构是一种将曲柄的回 转运动转化为滑块的往复直线运 动的机构。
特点
结构简单,工作可靠,能实现精 确的直线运动,且运动范围较大 ,因此在各种机械装置中得到广 泛应用。
总结词
当曲柄绕机架转动时,导杆仅作直线往复运动的曲柄滑块机构。
曲柄滑块机构的演化

案例三:机器人关节中的曲柄滑块机构
在机器人关节设计中,曲柄滑块机构被用于实现关节的转动或伸缩运动。通过调整曲柄长度和滑块位置,可以改变机器人的 姿态和运动轨迹,使其能够完成复杂和灵活的动作。
在火炮的设计中,曲柄滑 块机构被用于调整火炮的 射击角度。
技术进步
材料科学
随着材料科学的进步,曲柄滑块机构的设计和制造材料得到了改 进,提高了机构的强度和耐久性。
计算机辅助设计
计算机辅助设计技术的发展使得曲柄滑块机构的设计更加精确和 优化。
动力学分析
动力学分析技术的发展使得曲柄滑块机构的运动性能和力学性能 得到了更好的理解和优化。
演化结果
提高工作效率
经过不断演化,曲柄滑块机构的 工作效率得到显著提高,能够满 足高强度、高速度和高精度的生 产需求。
降低能耗
优化后的曲柄滑块机构具有更低 的能耗,有助于实现绿色、节能 的生产目标。
提高柔性化水平
智能化的曲柄滑块机构具有更高 的柔性化水平,能够适应多样化 的生产需求和市场变化。
04
曲柄滑块机构的演化
目录
• 曲柄滑块机构简介 • 曲柄滑块机构的发展历程 • 曲柄滑块机构的演化过程 • 曲柄滑块机构的未来展望 • 曲柄滑块机构演化案例分析
01
曲柄滑块机构简介
定义与特点
定义
曲柄滑块机构是一种将曲柄的回转运 动转化为滑块的往复直线运动的机构 。
特点
结构简单、紧凑,运动副接触面积小 ,传动效率高,适用于实现往复运动 和间歇运动。
演化路径
曲柄滑块的原理及应用

曲柄滑块的原理及应用概述曲柄滑块是一种常见的机械传动装置,主要由曲柄、滑块和连杆组成。
利用曲柄旋转运动,通过连杆将旋转运动转化为直线运动,实现力的传递和工作机构的运动控制。
曲柄滑块具有结构简单、传动效率高等特点,广泛应用于各个领域。
原理曲柄滑块的原理基于连杆机构和曲柄的旋转运动转化为滑块的直线运动。
连杆将曲柄的旋转运动转化为滑块的往复直线运动,实现力的传递。
曲柄滑块的基本结构如下: - 曲柄:具有一端固定,并可以绕自身轴线旋转。
- 连杆:将曲柄的旋转运动转化为滑块的直线运动。
- 滑块:沿连杆的方向进行往复直线运动。
曲柄滑块的工作原理如下: 1. 曲柄通过旋转运动带动连杆运动。
2. 连杆将曲柄的旋转运动转化为滑块的直线运动。
3. 滑块完成往复直线运动,实现力的传递和工作机构的控制。
应用曲柄滑块由于其结构简单、传动效率高等特点,被广泛应用于各个领域,以下是曲柄滑块的几个常见应用示例:1. 内燃机曲柄滑块机构被广泛应用于内燃机的气缸机构中。
内燃机中的曲轴就是一个曲柄滑块机构,通过活塞的上下运动,将往复直线运动转化为曲轴的旋转运动,从而带动车辆驱动轮的转动。
2. 压力机曲柄滑块机构在压力机中也得到了广泛应用。
通过曲柄滑块机构转化运动,将旋转运动转化为直线压力运动,实现对工件的压制和成型。
3. 石油钻机在石油钻机中,曲柄滑块机构用于转动钻杆来实现钻孔。
曲柄滑块机构将旋转运动转化为往复线性运动,带动钻杆快速下压和快速抬起。
4. 壁画机器人曲柄滑块机构还被应用于壁画机器人。
通过控制曲柄滑块机构的运动,实现壁画机械臂的运动控制,完成复杂的绘制工作。
5. 自动包装机在自动包装机中,曲柄滑块机构常用于输送和抓取物品的功能。
通过控制曲柄滑块机构的运动,可以实现快速而准确的物品传递和抓取。
总结曲柄滑块是一种常见的机械传动装置,通过将曲柄的旋转运动转化为滑块的直线运动,实现力的传递和工作机构的控制。
曲柄滑块具有结构简单、传动效率高等优点,被广泛应用于内燃机、压力机、石油钻机、壁画机器人、自动包装机等领域。
曲柄滑块原理的应用

曲柄滑块原理的应用简介曲柄滑块机构是一种常见的机械传动装置,利用曲柄的旋转运动和滑块的直线往复运动实现传递和转换动力。
它广泛应用于工程机械、汽车、机床等领域,具有结构简单、运动平稳等优点。
机械原理曲柄滑块机构由曲柄、滑块和链接杆组成。
曲柄是一个固定在旋转轴上的杆状零件,滑块则是直线往复运动的零件。
通过曲柄的旋转,使滑块沿着特定的轨迹运动,完成工作。
应用领域曲柄滑块机构在工程机械和汽车领域有着广泛的应用。
下面列举几个常见的应用案例:1.压力机:曲柄滑块机构被用于压力机中,通过滑块的往复运动,对工件进行加工、冲压、模具压制等工艺操作。
压力机的应用范围广泛,包括汽车制造、建筑、钢铁等行业。
2.发动机:汽车发动机中的活塞运动正是通过曲柄滑块机构实现的。
曲柄将发动机的旋转运动转换为活塞的直线往复运动,完成燃料的供给、爆发和排出的工作。
3.输送机:装载、输送和卸载物料是工业生产中常见的任务。
曲柄滑块机构可以用于实现输送机的往复运动,将物料或货物从一处运送到另一处。
4.工具机:曲柄滑块机构被广泛应用于工具机中,如剪床、冲床等。
通过滑块的往复运动,可以对工件进行切割、冲压、打孔等加工操作。
工作原理曲柄滑块机构的工作原理是利用曲柄的旋转运动来驱动滑块的直线往复运动。
下面是曲柄滑块机构的工作步骤:1.曲柄旋转:曲柄轴被连接到旋转动力源上(如电机),当电机启动后,曲柄开始旋转。
2.滑块运动:曲柄的旋转运动将通过曲柄销传递给滑块,使滑块沿着直线轨迹运动。
滑块的运动轨迹由曲柄的形状和滑块导向方式决定。
3.完成工作:滑块的直线往复运动可用于完成各种工作。
如在压力机中,滑块的下压能够对工件进行加工。
在发动机中,滑块的运动可以推动活塞进入燃烧室。
优点和局限性曲柄滑块机构作为一种常见的机械传动装置,具有以下优点:•结构简单:由于曲柄滑块机构由少量零件组成,因此结构简单,便于制造和维修。
•运动平稳:曲柄滑块机构的滑块运动往复平稳,具有较高的稳定性和可靠性。
铰链四杆机构的演化

对心曲柄滑块机构
偏置曲柄滑块机构
e≠0,偏置曲柄滑块机构 e = 0,对心曲柄滑块机构
对心曲柄滑块机构 偏置曲柄滑块机构
曲柄摇杆机构
曲柄滑块机构
偏置曲柄滑块机构
对心曲柄滑块机构
曲柄滑块机构的应用——内燃机
曲柄滑块机构的应用 对心曲柄滑块机构 ——滚轮送料机
曲柄滑块机构的应用——冲压机
偏心轮机构
在曲柄滑块机构中,当曲柄较短时,往往用一个旋转中心 与几何中心不重合的偏心轮代替曲柄,
只能以曲柄为主动件
二、导杆机构
取曲柄滑块机构的原连架杆2为机架而得到的,原连杆3 为主动件,若l3 l2,导杆1作整(ZHOU)运动,称为转动导 杆机构;若l3 l2,导杆1作往复摆动,称为摆动导杆机构,
2
3
4
1
3 4
2
3
4
2 1
1
应用实例:回转式油泵 转动导杆机构 牛头刨床的主体机构 摆动导杆机构
曲柄导杆机构
转动导杆机构 摆动导杆机构 移动导杆机构 曲柄摇块机构
转动导杆机构: 应用:旋转式水泵
有急回特性,无死点
摆动导杆机构的应用——牛头刨床主运动机构 以曲柄为主动件有急回特性
移动导杆机构的应用——手动抽水机构 取曲柄滑块机构中的原滑块4为机架而得到的,当原曲柄2 转动时,导杆1可在固定滑块4中往复移动,故该机构称为移 动导杆机构 或定块机构 ,
§5-3 铰链四杆机构的演化
• 演化的方法: 改变某些构件的形状、相对长度、选择
不同的构件作为机架
一、曲柄滑块机构: 当曲柄摇杆机构中的பைடு நூலகம்杆为无限长时,即为曲柄
滑块机构,具有一个移动副和三个转动副,
摇杆长 → ∞ → 直线 摇杆3 → 滑块
曲柄滑块四杆机构压力角传动角的定义及其计算课件

传动角定义及作用
定义
在平面连杆机构中,主动件与从动件开始相对运动时的两个共线位置之间的夹角。
作用
衡量机构的传动性能,传动角越大,机构的传动性能越好,效率越高。
影响压力角和传动角的因素
01
曲柄长度
02
连杆长度
03
滑块位置
04
压力角传动角计算方法论述
压力角计算方法
定义
计算公式 注意事项
传动角计算方法
定义
传动角是指在曲柄滑块四杆机构 中,主动件通过连杆传递给从动 件的力的方向与从动件运动方向
之间所夹的锐角。
计算公式
传动角γ可通过余弦函数计算, γ=arccos((lAB^2+lBC^2-
lAC^2)/(2lAB·lBC)),其中lAB、 lBC和lAC分别为曲柄、连杆和滑
块的长度。
注意事项
在计算传动角时,需确保所取角 度为锐角,并注意机构的运动方
实验目的
验证曲柄滑块四杆机构压力角传动角的定义,探究机构运动过程中压力角和传动角的变化规律,提高理论知识的 实践应用能力。
方案制定
搭建曲柄滑块四杆机构实验台,通过调整机构参数和运动速度,采集不同位置下的压力角和传动角数据,进行对 比分析。
数据采集与整理方法论述
数据采集方法
采用光电传感器和角度传感器实时采集 机构运动过程中的压力角和传动角数据, 确保数据的准确性和实时性。
曲柄滑块四杆机构定义
01
02
03
04
块四杆机构工作原理
旋转运动转换为直线运动
传动比与行程速度变化
曲柄滑块四杆机构类型
对心曲柄滑块机构 偏置曲柄滑块机构
03
压力角传动角概念及影响因素
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲柄滑块机构的定义
曲柄滑块机构是铰链四杆机构的演化形式,由若干刚性构件用低副(回转副、移动副)联接而成的一种机构。
是由曲柄(或曲轴、偏心轮)、连杆滑块通过移动副和转动副组成的机构。
曲柄滑块的特点及应用
常用于将曲柄的回转运动变换为滑块的往复直线运动;或者将滑块的往复直线运动转换为曲柄的回转运动。
对曲柄滑块机构进行运动特性分析是当已知各构件尺寸参数、位置参数和原动件运动规律时,研究机构其余构件上各点的轨迹、位移、速度、加速度等,从而评价机构是否满足工作性能要求,机构是否发生运动干涉等。
曲柄滑块机构具有运动副为低副,各元件间为面接触,构成低副两元件的几何形状比较简单,加工方便,易于得到较高的制造精度等优点,因而在包括煤矿机械在内的各类机械中得到了广泛的应用,如自动送料机构、冲床、内燃机空气压缩机等。
优点:
1.面接触低副,压强小,便于润滑,磨损轻,寿命长,传递动力大;
2.低副易于加工,可获得较高精度,成本低;
3.杆可较长,可用作实现远距离的操纵控制;
4.可利用连杆实现较复杂的运动规律和运动轨迹。
缺点:
1.低副中存在间隙,精度低;
2.不容易实现精确复杂的运动规律。
凸轮滑块机构的定义
凸轮机构是由凸轮,从动件和机架三个基本构件组成高副结构。
凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。
与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。
凸轮滑块的特点及应用
.优点:
1.能够实现精确的运动规律;
2.设计较简单。
缺点:1.承载能力低,行程短;
2.凸轮轮廓加工困难。
丝杠螺母机构的定义
丝杠螺母机构又称螺旋传动机构。
它主要用来将旋转运动变换为直线运动或将直线运动变换为旋转运动。
有以传递能量为主的(如螺旋压力机、千斤顶等);也有以传递运动为主的如机床工作台的进给丝杠);还有调整零件之问相对位置的螺旋传动机构等。
丝杠螺母的特点及应用
优点:
1.结构简单,支撑稳定。
2.制动装置由于滚珠丝杠副的传动效率高,又无自锁能力。
缺点:
1.传动形式需要限制螺母的转动,故需导向装置
2.但其轴向尺寸不宜太长,否则刚性较差。
因此只适用于行程较小的场合。
齿轮
齿轮齿条机构的定义
齿轮齿条传动是将齿轮的回转运动转变为往复直线运动,或将齿条的往复直线运动转变为齿轮的回转运动。
齿轮齿条的特点及应用
齿轮传动是应用最广的传动机构之一,齿轮传动依靠主动轮于从动轮齿的啮合,传递运动与动力。
优点:
1.传递动力大,效率高;
2.寿命长,工作平稳,可靠性高;
3.能保证恒定的传动比,能传递任意夹角两轴间的运动。
缺点:
1.制造,安装精度要求较高,因而成本也较高;
2.不宜作与距离传动。
传动方案的选择
根据以上四种种方案的各个特点,选择第一种方案作为电动线锯机的传动系统方案。
这样电动线锯机的主要驱动部件就是由曲柄滑块组成。
这种机构是使回转运动和往复运动互相转换的一种机构。
电机的回转运动通过驱动曲柄滑块机构准换成上下往复运动,曲柄滑块的特性是用r和L的比值λ(λ=r/L)l来说明的,一般λ≤,λ越小,机构的工作效率就越高。
在运动分析中认为曲柄机构的曲柄等速回转,其角速度为:
W=π×n/30(弧度/秒)
式中:n —曲柄轴转速,已知转速为2800转/分
线锯机的曲柄轴角速度为
w =π⨯2800/30
一般情况下λ≤,在这里λ取,则
λ=r/L=
S=2r
r=15mm
又已知线锯机的上下往复行程为30mm
所以从上面公式可以计算出 L=100mm ,r=15mm
图如上图所示:
调速系统的设计
齿轮调速:
因为要求该线锯机的齿条速度在500~1500r/min 之间可以进行调节,所以其总传动比
i=12/n n =2800/1500=934/500=.
所以在我们设计齿轮的时候其传动比i=.。
方案采用单级斜圆柱斜齿减速器,在相同的工作条件下,采用斜齿轮调速可比直齿轮获得较小的几何传动尺寸,也就是说斜齿轮传动比直齿轮传动具有较大的承载能力。
齿轮调速又与其他调速(如皮带轮)相比、传动比精确、稳定、效率高、传递损失的功率最小。
结构简图如图所示:
圆柱齿轮的传动的设计计算
1.选择齿轮材料
小齿轮: 45钢 调制
2501=HB
大齿轮: 45钢 正火
1902=HB 2.初步计算
齿宽系数d ϕ:由教材(邱宣怀遍第四版,下同)
取:d ϕ=1
接触疲劳极限:Mpa Him 5601=σ
Mpa Him 5302=σ
初步计算许用接触应力[H σ]:
[1H σ]19.0H σ≈=*560=504Mpa
[2H σ]≈2H σ=*530=477Mpa
取d A 值:由表得d A =85 估计15=β度
初步计算小轮直径1d : 3211)]
[(182H E H d Z Z u u kT d σφ±≥
⇒1d =。